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Microbiota and enteric nervous
system crosstalk in diabetic
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microbiome-based therapies
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Diabetes mellitus has emerged as a global public health crisis, with over half of

patients experiencing gastrointestinal (GI) symptoms that exacerbate glucose

fluctuations and impair quality of life. While prior research on the

pathophysiology of diabetic gastroenteropathy (DGE) focused primarily on

autonomic neuropathy, particularly involving the vagus nerve, recent studies

have shifted toward the impairment of the enteric nervous system (ENS). As the

largest autonomous neural network governing GI motility independent of central

control, structural and functional abnormalities of the ENS constitute the

fundamental pathological basis for DGE. This review first delineates gut

microbial alterations in diabetes and mechanisms by which dysbiosis

compromises the integrity of the ENS. Second, we analyze how microbiota-

derived metabolites (short-chain fatty acids, bile acids, tryptophan), gut

hormones (glucagon-like peptide-1, ghrelin), and neurotransmitters

(acetylcholine, vasoactive intestinal peptide, nitric oxide) multitarget the ENS—

collectively establishing the “microbiota-ENS axis” as the central hub for GI

sensorimotor control. Finally, we provide an overview of preclinical and clinical

evidence for microbiome-targeted therapies (probiotics, prebiotics, fecal

microbiota transplantation) in alleviating DGE symptoms and repairing ENS

while outlining translational challenges and future research priorities.
KEYWORDS

diabetic gastroenteropathy, the enteric nervous system, gut microbiota, microbiota-
ENS axis, microbial metabolites, gut hormones, neurotransmitters, microbiome-
based therapies
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1 Introduction

Diabetes has become a global public health crisis, with

epidemiological data revealing a prevalence of 10.5% among

individuals aged 20–70 years, projected to climb to 12.2% by 2045

(Sun et al., 2021). Diabetic gastroenteropathy (DGE), a prevalent

complication of diabetes, impacts the gastrointestinal (GI) tract

from the esophagus to the colon, presenting clinical symptoms

including esophageal motility disorders, gastroparesis, constipation,

diarrhea, and fecal incontinence. In patients with diabetes mellitus,

the incidence of GI symptoms is significantly higher than in those

without diabetes, especially in women with poor glycemic control,

long-standing diabetes, or other diabetic complications, although

the reported prevalence of DGE varies widely by region (Du et al.,

2018). Research indicates that 70% to 75% of diabetic individuals

experience at least one GI symptom (Krishnasamy and Abell, 2018),

with dysphagia (63%), gastroesophageal reflux (41%), early satiety

or nausea (10%–20%), constipation (60%), and diarrhea (20%)

being especially prominent (Concepción Zavaleta et al., 2021).

These symptoms contribute to malnutrition, impaired drug

absorption, decreased treatment adherence, and reduced quality

of life. Despite the widespread use of validated tools, such as the

Gastrointestinal Symptom Rating Scale (GSRS) and Gastroparesis

Cardinal Symptom Index (GCSI), the diagnosis of DGE remains

hindered by the lack of specific biomarkers and the reliance on

exclusion criteria, resulting in high rates of underdiagnosis and

clinical oversight (Revicki et al., 2003; Kulich et al., 2008). Nuclear

gastric emptying scintigraphy is the gold standard for diagnosing

gastroparesis, yet its practical use is limited due to radiation

exposure and time-consuming procedures. Current treatments,

such as prokinetics, antiemetics, and laxatives, aim to alleviate

symptoms. Unfortunately, metoclopramide is the sole medication

that has received Food and Drug Administration (FDA) approval

for the treatment of gastroparesis. The utilization of domperidone,

erythromycin, and mosapride (a 5-hydroxy tryptamine 4 agonist) is

limited owing to safety concerns (Camilleri and Sanders, 2022).

Novel approaches, including ghrelin receptor agonists, pyloric

botulinum toxin injections, and surgical pyloromyotomy, show

promise but necessitate thorough evaluation (Fleming et al., 2020;

Schol et al., 2021). Therefore, clarifying the pathophysiology of

DGE and discovering novel therapeutic targets are imperative.

Gastrointestinal function is coordinately regulated by two

principal neural systems: the extrinsic autonomic nervous system

and the intrinsic enteric nervous system. Prior investigations into

the pathophysiology of DGE predominantly focused on autonomic

dysfunction, particularly damage to the vagus nerve. Sustained

hyperglycemia and its sequelae, including oxidative stress and

inflammatory cascades, induce segmental demyelination and

axonal degeneration in vagal fibers. These pathological changes

disrupt bidirectional gut-brain communication and impair

neuromodulation of gastrointestinal smooth muscle. However,

contemporary research has progressively shifted toward

elucidating impairment of the enteric nervous system (ENS).
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Termed the “second brain” of the gut, the ENS constitutes the

largest autonomously functioning neural network within the GI

tract. It orchestrates motility independent of the central nervous

system (CNS) while maintaining anatomical and functional

connectivity with the CNS via vagal pathways. First described by

Albert von Haller in 1755 (Gershon, 1998), this system exhibits

persistent GI motility even after intestinal disconnection from the

brain. Analogous to the CNS, it integrates sensory neurons,

interneurons, and motor neurons to form autonomous sensory-

motor reflex arcs, which are the essential framework for the

autonomous regulation of digestive tract functions (Niesler et al.,

2021). Originating from vagal neural crest progenitors during

embryogenesis, the ENS comprises millions of neurons and glial

cells organized into myenteric (Auerbach’s) and submucosal

(Meissner’s) plexuses. The myenteric plexus, spanning the GI

tract, coordinates smooth muscle contractions to propel luminal

contents, whereas the submucosal plexus, localized to the small and

large intestines, modulates secretion, absorption, and responses to

chemical and mechanical stimuli (Pawolski and Schmidt, 2020).

Thus, key gastrointestinal functions including motility, sensation,

and secretion are all regulated by the ENS, with its impairment

contributing to a spectrum of gastrointestinal neuropathies. As

observed in disease models of gastroparesis (Tseng et al., 2022),

chronic constipation (Wang et al., 2023), functional dyspepsia (Tait

and Sayuk, 2021), and irritable bowel syndrome (IBS) (Mayer et al.,

2023), there is a notable loss of enteric neurons and ICCs, along

with a reduction in the size and quantity of ganglia, underscoring

the critical role of the ENS in maintaining GI function and motility.

Nonetheless, the ENS, along with enteric neurons, enteric glial cells

(EGCs), and ICCs, may be damaged from several diabetes-related

variables, including chronic hyperglycemia, advanced glycation end

products, oxidative stress, gut dysbiosis, and inflammation

(Abdalla, 2024; Uppaluri et al., 2024). Undoubtedly, glycemic

control remains the cornerstone for preventing and delaying the

progression of DGE, while the search for targets to repair and

regulate the ENS continues to be a major focus of current research.

Emerging evidence suggests bidirectional interactions between

the ENS and gut microbiome (Sharkey and Mawe, 2023). The gut

microbiome, the most complex microecosystem in the digestive tract,

plays a pivotal role in various physiological processes, such as

nutrient absorption, glucose and lipid metabolism, immune

regulation, and GI motility (Del Chierico et al., 2022). Recent

studies have demonstrated that the development, maturation, and

integrity of the ENS are profoundly influenced by the gut

microbiome. Research (Sajdel-Sulkowska, 2023) shows that the

development of fetal ENS could be influenced by maternal gut

dysbiosis during pregnancy. In adulthood, antibiotic-induced germ-

free mice also exhibit a significant reduction in the number of enteric

neurons, glial cells, and vagal afferent neurons, leading to extended

small intestinal and prolonged GI transit time (Hung et al., 2020).

However, these traits were reversible upon microbial colonization or

supplementation with Bacteroides species or short-chain fatty acids

(SCFAs), along with restoring cholinergic neuronal activity and
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promoting GI motility (Aktar et al., 2020). Thus, the gut microbiota

may modulate the function and homeostasis of the ENS through its

metabolites and signaling molecules. These findings suggest that

microbiome-based therapies may represent an innovative approach

to improve GI dysfunction (Simon et al., 2021). Nevertheless, despite

these encouraging findings, existing research on the specific pathways

by which gut microbiota modulate the ENS to ameliorate GI issues in

patients with diabetes remains insufficient. There exists a notable gap

in identifying viable treatment targets.

This review aims to provide an update on the mechanisms and

therapeutic potential of the “microbiome-ENS axis” in DGE, with a

particular emphasis on the interactions between the gut

microbiome and the ENS (Figure 1). We first elaborate on the

impact of gut dysbiosis on the ENS and GI motility. Subsequently,

we analyze the mechanisms by which microbiota-derived

metabolites, gut hormones, and neurotransmitters regulate the

ENS and GI function and provide a focused discussion on their

contributions. Finally, we evaluate the translational potential of

microbiome-based therapies, including probiotics, prebiotics, and

fecal microbiota transplantation (FMT), to lay the theoretical

groundwork for developing precision treatments of DGE and

improve patients’ quality of life.
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2 Mechanisms and consequences of
diabetes-induced gut microbiota
dysbiosis

2.1 Mechanisms underlying gut dysbiosis-
induced diabetes

Although the gut microbiota is initially established at birth, it

evolves dynamically throughout life, modulated by host age, dietary

patterns, and physical activity (Rinninella et al., 2019). Dietary

patterns differentially influence the pathogenesis of diabetes,

potentially mediated by gut microbiota alterations. For instance,

high-sugar or high-fat diets increase Akkermansia, Proteobacteria,

and endotoxemia while elevating the Firmicutes/Bacteroidetes ratio

and reducing bifidobacteria abundance (Sen et al., 2017). Protein

sources differentially modulate the composition of gut microbiota:

poultry and fish consumption increase Actinobacteria, beef

consumption elevates Bacteroidetes, and soy protein enhances

probiotics like Lactobacillus and Bifidobacterium and reduces

Bacteroides (Wu et al., 2022a). These microbial shifts increase

intestinal permeability, thereby promoting bacterial translocation

and endotoxemia. Moreover, dysbiosis alters microbial metabolites,
FIGURE 1

Mechanistic insights into diabetic gastroenteropathy: bidirectional interactions between diabetes and gut microbiota impacting the enteric
nervous system.
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including short-chain fatty acids (SCFAs), trimethylamine N-oxide

(TMAO), and indoles, which disrupts endocrine signaling (PYY,

GLP-1/2, adiponectin, and resistin), impairs insulin pathways, and

promotes lipogenesis, ultimately driving obesity and diabetes

(Moszak et al., 2020). Conversely, meta-analyses demonstrate that

high-fiber diets significantly increase the abundance of

Bifidobacterium and Lactobacillus along with SCFAs, while

suppressing enteropathogens (Shigella, Escherichia coli, Klebsiella)

and improving glucose and lipids. Subgroup analyses reveal that

specific prebiotics (fructans and galacto-oligosaccharides) further

elevate the abundance of Bifidobacterium and Lactobacillus

(So et al., 2018). Vegetable/fruit-rich diets reduce the risk of

gestational diabetes by modulating Lachnospiraceae, Blautia, and

Ruminococcus (Shan et al., 2024). Sedentary lifestyles, established

obesity risk factors, may induce insulin resistance through altered

Firmicutes/Bacteroidetes ratios (Sikalidis and Maykish, 2020).

Regular exercise, conversely, promotes beneficial bacteria

proliferation, enhances intestinal barrier integrity, and maintains

metabolic homeostasis (Campaniello et al., 2022). Thus, dietary

modification and physical activity represent pragmatic approaches

for correcting metabolic dysregulation in diabetes. Interventions

incorporating fiber, plant-based foods, probiotics, and prebiotics

demonstrate efficacy in reversing metabolic syndrome through

microbial remodeling (Upadhyaya and Banerjee, 2015).
2.2 Mechanisms underlying diabetes-driven
microbiota remodeling

Notably, fecal microbiota transplantation (FMT) from obese

type 2 diabetic donors into germ-free mice induces weight gain and

glucose intolerance, underscoring the pivotal role of gut microbiota

dysbiosis in the pathogenesis of diabetes (Pearson et al., 2022).

However, the alterations of gut microbiota not only contribute to

diabetes but are reciprocally reshaped by diabetes. As evidenced in

db/db and ob/ob mouse models (Thaiss et al., 2018), sustained

hyperglycemia activates intestinal epithelial glucose transporter 2

(GLUT2) and downregulates the expression of zonula occludens-1

(ZO-1), increasing intestinal permeability. This compromised

barrier facilitates the translocation of harmful microorganisms,

such as Escherichia coli, from the gut lumen into systemic

circulation, thereby exacerbating systemic inflammation

(Darra et al., 2023). Furthermore, significant reductions in

butyrate producers (Pseudoflavonifractor, Clostridium, Alistipes,

Faecalibacterium, Oscillibacter) and secondary bile acid producers

(Eubacterium rectale, Clostridium scindens, Bacteroides fragilis) are

observed in prediabetic and type 2 diabetic individuals. These

microbial deficits disrupt intestinal barrier homeostasis, further

promoting microbial translocation and perpetuating dysbiosis.

Diabetes-associated chronic inflammation, characterized by

elevated serum TNF-a and IL-6, further compromises gut

immune equilibrium, amplifying barrier dysfunction and

dysbiotic cascades.
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2.3 Characteristic of diabetes-associated
gut microbiota dysbiosis

A growing body of evidence (Wu et al., 2020; Zhao et al., 2020b;

Zhou et al., 2022) reveals markedly altered abundance and diversity

of gut microbiota in patients with diabetes compared to healthy

individuals, characterized by low-diversity dysbiosis and an

overgrowth of opportunistic pathogens. Bacteroides and

Bifidobacterium, frequently implicated in type 2 diabetes, exhibit

an inverse correlation with disease severity (Gurung et al., 2020).

While an elevated Firmicutes/Bacteroidetes ratio is often associated

with obesity (Koliada et al., 2017), numerous studies (Ahmad et al.,

2023; Karačić et al., 2024) report non-significant or inverse

correlations with obesity. Magne et al. (2020). attribute these

discrepancies to methodological heterogeneity, including

variations in sample size, participant characteristics, and

sequencing approaches (16S rRNA vs. metagenomics). Notably, a

systematic review (Zhou et al., 2020) indicated a decreased F/B ratio

in fecal samples from type 1 diabetes (T1DM) mellitus patients

analyzed via 16S rRNA sequencing, whereas duodenal biopsies

revealed an increased ratio in Italian cohorts (Pellegrini et al.,

2017, p. 1). This spatial heterogeneity underscores the necessity

for segmental gut sampling (e.g., gastric mucosa, jejunal contents)

coupled with spatial microbiome analysis to elucidate microbiota-

host interactions.

Type 2 diabetes is associated with increased abundance of

Aspergillus, Micrococcus, and Actinomycetes, alongside opportunistic

pathogens (Streptococcus, Clostridium, Escherichia-Shigella,

Enterococcus, Klebsiella) that contribute to metabolic endotoxemia

(Zhou et al., 2022). Although reduction of Akkermansia muciniphila

typically correlates with intestinal hyperpermeability, facilitating

pathogen translocation and metabolic disease pathogenesis,

paradoxical increases have been reported in some T2DM studies

(Zhao et al., 2020b). This anomaly may arise from confounding

factors such as metformin exposure or consumption of polyphenol-

rich green tea, though mechanistic validation is pending (de la Cuesta-

Zuluaga et al., 2017; Gurley et al., 2019). Such confounders necessitate

stratified analyses, particularly given metformin’s documented

stimulation of SCFA-producing taxa (Butyrivibrio, Bifidobacterium

bifidum, Megasphaera, Prevotella, Escherichia coli), which may

obscure true microbiota-disease relationships (de la Cuesta-Zuluaga

et al., 2017).
3 Impacts of gut microbiota dysbiosis
on gastrointestinal nerves and
function

In the diabetic state, gut microbiota dysbiosis further

exacerbates GI motility dysfunction and impairs the ENS.

Alterations in microbiota observed in both clinical and animal

models of DGE underscore the association between these microbial

communities and GI motility. Enrichment of Proteobacteria
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represents one of the most prominent microbiota features in DGE,

with increased abundance positively correlating with the

progression of DGE (Du et al., 2022). A small-scale Chinese

clinical study (Lin et al., 2024) reported an increased abundance

of Proteobacteria, including Pseudomonas and Alkalibacterium, in

patients with DGE. A cohort study (Du et al., 2022) on diabetic

autonomic neuropathy revealed a significant increase in taxa within

Proteobacteria, including Escherichia-Shigella, Escherichia coli, and

Megasphaera. Actinobacteria, Proteobacteria, and Firmicutes are

dominant in DGE and show a significant positive correlation with

impaired gastrointestinal motility (Huang et al., 2024; Zheng et al.,
Frontiers in Cellular and Infection Microbiology 05
2024). Crucially, this diabetes-induced gut microbiota dysbiosis

may profoundly adversely affect the ENS and impede GI motility,

as evidenced by recent mechanistic investigations (Figure 2).
3.1 Inhibition of gastrointestinal motility

Studies indicate that GI motility can be directly impacted by the

abundance of specific bacterial populations. For instance, an

increase in certain specific microbiota has been found to be

associated with reduced GI motility in patients with constipation,
FIGURE 2

Factors influencing gut microbiome composition in diabetes models. Multiple variables, including age, dietary patterns, physical activity,
hyperglycemia, obesity, and glucose-lowering agents, alter the abundance and composition of gut microbiota and contribute to diabetic
gastrointestinal dysfunction.
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including potentially pathogenic bacteria such as methanogenic

bacteria, Desulfovibrionaceae, Escherichia coli, and Staphylococcus

aureus (Pan et al., 2022). A notable increase in the abundance of

Enterobacter cloacae and methanogens is observed in patients with

diabetes, which are the main sources of methane and hydrogen

sulfide (Tian et al., 2022). It is reported that they are inversely

related to colonic transit speed (Attaluri et al., 2010; Tang et al.,

2018), and the mechanism involves the alteration of ion channel

mechanisms. Clinical cohort studies (Feng and Li, 2022)

have demonstrated that patients with diabetes have a 2.91-fold

higher risk of developing small intestinal bacterial overgrowth

(SIBO) compared to non-diabetic individuals. The delayed small

intestinal transit time is closely associated with a positive lactulose

breath test, also known as the methane-hydrogen test, further

confirming that the overgrowth of hydrogen-producing and

methanogenic bacteria can directly impede GI motility

(Talamantes et al., 2024).
3.2 Disruption of the transmission of the
ENS signaling

Research conducted by McVey Neufeld et al. (2015) revealed that

germ-free mice exhibit lower excitability of intrinsic primary afferent

neurons (IPANs) and mesenteric neurons in comparison to healthy

controls. Although the precise mechanisms remain elusive, gut

microbiota indirectly modulate the ENS signaling through multiple

pathways, including interference with neurotransmitter biosynthesis

and activation of aryl hydrocarbon receptors (AHR) and Toll-like

receptors (TLRs). Serotonin (5-hydroxytryptamine, 5-HT), a critical

neurotransmitter and paracrine signaling molecule, regulates diverse

gastrointestinal functions by acting on neurons, smooth muscle cells,

and immune cells (De Vadder et al., 2018). Beyond its production by

enterochromaffin cells (ECCs), 5-HT is generated through

tryptophan metabolism by Bacteroides, Lactococcus, and Klebsiella

species, while its reuptake via the serotonin transporter (SERT) is

inhibited by Escherichia coli (Esmaili et al., 2009). Although

diminished 5-HT levels correlate with dysmotility in patients with

diabetic gastroparesis, direct evidence linking microbiota dysbiosis to

5-HT reduction in this condition remains limited (Bharucha et al.,

2019). Microbiota-derived 5-HT and its metabolites additionally

serve as AHR agonists. Functioning as a ligand-dependent

transcription factor, AHR bridges gut microbiota-ENS crosstalk by

detecting microbial alterations that influence colonic motility

development. Notably, both dysbiosis and 5-HT deficiency impair

AHR-mediated ENS regulation (Obata et al., 2020). Additionally,

TLRs recognize pathogen-associated molecular patterns and interfere

with ENS signal transmission by detecting pathogen-associated

molecular patterns (PAMPs) such as LPS and lipoproteins (Li and

Wu, 2021). Anitha (Anitha et al., 2012), Yarandi (Yarandi et al.,

2020), and their colleagues noticed that TLR2- and TLR4-deficient

mice align with the mechanism responsible for gut dysmotility in

germ-free mice, characterized by a diminished quantity of nitrergic

inhibitory neurons. Marked decreases in glial cell line-derived

neurotrophic factor (GDNF) were also observed in TLR2-deficient
Frontiers in Cellular and Infection Microbiology 06
and microbiota-depleted mice, whereas supplementation with

GDNF or TLR2 agonist restored the ENS function, indicating

that both are prerequisites for ensuring the integrity of ENS

(Brun et al., 2013).
3.3 Neurotoxic effects

Clinical studies (Gomes et al., 2017) indicate that serum

lipopolysaccharide (LPS) levels in patients with T2DM are 1.66-

fold higher than in healthy individuals. Hyperglycemia- and

obesity-associated free fatty acid (FFA) and bile acid

dysmetabolism selectively suppress SCFA-producing bacteria,

including Bifidobacterium, Faecalibacterium prausnitzii, and

Roseburia, while promoting opportunistic pathogens such as

Clostridium and Streptococcus (Pinart et al., 2021). This dysbiosis

compromises the synthesis of 5-HT and promotes endotoxemia.

Furthermore, hyperglycemia induces GLUT2-dependent tight

junction impairment, increasing intestinal permeability and

establishing leaky gut (Di Vincenzo et al., 2024). This

compromised barrier facilitates translocation of Escherichia coli

and Salmonella, driving endotoxemia and low-grade chronic

inflammation. Although low-dose LPS is essential for the survival

of the ENS, chronic exposure to high-dose LPS triggers

neurotoxicity and impairs viability through the activation of the

TLR4/nuclear factor kappa-B (NF-kB) pathway (Anitha et al.,

2012). Despite insufficient data demonstrating a direct correlation

between the impaired ENS and higher LPS levels in diabetes models,

studies on LPS-induced endotoxemia indicate that high doses of

LPS lead to delayed gastric emptying and weakened contractile

activity in the cecum and colon (De Winter and De Man, 2010).

Beyond that, LPS activates NOD-like receptor thermal protein

domain-associated protein 3 (NLRP3) inflammasomes in

intestinal epithelial cells and stimulates dendritic cells and

macrophages, leading to the release of various inflammatory

factors, including interleukin-1b (IL-1b), IL-18, and TNF-a (Han

et al., 2021; Chen et al., 2023). In mouse models, IL-1b (Lefèvre

et al., 2023) and macrophage-derived (especially CD45+/CD11b

+/F4/80+) inflammatory factors (Cipriani et al., 2018) have shown

strong correlations with prolonged colonic transit and delayed

gastric emptying. It also alters the structure and signaling of the

ENS by inducing myenteric plexitis, neuronal hyperplasia, and

neuropeptide dysregulation (Bubeck et al., 2023). Furthermore,

LPS may downregulate ZO-1, leading to intestinal barrier

impairment and exacerbating inflammatory responses (Wang

et al., 2022c). Zogg et al. (2023). demonstrated that GI

dysfunction can be ameliorated by restoring intestinal barrier

integrity and mitigating inflammation-induced neurotoxicity. This

research provides compelling evidence for the link between

intestinal barrier impairment and gastrointestinal dysfunction.

Collectively, these alterations disrupt GI motility via impaired

ENS electrophysiology, neurotoxic damage, and dysregulated

contractility. Nevertheless, future investigations must establish

direct evidence linking specific microbial disruptions to ENS

pathology in DGE models or clinical cohorts.
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4 The gut microbiome-ENS axis in
diabetic gastroenteropathy

Given the emerging evidence linking alterations in gut

microbiota with ENS impairment, further exploration of these

interactions could unveil novel strategies for mitigating the

impact of diabetes on digestive health. In this section, we will

focus on gut metabolites, as well as gut hormones and

neurotransmitters regulated by the gut microbiota, elucidate their

mechanisms of action in communicating with the ENS to influence

diabetic gastrointestinal motility, while discussing the limitations of

current research and potential future breakthroughs based on

existing evidence. Given that distinct microbial derivatives act

through unique molecular targets and pathways to regulate the

enteric nervous system (ENS), this review adopts a categorical

approach to elucidate the mechanisms underlying their crosstalk

more clearly within the gut microbiota-ENS axis (Figure 3).
Frontiers in Cellular and Infection Microbiology 07
4.1 Microbiota-metabolites-ENS
interactions

SCFAs, bile acids, and tryptophan along with its metabolites are

primary metabolic products of the gut microbiota. In addition to

providing energy to the host, these metabolites are essential for

regulating GI physiological functions. This section provides an

update on how these metabolites influence the ENS through

complex signaling networks.
4.1.1 Short-chain fatty acids
Short-chain fatty acids (SCFAs), the primary end products of

anaerobic bacterial fermentation of dietary fibers in the mammalian

colon, can reach concentrations of 50–200 mM, with acetate (C2),

propionate (C3), and butyrate (C4) accounting for approximately

95% of total SCFAs (Louis and Flint, 2017). Bacteroidetes and

Firmicutes serve as predominant producers of SCFAs:
FIGURE 3

Gut microbiota regulates the sensation and motility of the gastrointestinal tract by modulating the ENS via its metabolites, gut hormones, and
synthesized neurotransmitters.
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Bacteroidetes primarily generates acetate and propionate, whereas

Firmicutes predominantly produces butyrate. Elevated butyrate

associates with improved islet function, while increased

propionate correlates with higher risk of type 2 diabetes (Sanna

et al., 2019). Nevertheless, both butyrate and propionate modulate

the ENS through three principal mechanisms:

Firstly, neurotransmitter modulation: SCFAs balance excitatory

and inhibitory signals in the ENS by modulating certain

neurotransmitters. As a potent histone deacetylase (HDAC)

inhibitor, butyrate significantly increases the proportion of

choline acetyltransferase (ChAT)-immunoreactive myenteric

neurons, thereby enhancing cholinergic-mediated colonic circular

muscle contractility (Soret et al., 2010). Concurrently, SCFAs

activate enterochromaffin cells (ECCs) to upregulate tryptophan

hydroxylase 1 (TPH1) transcription—the rate-limiting enzyme

for 5-HT biosynthesis from tryptophan (Reigstad et al., 2015). 5-

HT exerts its biological effects through specific receptors,

including 5-HT1, 5-HT2, 5-HT3, 5-HT4, and 5-HT7, with SCFAs

modulating both serotonin transporter (SERT) activity and receptor

expression profiles (Buey et al., 2023). Notably, 5-HT4 receptor

activation initiates cholinergic motor neuron-dependent circular

muscle contraction. Critically, SCFAs activate free fatty acid

receptor 3 (FFAR3/GPR41) on submucosal neurons, myenteric

plexuses, and vagal ganglia, thereby remodeling GI motility

reflexes through coordinated modification of nitrergic and

cholinergic neurotransmission (Nøhr et al., 2015). Secondly,

neuroprotective: SCFAs attenuate antibiotic-induced neuronal loss

and regulate the survival of enteric neurons (Vicentini et al., 2021).

Butyrate additionally improves GI motility and prevents ICC

depletion in chronic constipation via AKT/NF-kB signaling (He

et al., 2020). Thirdly, hormone regulation: Acting via vagal afferents

or free fatty acid receptor 2/3 (FFAR2/FFAR3) activation on

enteroendocrine cells, SCFAs stimulate secretion of glucagon-like

peptide-1 (GLP-1) and peptide YY (PYY), suppressing appetite and

delaying gastric emptying (Goswami et al., 2018).

Notably, SCFAs exert concentration-dependent effects on GI

motility. Dass et al. (2007) demonstrated that low concentrations (1

mmol/L) exert negligible effects, while moderate-to-high levels (10–

100 mmol/L) dose-dependently reduce peristaltic pressure

thresholds, shorten contraction intervals, and diminish wave

amplitudes, collectively impairing propulsive activity.

Supratherapeutic concentrations (300 mmol/L) will disrupt

intrinsic motility rhythms. Furthermore, a physiological SCFA

concentration gradient exists along the gut: high cecal

concentrations (>115 mmol/L) inhibit intestinal peristalsis,

whereas lower concentrations in the distal colon, terminal ileum,

and ileum (<10 mmol/L) primarily suppress longitudinal muscle

high-frequency contractions via the ENS, promoting intestinal

content propulsion (Ono et al., 2004). In DGE, hyperglycemia-

induced dysbiosis likely disrupts this physiological concentration

gradient, impairing ENS rhythmicity and precipitating dysmotility.

Future investigations must establish optimal SCFAs therapeutic

windows while developing strategies to mitigate high-concentration

toxicity. Crucially, direct evidence demonstrating the efficacy of

exogenous SCFA supplementation in restoring ENS function under
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diabetic conditions remains lacking, necessitating rigorous

translational models to evaluate SCFA-mediated neuromodulation

in DGE pathogenesis.

4.1.2 Bile acid metabolism
Bile acids (BAs) serve as pivotal mediators in microbiota-host

crosstalk, with their biotransformation from primary to secondary

forms critically dependent on gut microbiota. Primary BAs are

synthesized predominantly via hepatic 12a-hydroxylation
pathways involving CYP7A1 and CYP8B1, while secondary BAs

derive from non-12a-hydroxylated routes catalyzed by bacterial

7a-dehydroxylase. Given the absence of endogenous 7a-
dehydroxylase in humans, conversion to secondary BAs depends

on commensal bacteria, including Clostridium and Bacteroides,

establishing gut microbiota as indispensable for BA metabolism

(Jia et al., 2021). Secondary BAs, such as deoxycholic acid (DCA)

and lithocholic acid (LCA), regulate GI motility by activating

farnesoid X receptor (FXR) and Takeda G protein-coupled

receptor 5 (TGR5). In diabetes, diminished abundance of

Akkermansia, Bacteroides, Bifidobacterium, Faecalibacterium, and

Roseburia reduces b-glucuronidase and 7a-dehydroxylase activities,
thereby blocking the conversion of primary BAs to secondary BAs

and consequently decreasing the synthesis of DCA and LCA (Li

et al., 2021b). This microbiota-driven BAs dysmetabolism

compromises intestinal barrier integrity and disrupts the ENS

signaling via TGR5 receptors on ECCs and enteric neurons.

Notably, the widespread expression of TGR5 in enteric neurons,

ECCs, and enteroendocrine cells (EECs) results in regional effects of

BAs on GImotility. Studies (Ferrell and Chiang, 2019) have shown that

intragastric administration of BAs impedes gastric emptying and small

intestine transit through TGR5-mediated secretion of GLP-1. Bile acids

also stimulate TGR5 on motor neurons, producing nitric oxide (NO)

and inhibiting spontaneous contractions in the ileum (Poole et al.,

2010). On the contrary, in the colon, DCA and taurocholic acid could

activate TGR5 on ECs and enteric neurons to stimulate the release of

TPH1 and 5-HT, thus enhancing colonic motility (Bunnett, 2014). The

TGR5 receptor is a critical mediator of BAs in the GI tract. The

deficiency of the TGR5 receptor results in constipation by delaying GI

transit, reducing bowel movement frequency, and decreasing fecal

water content (Zheng et al., 2022). Conversely, the overexpression of

TGR5 results in diarrhea due to accelerating colonic transit in mice

(Zhao et al., 2020a). Thus, given the region-specific effects of BAs and

the concentration dependence of TGR5, future studies should further

investigate how gut microbiota synergize with BAs and TGR5-

mediated 5-HT release to regulate GI motility.

4.1.3 Tryptophan and its metabolites
Tryptophan, an essential amino acid, exhibits intimate

associations with gut microbiota functions through its metabolic

pathways, particularly the synthesis of 5-HT that plays a pivotal role

in regulating the ENS (Agus et al., 2018). Approximately 90% of

intestinal 5-HT originates from ECCs, with gut microbiota directly

modulating its synthesis and release via ECC interactions.

Commensals, including Lactococcus, Streptococcus, Escherichia

coli, and Akkermansia muciniphila, activate TPH1 in ECCs
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through SCFAs, catalyzing the conversion of tryptophan to 5-HT

(Reigstad et al., 2015). And reduced abundance of Bifidobacterium

bifidum similarly downregulates TPH1 and SERT expression,

impairing 5-HT synthesis (Taverniti et al., 2021).

Within ENS signaling, 5-HT coordinates GI motility through

ascending/descending interneuronal activation and vago-vagal

reflexes by targeting multiple receptor targets (Keating and

Spencer, 2019). Prokinetic receptors 5-HT3 and 5-HT4, densely

localized to myenteric plexuses and autonomic terminals, mediate

distinct effects: 5-HT4 activation evokes acetylcholine release from

cholinergic neurons, enhancing smooth muscle contraction

(Pauwelyn and Lefebvre, 2017), whereas 5-HT3 sensitization of

afferent nerves regulates motility rhythms and secretory (Touhara

et al., 2025). Experimental evidence (Israelyan et al., 2019; Spencer

and Keating, 2022) confirms that mice lacking the 5-HT3 receptor

exhibit slowed colorectal motility and prolonged gastrointestinal

transit time due to a reduction in the number of enteric neurons,

particularly dopaminergic and GABAergic neurons, underscoring the

5-HT–ENS axis’s necessity for GImotility. Paradoxically, microbiota-

driven 5-HT excess induces hypermotility via 5-HT3 overactivation,

underscoring the delicate equilibrium between microbiota and 5-HT.

Clinically, 5-HT3 receptor antagonists (e.g., alosetron)

(Savarino et al., 2022) and 5-HT4 receptor agonists (e.g.,

prucalopride) (Barbara et al., 2023) treat diarrhea-predominant

and constipation-predominant irritable bowel syndrome,

respectively, reflecting differential microbiota effects on 5-HT

signaling. In DGE, however, dysbiosis-induced cholinergic

neuronal damage necessitates multimodal neuromodulatory

strategies beyond single-receptor targeting. Future research should

prioritize interventions coordinating 5-HT-producing microbiota

with complementary pathways (like SCFAs or BAs metabolism) to

achieve comprehensive repairment of the ENS.
4.2 Microbiota-hormones-ENS crosstalk

The GI tract functions as a significant endocrine organ,

primarily due to specialized epithelial cells known as EECs. EECs,

located in the mucosal lining from the stomach to the rectum,

secrete over 20 hormones, including GLP-1, PYY, and

cholecystokinin (CCK) (Adriaenssens et al., 2018). These

hormones coordinate nutrient absorption, GI motility, and

metabolic homeostasis through a dual mechanism: paracrine

(acting on enteric neurons) and neuroendocrine (via vagal

transmission) (Bany Bakar et al., 2023). Meanwhile, the release of

gut hormones by EECs is influenced by gut microbiota and its

metabolites, including SCFAs, bile acids, indoles, which changes GI

homeostasis (Masse and Lu, 2023). In this section, we review several

key hormones that play central roles in regulating the ENS, with a

particular focus on GLP-1, CCK, ghrelin, and leptin.
4.2.1 GLP-1 and GLP-2
As core components of the incretin system, glucagon-like peptide-1

(GLP-1) secreted by intestinal L-cells not only regulates glucose

metabolism through glucose-dependent insulin secretion
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enhancement and glucagon suppression but also induces weight loss

via gastric emptying delay and appetite inhibition. These dual actions

establish GLP-1 receptor agonists (GLP-1RAs) as cornerstone therapies

for type 2 diabetes and obesity (Nogueiras et al., 2023). Both GLP-1 and

its homolog GLP-2 concentration-dependently enhance enteric

neuronal survival, synergistically preserving the integrity of the ENS

structure. GLP-2 further inhibits NF-kB signaling to reduce pro-

inflammatory cytokines, such as TNF-a and IL-6, prevents

inflammation-induced submucosal ganglion neuron loss, and

increases vasoactive intestinal peptide-positive (VIP+) neuron

proportions, collectively repairing neuroinflammatory damage

(Abdalqadir and Adeli, 2022). However, the weight-loss-associated

gastric emptying delay induced by GLP-1 remains contentious

regarding potential exacerbation of diabetic gastroparesis and

perioperative dysmotility (Camilleri and Lupianez-Merly, 2024). A

recent systematic review (Hiramoto et al., 2024) indicates GLP-1RAs

delay solid-phase gastric emptying by approximately 36 minutes, yet

without statistically significant effects on liquid-phase emptying. Grasset

et al. (2017). further demonstrated GLP-1-associated upregulation of

nitric oxide synthase (NOS) expression in enteric neurons and vagal

pathways. NOS catalyzes nitric oxide—an inhibitory neurotransmitter

critical for ENS function. Nonetheless, the evidence remains insufficient

to suggest that GLP-1RAs exacerbate GI motility; clinical vigilance and

further high-quality studies are warranted.

Gut microbiota orchestrates GLP-1 secretion throughmetabolite-

mediated mechanisms: firstly, SCFAs promote GLP-1 release via dual

pathways: one is to activate the cell signaling pathway by binding to

the FFAR2/FFAR3 receptor, which is impaired in FFAR2-deficient

mice and shows decreased GLP-1 levels and glucose tolerance

abnormalities (Tolhurst et al., 2012); the other is to increase the

number of jejunal L-cells by inhibiting HDAC. Secondly, BAs

synergistically enhance GLP-1 synthesis through TGR5/FXR co-

activation on L-cells (Brighton et al., 2015). In type 2 diabetes,

dysbiosis reduces SCFA, secondary BAs, and indole production,

impairing jejunal L/K-cell activity and diminishing GLP-1/GIP

secretion. This ultimately attenuates cholinergic neuron and vagal

afferent activation efficiency within the ENS (Lee et al., 2012). Germ-

free murine models (Yang et al., 2017) confirm that microbiota

deprivation increases GLP-1R+ cells and prolongs gastrointestinal

transit, whereas fecal microbiota transplantation normalizes GLP-1

secretion and motility, underscoring microbial indispensability in

sustaining the GLP-1-ENS signaling axis.
4.2.2 Cholecystokinin
CCK, a gut-brain peptide hormone predominantly secreted by

duodenal and jejunal I-cells in response to lipids and proteins, is a

key “satiety signaling triad” member alongside GLP-1 and PYY

(Andermann and Lowell, 2017). CCK exhibits region-specific effects

through its CCK1 receptor: In the gastric antrum and pylorus, CCK

activates vago-vagal reflexes via CCK1 receptors, inhibiting antral

contractions while enhancing pyloric sphincter tone to delay solid-

phase gastric emptying, a mechanism validated by Lorenz and

Goldman (Lorenz and Goldman, 1982). Direct antral smooth

muscle hyperpolarization reduces action potential firing, further

suppressing peristalsis. Within the gallbladder, CCK1 receptor
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stimulation induces smooth muscle contraction for bile expulsion.

In the distal small intestine, CCK1 activation mobilizes intracellular

calcium in smooth muscle cells and coordinates intersegmental

peristalsis via vagal afferent fibers to facilitate chyme propulsion

(Doong et al., 1998).

These CCK1-mediated effects remain unaltered by CCK2

receptor antagonists. Early CCK1 antagonists (e.g., loxiglumide)

showed therapeutic potential for functional dyspepsia and

gastroparesis (Chua et al., 1994), but clinical utility is limited by

off-target effects, including abdominal pain and mood disturbances

via action on anxiety-related brain regions and somatic nociceptive

pathways (Li et al., 2024). Recent structural insights reveal that

CCK1 receptor conformational plasticity enables selective Gs/Gi/

Gq protein coupling, providing a molecular basis for developing

gut-selective modulators (Zhang et al., 2021b). Gut microbiota

regulates CCK secretion through interactions between metabolites

and jejunal I-cells: SCFAs and bile acids enhance CCK synthesis by

activating FFAR2 and TGR5 receptors on jejunal I-cells. Prebiotics

such as inulin indirectly upregulate CCK expression by enriching

SCFA-producing microbiota (Avirineni et al., 2022); however,

whether SCFA-promoted CCK release in the stomach and

intestines exacerbates GI motility disorders remains unclear.

4.2.3 Leptin
Leptin, an adipocyte-derived endocrine hormone, regulates GI

motility through binding leptin receptors (Ob-R) widely distributed

on gastric vagal afferents and EECs. Notably, although leptin excites

submucosal and myenteric neurons, it does not directly stimulate

GI muscular activity but instead potentiates CCK-mediated

intestinal propulsion (Reichardt et al., 2011). Mechanistically,

leptin induces synthesis of glial cell line-derived neurotrophic

factor (GDNF) within the ENS, preserving myenteric cholinergic

neuron activity via GDNF-mediated neuroprotection. This effect

counteracts high-fat diet-induced ENS damage in Western diet

obesity models (Baudry et al., 2012). Leptin-deficient mice exhibit

significantly delayed intestinal transit and barrier dysfunction,

confirming its essential role in maintaining ENS structural and

functional integrity (Tsai et al., 2020).

Gut microbiota modulates this process through leptin sensitivity

regulation: probiotics predominantly comprising Lactobacillus and

Bifidobacterium species significantly reduce serum leptin levels by

mitigating endotoxemia and improving adipocyte secretory profiles

(López-Moreno et al., 2020). In diabetic gastroenteropathy, dysbiosis-

induced leptin resistance may exacerbate cholinergic neuronal injury

and hypomotility by impairing the GDNF-ENS axis. As a negative

regulator of insulin sensitivity, microbiota-dependent leptin

modulation offers novel therapeutic targets for ameliorating

diabetes-associated gastrointestinal symptoms.

4.2.4 Ghrelin
Ghrelin, the sole orexigenic GI hormone, is produced by gastric

X/A-like cells with secretion regulated by nutritional status,

exhibiting fasting-induced elevation and postprandial suppression.

As a pivotal modulator of ENS and metabolic homeostasis, ghrelin

activates growth hormone secretagogue receptor 1a (GHSR1a) to
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exert dual regulatory effects (Rouault et al., 2020). Centrally, it

stimulates neuropeptide Y (NPY) neurons and vagal afferents to

coordinate feeding behavior and glucose metabolism (Nunez-Salces

et al., 2021). Peripherally, ghrelin enhances cholinergic neuron

density and activity in gastric myenteric plexuses and vagal

pathways, augmenting contraction frequency and amplitude to

accelerate solid-phase gastric emptying. This central-peripheral

synergy underscores its therapeutic potential for DGE. Phase 2B

study demonstrates that the ghrelin receptor agonist relamorelin

shortens gastric emptying time in patients with DGE and alleviates

vomiting via central antiemetic effects (Camilleri et al., 2017). The

novel agonist HM01 increases myenteric cholinergic neurons by

50%, effectively ameliorating dysmotility associated with abdominal

surgery or Parkinson’s disease (Yuan et al., 2023).

However, clinical translation is limited by metabolic sequelae:

Ghrelin inhibits pancreatic b-cell KATP channels to reduce insulin

secretion, potentially exacerbating postprandial glycemia—a critical

concern in DGE. A primary underlying cause is the disruption of

the ghrelin signaling axis by gut microbiota dysbiosis: in diabetic

states, an elevated Firmicutes/Bacteroidetes ratio will induce ghrelin

resistance (Ahmed et al., 2024), and specific bacterial groups (e.g.,

Clostridium, Ruminococcus) show positive correlations with ghrelin

levels, whereas Bacteroides and Bifidobacterium show bidirectional

relationships contingent on host metabolism (Leeuwendaal et al.,

2021). Microbial metabolites also participate in regulating ghrelin

levels through multiple mechanisms: LPS and the gaseous signaling

molecule hydrogen sulfide (H2S) can interfere with intracellular

ghrelin signaling (Slade et al., 2018); SCFAs act in a concentration-

dependent manner, with low concentrations inhibiting ghrelin

secretion by antagonizing GHSR1a, whereas excessive acetate

activates the parasympathetic nervous system to promote its

release. Therefore, future studies should focus on the precise

regulation of the ghrelin-ENS pathway by specific functional

microbiota, providing a basis for developing DGE treatment

strategies that balance motility improvement and glycemic stability.
4.3 Microbiota-neurotransmitters-ENS
pathways

Emerging evidence suggests that the gut microbiota plays a key

role in neurological disorders by directly synthesizing

neurotransmitters and regulating host neurotransmitter

metabolism. It has been proved that gut microbiota possesses

genes that encode neurotransmitter-synthesizing enzymes like

glutamate decarboxylase and tryptophan hydroxylase (Banerjee

et al., 2021; Otaru et al., 2021). Furthermore, microbial

metabolites such as SCFAs could regulate neurotransmitter

production in enteric neurons through epigenetic modifications

(He et al., 2024b). Neurotransmitters such as acetylcholine (ACh),

5-HT, g-aminobutyric acid (GABA), and nitric oxide (NO) are

pivotal in regulating the ENS and GI motility. In this section, we

systematically analyze the microbiome-neurotransmitter

interaction network and explore its potential as a therapeutic

target for DGE.
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4.3.1 Acetylcholine
Acetylcholine (ACh), the primary excitatory neurotransmitter

of ENS cholinergic neurons, is synthesized by choline

acetyltransferase (ChAT) and modulates GI functions through

muscarinic receptors (M2/M3). M3 receptors mediate smooth

muscle contraction and glandular secretion, predominantly

driving motility, while M2 receptors indirectly regulate tone via

inhibitory G-protein pathways (Foong et al., 2015). Gut microbiota

orchestrates ACh homeostasis through multifactorial mechanisms:

specific strains (e.g., Lactobacillus plantarum Lsi) secrete ACh-like

compounds, directly enhancing intestinal contractions (Fujita et al.,

2024); conversely, trimethylamine (TMA)-producing Firmicutes

and Proteobacteria metabolize dietary choline, depleting ACh

synthesis substrates (Eslami et al., 2024). In diabetic mice models,

this metabolic shift correlates with downregulated expression of

ACh receptors, kinases, and substrate, potentially impairing ENS

cholinergic signaling (Tanase et al., 2020; Xu et al., 2020).

Microbiota-driven ACh dysregulation is validated in

inflammatory bowel disease (IBD) models: Dysbiosis-induced

choline deficiency is reversed by cytidine diphosphate (CDP)-

choline supplementation, which upregulates choline transporter

(ChT1), acetylcholinesterase (AChE), and a7 nicotinic

acetylcholine receptor (a7nAChR) expression to restore

neurotransmission (Guo et al., 2023a). In primary dysmotility or

diabetic autonomic neuropathy, nAChR autoantibodies block

ganglionic transmission, exacerbating dysmotility (Vernino et al.,

2000). Butyrate counteracts this by inhibiting HDAC to promote

regulatory T-cell (Treg) differentiation, reducing autoantibody

production, and indirectly preserving cholinergic signaling (He

et al., 2024a). Furthermore, SCFAs activate FFAR2/FFAR3

receptors to directly release cecal ACh, further reinforcing

excitatory drive within the ENS (Ballout et al., 2021). Collectively,

these findings delineate the core role of the “microbiota-SCFA-

ACh” axis in sustaining ENS cholinergic activity.

4.3.2 Vasoactive intestinal peptide
Vasoactive intestinal peptide (VIP), predominantly secreted by

neurons in the myenteric and submucosal plexuses of the ENS,

serves as a pivotal neurotransmitter coordinating gastrointestinal

functions through dual VPAC1/VPAC2 receptor signaling. VPAC2

receptors enriched in gastrointestinal smooth muscle mediate VIP-

induced relaxation of gastric fundus circular muscle (Robberecht

et al., 1998). Conversely, VPAC1 receptors highly expressed in

colonic mucosa regulate epithelial ion transport, mucus secretion,

and barrier integrity, while their co-localization with ChAT on

enteric neurons facilitates acetylcholine release to enhance

longitudinal muscle contraction (Fung et al., 2014). Beyond

neuromodulation, VIP maintains intestinal immune homeostasis

by regulating T-cell responses and TLR signaling, demonstrating

therapeutic potential in neuroimmune disorders like T1DM and

irritable bowel syndrome (Iwasaki et al., 2019).

VIP is critical for preserving ENS function: VIP-deficient mice

exhibit attenuated jejunal motility (Lelievre et al., 2007), and

downregulated VIP expression correlates with severe constipation,

indicating attenuated VIP signaling as a common pathological
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feature in dysmotility (Bai et al., 2023). Gut microbiota regulates

VIP with striking strain specificity: VIP gene expression is

significantly reduced in germ-free animal models, while

colonization with Escherichia coli (but not Lactobacillus) restores

its levels, suggesting specific microbial metabolites modulate VIP

synthesis (Bai et al., 2023). Nevertheless, modulation of VIP activity

by gut microbiota remains relatively limited. How gut dysbiosis in

diabetes affects VIP activity remains unclear, as does whether this

activity can be altered by regulating microbial species and

abundance. Future studies should prioritize elucidating

microbiota-VIP crosstalk in ENS regulation to advance

microbiome-based therapeutics for GI motility disorders.

4.3.3 Nitric oxide
Nitric oxide (NO), a key inhibitory neurotransmitter, is

synthesized by NOS via the catalysis of L-arginine. Among its

three isoforms (endothelial eNOS, neuronal nNOS, and inducible

iNOS), nNOS-positive neurons predominantly regulate smooth

muscle tone via the NO-cGMP pathway, mediating relaxation of

the lower esophageal sphincter, pyloric sphincter, and Oddi

sphincter, as well as coordinating gastrointestinal peristaltic

rhythms (Groneberg et al., 2016; Idrizaj et al., 2021). In patients

with diabetic gastroparesis, typical features include apoptosis of

nitrergic neurons, downregulated nNOS and NO levels,

accompanied by disrupted connections between nNOS+ neurons

and SIP syncytia, leading to rhythmic disturbances in the jejunum,

ileum, and colon, which is closely linked to gut microbiota dysbiosis

(Bódi et al., 2019; Sanders and Ward, 2019; Camilleri and Sanders,

2022). Gut microbiota influence NO-mediated ENS effects through

both direct synthesis and indirect regulation: certain Lactobacillus

strains (e.g., Lactobacillus lactis, Lactobacillus plantarum) can

directly secrete NO to induce ileal smooth muscle relaxation

(Yarullina et al., 2016). Further evidence from antibiotic

intervention experiments (Yarandi et al., 2020) shows that

ampicillin treatment, which reduces Gram-positive bacteria and

enriches Gram-negative bacteria, significantly decreases colonic

nNOS enzymatic activity and nitrergic neuron count in mice,

impairing colonic motility; notably, microbial recovery after

antibiotic withdrawal reverses this phenotype, highlighting the

critical role of microbiota structural stability in maintaining the

NO-ENS axis.

4.3.4 Gamma-aminobutyric acid
Gamma-aminobutyric acid (GABA), a dual-function

neurotransmitter with both excitatory and inhibitory properties in

the ENS, regulates gastrointestinal functions via ionotropic (GABA_A/

C) andmetabotropic (GABA_B) receptors, exhibiting segment-specific

and receptor subtype-specific effects: in the stomach, GABA_A

receptor activation mediates smooth muscle relaxation through NO

release, while GABA_B receptors promote contraction by enhancing

cholinergic signaling; in the duodenum, GABA_A receptors are

involved in releasing ACh, and GABA_C receptors are associated

with releasing NO (Tonini et al., 1989; Zizzo et al., 2007; Rotondo et al.,

2010; Auteri et al., 2014, 2015). This regional specificity arises from

differences in receptor distribution between ENS neurons and smooth
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muscle cells, which will significantly limit the clinical translation of

effects targeting DGE. Gut microbiota represents an important source

of GABA; genera such as Bacteroides, Lactobacillus, and

Levilactobacillus brevis directly secrete GABA by encoding glutamate

decarboxylase (GAD), a key enzyme in GABA synthesis (Banerjee

et al., 2021; Otaru et al., 2021). In diabetic states, reduced abundance of

these genera leads to weakened GABAergic signaling, impairing ENS

regulation of intestinal motility and mucosal secretion (Strandwitz

et al., 2019; Konstanti et al., 2024). However, the causal relationship

between decreased GABA levels and gut dysbiosis in diabetes remains

unclear: whether microbiota dysbiosis causes reduced GABA or

hyperglycemia directly inhibits GAD activity requires further

experimental verification.
5 Therapeutic strategies targeting the
gut microbiome-ENS axis

Gut microbiota and their metabolites influence the ENS and GI

function through multiple pathways and targets. Leveraging this

advantage to develop systematic therapeutic approaches could

represent a breakthrough in addressing DGE. At the 2011 annual

meeting of the International Scientific Association for Probiotics

and Prebiotics (ISAPP), experts reviewed the role of these microbial

agents in neurogastroenterology, providing evidence for the

interaction between the microbiome and the ENS (Saulnier et al.,

2013). Probiotics, prebiotics, and synbiotics have been shown in

extensive clinical studies (Markowiak and Śliżewska, 2017; Quigley,

2019; Mokkala et al., 2021; Wang et al., 2022a) to effectively treat

gastrointestinal disorders, like functional dyspepsia, IBS, and

chronic constipation, as well as metabolic diseases such as

obesity, insulin resistance, and T2DM. Based on the

“microbiome-ENS axis,” we therefore provide a summary of the

preclinical and clinical data on the role of microbiota in regulating

the ENS and improving GI motility.
5.1 Probiotics, prebiotics, and synbiotics

Probiotics, prebiotics, and synbiotics, as core interventions

targeting the gut microbiota-ENS axis, exhibit tremendous potential

in repairing neural damage and improving motility disorders in DGE

by reshaping microbial structure and metabolic profiles (as detailed in

Tables 1, 2). As live non-pathogenic microorganisms that confer

beneficial effects when consumed in adequate amounts, probiotics

primarily include genera such as Lactobacillus, Bifidobacterium,

Bacillus, and Saccharomyces, which exist in forms like fermented

foods and enteric-coated capsules (Liu et al., 2018). Their core

mechanism involves regulating the composition of gut microbiota to

increase concentrations of SCFAs and secondary BAs, thereby

activating ECCs to release 5-HT, enhancing ACh secretion from

cholinergic neurons, and optimizing ENS inhibitory neural signals

via the neuronal nNOS pathway, ultimately promoting gastric

emptying and regulating intestinal transit rhythms (Huang et al.,

2023; Liu et al., 2023). Prebiotics, as indigestible dietary fibers that
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resist direct digestion by the host gastrointestinal tract but selectively

promote the proliferation of beneficial bacteria, such as inulin,

fructooligosaccharides (FOS), galactooligosaccharides (GOS),

lactulose, and resistant starch (Hutkins et al., 2016), indirectly

enhance the function of the ENS by enriching SCFA-producing

microbiota while synergistically regulating gastrointestinal hormone

release to accelerate GI motility (Lee et al., 2024). Synbiotics further

amplify these effects through the synergistic action of probiotics and

prebiotics; for example, stachyose combined with Latilactobacillus sakei

repairs ICC networks by increasing 5-HT and substance P (SP) levels,

inhibiting expression of VIP and NOS, with significantly greater

efficacy in promoting GI peristalsis than single-agent interventions

(Guo et al., 2023b).

Notably, alterations in specific microbiota abundances correlate

with ENS restoration and improved GI motility. Studies have shown

that increased abundance of Bifidobacterium, Bacteroides,

Prevotella, and Akkermansia muciniphila, or decreased levels of

Dubosiella, Erysipelatoclostridium, Alistipes, and Enterococcus

faecalis, may directly contribute to the repairment of the ENS,

inhibiting intestinal inflammation and enhancing neurotransmitter

synthesis. Kang et al. (2021); Cheng et al., 2023; Lai et al., 2023; Wu

et al., 2024; Zhou et al., 2024; Wang et al., 2025) demonstrated that

Lactobacillales and Synergistales exhibit negative and positive

correlations with colonic transit time, respectively; however, the

regulation of the Firmicutes/Bacteroidetes ratio remains highly

contentious. Hata et al. (2022) found that an increased

Firmicutes/Bacteroidetes ratio following Bifidobacterium BBG9–1

intervention in patients with diabetic gastrointestinal dysfunction

was associated with improved gastrointestinal symptoms, whereas

Lee et al. (2024)) reported that reducing this ratio in patients with

functional constipation enhanced intestinal peristalsis and

shortened colonic transit time. This discrepancy may stem from

differences in study populations, and both studies are limited by

small sample sizes, making it difficult to exclude confounding effects

of baseline microbiota composition, disease duration, and

intervention duration. Therefore, larger-scale studies focusing on

DGE populations are warranted to further validate the true

association between this ratio and GI motility.

Furthermore, current research has significant limitations:

mechanistically, although some animal models indicate that

microbial therapies can regulate neurotransmitters such as 5-HT

and ACh, as well as hormone levels like motilin (MTL), clinical

studies show substantial heterogeneity. For example, randomized

controlled trials (RCTs) on Bifidobacterium animalis subsp. lactis

HN019 (referred to as B. animalis subsp. lactis HN019) show dose-

dependent differences in its effects on colonic transit time: in a

triple-blind trial by Waller et al (Waller et al., 2011), high-dose B.

animalis subsp. lactis HN019 shortened colonic transit time by over

50% in patients with functional constipation (from 49 ± 30 hours to

21 ± 32 hours), while the low-dose group showed only about 30%

reduction (from 60 ± 33 hours to 41 ± 39 hours). Similarly, Lai et al.

(2023) observed increased defecation frequency and improved

straining in chronic constipation patients receiving B. animalis

subsp. lactis HN019 combined with Lacticaseibacillus rhamnosus

HN001, though colonic transit time was not assessed. In contrast, a
frontiersin.org
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TABLE 1 Evidence of probiotics in gastroenteropathy models.

Types of probiotics Subjects Intervention duration Key findings Advantages and limitations Reference

1. A double-blind randomized controlled trial,
high evidence level.
2. Favorable safety profile; no specific adverse
events.
3. Small sample size (n=28).
4. Significant gender imbalance;
female predominance.

(Ohtsu et al., 2021)

1. Conducted only in female mice; limited
reproducibility.
2. Single model: loperamide-induced
constipation model.

(Liu et al., 2023)

1. Single model: loperamide-induced intestinal
dysmotility with minimal effect on gastric motility.

(Cheng et al., 2023)

1. High-fat diet combined with loperamide-
induced obesity-constipation model, closer to
gastrointestinal dysfunction model induced by
metabolic disorders.
2. Lacks clinical trial evidence.

(Liu et al., 2025)

1. Elucidated mechanism of LGG improving
gastrointestinal motility.
2. Lacks clinical evidence.

(Chandrasekharan
et al., 2019)
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 Lacticaseibacillus

Lactobacillus gasseri
OLL2716
(LG21 strain)

Participants aged 20–64
years with mild to
moderate delayed
gastric emptying

For 12 weeks 1. Reduced salivary amylase concentration.
2. Increased parasympathetic

nervous activity.
3. Enhanced gastric emptying capacity with

a 4.1-fold greater than placebo.

LimosiLactobacillus
pentosus CQZC02

BALB/c female mice (4
weeks) with loperamide-
induced constipation

For 8 days 1. Accelerated gastric motility and colon
transit time.

2. Elevated serum levels of gastrin (Gas),
MTL, and SP, along with reduced levels
of endothelin-1 (ET-1), SS, and VIP.

3. Increased expression of nNOS and iNOS
neuronal in small intestinal tissues.

JY: Lacticaseibacillus
paracasei JY062
JM:
Lactobacillus gasseri

KM male mice (6–7
weeks) with loperamide

For 2 weeks 1. The MIX group outperformed the others
in promoting intestinal peristalsis and
gastric emptying.

2. Increased MTL and GAS levels, and
decreased PYY levels.

3. Increased 5-HT and NO levels, but no
difference in VIP levels.

4. Decreased apoptosis of ICC cells.
5. Increased the abundance of beneficial

bacteria (Lactobacillus, Rikenellaceae and
Clostridiaceae_Clostridium) and the
concentration of SCFAs.

Lactobacillus
plantarum
TWK10 (TWK10)

Sprague–Dawley male
rats (6 weeks) with
high-fat diet (HFD)
and loperamide

For 5 weeks 1. High-fat-fed rats induced obesity,
constipation, and slowed gastrointestinal
transit time.

2. TWK10 intervention increased fecal
moisture content and intestinal
transit rate.

3. Decreased serum SS and CGRP levels,
while increasing serum Ache levels.

4. Enhanced the abundance of SCFA.

Lactobacillus
rhamnosus
GG (LGG)

C57BL/6 male mice (8–
12 weeks)

For 2 weeks 1. Increased bowel frequency and reduced
intestinal transit time.

2. Modulated the ENS via formyl peptide
receptor 1 (FPR1) and redox pathways.

3. Enhanced expression of ChAT
and SERT.

https://doi.org/10.3389/fcimb.2025.1603442
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


TABLE 1 Continued

Types of probiotics Subjects Intervention duration Key findings Advantages and limitations Reference

1. An open‐label single‐arm exploratory.
2. Favorable safety profile; no serious adverse
events.
3. Small sample size; GSRS scores
relatively subjective.

(Hata et al., 2022)

1. A double-blind, randomized, placebo-controlled
study;
2. Adverse events like constipation may occur.
3. Controversy exists regarding improvement of
upper and lower gastrointestinal symptoms.

(Gomi et al., 2018)

1. Specific model: Animal model of intestinal
dysfunction induced by senna extract,
characterized by BDNF downregulation.
2. Limited to studying the role of
neurotrophic factors.

(Wang et al., 2025)

1. Elucidated the link between gut microbiota and
ENS.
2. By comparing efficacy among Bifidobacterium
bifidum CCFM1163, Bifidobacterium M3, and
Bifidobacterium bifidum M7, revealed strain-
specific differences in efficacy.

(Tang et al., 2023)

1. A double-blind, randomized, placebo-
controlled, and dose-ranging trial.
2. Adequate sample size; high evidence level.

(Ibarra et al., 2018)

(Continued)
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 Bifidobacterium

Bifidobacterium
bifidum G9-1
(BBG9-1)

Patients on metformin
with diabetic
gastrointestinal
symptoms (n=40)

For 10 weeks 1. Improved the GSRS total score.
2. Increased Firmicutes/Bacteroidetes ratio.
3. Decreased the abundance of the

genus Sutterella.

Bifidobacterium
bifidum YIT 10347

patients with functional
gastrointestinal
disorders (n=100)

For 4 weeks 1. Improved gastrointestinal symptoms,
flatulence, and diarrhea.
2. Improved frequency scale for symptoms
of GERD (m-FSSG) scores; significantly
improved when Gastrointestinal Symptom
Rating Scale (GSRS) scores were below the
median.
3. Failed to improve gastric emptying rate.

Bifidobacterium
bifidum CCFM1359

C57BL/6 male mice (8
weeks) with
intestinal dysfunction

For 2 weeks 1. Alleviated symptoms.
2. Increased the abundance of

Bifidobacterium and valeric acid, and
decreased Enterococcus faecalis.

3. Upregulated expression of ACh while
downregulating expression of nNOS to
remodel the ENS.

Bifidobacterium
bifidum CCFM1163

C57BL/6J male mice (8
weeks) with
cathartic colon

For 2 weeks 1. Reduced intestinal transit times.
2. Increased abundance of Bacteroides and

decreased abundance of Proteobacteria.
3. Enhanced mRNA expression of ZO-1,

Occluding, and Claudin-1 in the colon,
contributing to intestinal
barrier dysfunction.

4. Decreased expression of TNF-a, IL-1b,
and IL-6.

5. Increased gene expression of TPH1 and
5-HT levels in the colon, aiding in the
repair of the ENS.

Bifidobacterium
animalis subsp.
lactis HN019

Adults aged 18–70 years
with functional
constipation (n=228)

For 4 weeks 1. Abdominal X-ray assessment of colonic
transit time: no significant difference
between groups.
2. Subgroup analysis: increased defecation
frequency in patients with ≤3 bowel
movements/week
3. No significant improvement in bloating,
abdominal pain, straining during defecation,
or stool consistency.
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TABLE 1 Continued

Types of probiotics Subjects Intervention duration Key findings Advantages and limitations Reference

1. A double-blinded randomized placebo trial,
adequate sample size; high evidence level.
2. Wide age range of participants.
3. Lacks microbial metabolites data.

(Lai et al., 2023)

1. A randomized, double-blind, placebo-controlled
trial, high evidence level.
2. Incorporated serum metabolomics; lacks
research on gut microbiota and SCFAs.

(Fan et al., 2025)

1. A randomized, double-blind trial with a 2-week
run-in period, high evidence level
2. Lacks exploration of associations between
serum metabolomics and gut microbiota.

(Kang et al., 2021)

1. Demonstrated that E. coli-derived 5-HT
significantly enhances intestinal motility;
compared with 5-HT4 agonist prucalopride, which
disrupts microbiota homeostasis, it also alleviates
constipation-induced depression and anxiety.

(Li et al., 2022)

1. HSV-1-induced intestinal dysmotility model;
provides reference for animal models.
2. Animal model relatively singular; difficult to
fully simulate disease states.

(Brun et al., 2017)

(Continued)
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Lacticaseibacillus
+Bifidobacterium

Probiotic group:
Bifidobacterium
animalis subsp. lactis
HN019 +
Lacticaseibacillus
rhamnosus HN001

Adults aged 18–70 years
with functional
constipation (n=250)

For 4 weeks 1. Increased bowel movement frequency
and reduced degree of defecation
straining in all groups.

2. Decreased plasma 5-HT levels in the
probiotic group.

3. Increased Bifidobacteria and SCFAs in
the prebiotic group.

Bacillus Weizmannia
coagulans BC99

Adults over 20 years of
age with chronic
constipation (n=90)

For 8 weeks 1. Improved constipation symptoms and
quality of life.

2. Increased levels of 5-HT, MTL, Ach
and BDNF.

3. Increased levels of anti-inflammatory
factors (IL-4, IL-10) and decreased levels
of pro-inflammatory factors (IL-6,
IFN-g).

4. Altered the abundance of 93 metabolites.

Spore-forming
Bacillus coagulans
SNZ 1969 (BC)

Adults over 20 years of
age with chronic
constipation (n=80)

For 8 weeks 1. BC-treated group: significantly reduced
total colonic transit time and increased
defecation frequency
2. Increased Lactobacillales; decreased
Synergistales.
3. Lactobacillales and Synergistales
negatively and positively correlated with
colonic transit time, respectively

Escherichia Escherichia coli
Nissle 1917

C57BL/6J male mice (6
weeks)
with constipation

For 2 weeks 1. Increased relative fecal water content and
frequency of fecal defecation and
shortened whole-gut transit time.

2. Increased 5-HT levels and 5-HT4
receptors in colon.

3. Performed anxiolytic effects and
ameliorated depression-like behaviors.

4. Increased microbiota diversity and
abundance of Alistipes.

Saccharomyces Saccharomyces
boulardii CNCM
I-745

C57BL/6J male mice (6
weeks) infected with
HSV-1

For 4 weeks 1. Improved HSV-1 induced
GI dysfunction.

2. Repaired ileal neuromuscular structures.
3. Restored the structure of the ENS,

decreased nNOS levels and increased
SP levels.

4. Decreased levels of IL-4 and IL-10 in
the intestine.
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randomized double-blind trial by Ibarra et al. (2018) involving 228

participants found no statistically significant difference in colonic

transit time. Both Waller’s and Ibarra’s studies used abdominal X-

rays to calculate colonic transit time, ensuring the reliability of their

results. In addition, studies in healthy populations (Russo et al.,

2011; Tulk et al., 2013) found no evidence that prebiotics or

synbiotics promote gastrointestinal peristalsis; some even reported

delayed gastric emptying, contradicting findings in models of

gastrointestinal dysfunction or diabetes (Lim et al., 2018; Ohtsu

et al., 2021). These inconsistencies may arise from strain specificity,

dosage variations, treatment duration, and baseline characteristics

of participants. Notably, high-quality clinical evidence directly

targeting DGE is scarce, with most studies conducted in models

of chronic constipation, gastrointestinal motility disorders, or

irritable bowel syndrome (IBS). To date, only two double-blind

RCTs have demonstrated that Lactobacillus gasseri OLL2716

(Ohtsu et al., 2021) and Bifidobacterium bifidum G9-1 (Hata

et al., 2022) improve delayed gastric emptying and GI symptoms

in patients with DGE, but both had small sample sizes, posing

significant challenges for clinical translation. Additionally, there is a

lack of replicative studies on the same probiotics or prebiotics, as

well as limited clinical application. Therefore, future research

requires large-scale, multicenter, more replicative RCTs to further

validate efficacy, safety, and stability.

At the clinical application level, microbial therapies still face

multiple challenges (Suez et al., 2019). Firstly, bioavailability issues:

probiotics may experience possible diminution or inactivation as they

navigate the hostile milieu in the GI tract, marked by low pH stomach

acid and diverse digesting enzymes. Additionally, probiotics exhibit

insufficient colonization capacity on gastrointestinal mucosal surfaces,

which is further influenced by host microbiota composition and

intestinal transit rate. Currently, several innovative strategies are

being investigated, including the use of biofilms and nanocoating

for “nano armor” (Xu et al., 2022), single-cell technology-based

“armored probiotics” (Zhao et al., 2024), targeted delivery systems

(Li and Zhang, 2024), and encapsulating probiotics into microcapsules

and microspheres using prilling or vibration techniques (D’Amico

et al., 2024). These strategies aim to address key issues in the

therapeutic use of probiotics by stabilizing probiotic activity,

enhancing intestinal colonization, and improving bioavailability.

Secondly, safety and long-term effects remain unclear: despite the

relative safety of microbial therapies with rare adverse reactions,

existing studies suffer from limitations like small sample sizes and

short observation periods. Long-term supplementation of single

strains may reduce native microbiota diversity and exacerbate

intestinal dysbiosis (Elshaghabee et al., 2017). Immunocompromised

patients using Lactobacillus or Bacillus probiotics may develop

bacteremia or even septic shock due to sepsis (Corredor-Rengifo

et al., 2024). A meta-analysis (Zeng et al., 2024) evaluating 4 RCTs

suggested that probiotic supplementation improves glycemic control

in T1DM patients without severe adverse events; however, the limited

number of RCTs precludes definitive conclusions on the efficacy or

safety of microbiome-based therapies, necessitating more RCTs for

validation. Furthermore, current interventions predominantly rely on

“one-size-fits-all” formulations, neglecting individual variability
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TABLE 2 Evidence of prebiotics in gastroenteropathy models.

Types of prebiotics Subjects Intervention duration Key findings Advantages
and limitations

Reference

biota with

acteria, such

ia (such as

proving GI

1. Preliminary randomized controlled
trial.
2. Small sample size.
3. Insufficient to demonstrate
prebiotic efficacy in improving
gastrointestinal symptoms.

(Dixon
et al., 2023)

evacuations,
ing or

terium and
rthia.

1. A randomized, two-centre, parallel,
and double-blind study.
2. Inadequate sample size.

(Huaman
et al., 2018)

significant

significant
levels,

n; decreased
es in

1. A double-blind, randomized,
placebo-controlled, parallel trial; high
evidence level.
2. Included healthy participants
rather than obese or
T2DM individuals.

(Müller
et al., 2020)

and stool
e.

terium and

1. A randomized, double-blind
clinical trial; relatively high evidence
level.
2. Primary endpoints: defecation
frequency, stool consistency, and
quality of life questionnaires;
highly subjective.

(Lee
et al., 2024)

n (SS) 1. A randomized, double-blind
crossover trial.
2. Small sample size;
insufficient reproducibility.

(Russo
et al., 2011)

.
cids in feces.
uced serum

1. Preliminary mechanistic
exploration.
2. Lacks reverse validation.

(Xia
et al., 2022)

tryptophan
indole-3-
microbiota

1. Highlighted roles of bile acids and
SCFAs in improving intestinal
inflammation and activating AhR
ligands.

(Zhou
et al., 2024)
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BiomeBliss® powder (including inulin,
blueberry extract, b-glucan (oats), soy
protein isolate, pomegranate flavor,
xanthan gum, citric acid, stevia extract)

Youth-onset T2DM on
metformin (n=6)

Phase 1: A 5-week period involved
two groups receiving metformin
alone or in conjunction with
prebiotic supplements.
Phase 2: A subsequent 4-week
phase where in all participants
consumed both metformin and
prebiotic supplements.

1. Altered b-diversity of the micro
prebiotic supplements.

2. Increased enrichment of SCFA-producing
as Bifidobacterium adolescentis, Blautia,
and Acinetobacter.

3. Reduced the abundance of other bacte
Firmicutes and Roseburia spp.).

4. There was no significant difference in i
symptom scores or stool frequency.

A prebiotic supplement (2.8 g/d Bimuno
containing 1.37 g b-GOS)

patients with functional gut
disorders (n=44)

For 4 weeks 1. Reduced the number of daytime anal gas
despite no significant improvement in bloa
bowel sounds.

2. Increased the abundance of Bifidoba
reduced the abundance of Bilophila wadsw

The wheat bran extract Arabinoxylan-
Oligosaccharide (AXOS)

Patients aged 20–55 years with
whole-gut transit time (WGTT)
>35 h determined by radio-
opaque marker method (n=48)

For 12 weeks 1. Softened stool consistency without a
alteration in WGTT.

2. Reduced serum GLP-1 levels; yet n
differences were detected in in PYY, insulin
hunger, or satiety scores.

3. Enhanced fecal Bifidobacterium populatio
microbial diversity, yet no significant chan
SCFAs concentration.

Galactooligosaccharide (GOS) Patients aged 19–75 years with
functional constipation (n=63)

For 4 weeks 1. Increased bowel movement frequency
moisture and accelerated colonic transit tim

2. Reduced Firmicutes/Bacteroidetes ratio.
3. Increased the abundance of Bifidoba

Lactobacillus at the genus level.

pasta enriched along with the
prebiotic inulin

healthy young male
volunteers(n=20)

A 2-week run-in period and two 5-
week study periods (11% inulin-
enriched/control pasta), with an 8-
week wash-out period in between.

1. Increased neurotensin (NT) and somatostat
2. Delayed gastric emptying time
3. Reduced triglyceride and glucose level.

prebiotic sesame sugar (PSC) (isomalto-
oligosaccharide, konjac glucomannan
and sesame)

C57BL/6 male mice (6 weeks)
with constipation

For 2 weeks 1. Accelerated the small intestinal transit time
2. Increased the content of short-chain fatty a
3. Increased serum MTL and SP levels, re

NO and SS levels.

Prebiotic: Wheat bran arabinoxylan
(WBAX)
Symbiotic: WBAX + Lactobacillus
reuteri (L. reuteri)

Fecal bacteria from patients
with T2DM and
male C57BL/6J mice (6 weeks)
with Colitis

For 4 weeks 1. Promoted microbial conversion of
(indoleacetic acid, indole-3-lactic acid, and
propionic acid) to AhR ligands in the fecal
of patients with T2DM.
b

r
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TABLE 2 Continued

Types of prebiotics Subjects Intervention duration Key findings Advantages
and limitations

Reference

anced the abundance of Allobaculum, Lactobacillus,
ermansia, and Prevotellaceae in the mice.
uced intestinal inflammation.
eased concentrations of glycine-conjugated bile
s, DCA, and isoDCA, as well as acetate, propionate,
butyrate in mice.

2. Mechanisms in ENS regulation
remain unelucidated.

ased defecation frequency and reduced intestinal
time.
oted gastrointestinal peristalsis.

1. A double-blind, randomized,
placebo-controlled intervention single
center clinical trial.
2. Lacks research on probiotic
mechanisms of action.

(Ibrahim
et al., 2020)

ficantly improved stool consistency but failed to
ly increase defecation frequency or improve quality

1. A Randomised, Double-Blind,
Placebo-Controlled Trial.
2. Lacked assessment of gut
microbiota and effects of different
therapeutic dose concentrations.

(Lim
et al., 2018)

rt with or without synbiotics had no effect on
emptying time, gastrointestinal transit time, or
testinal symptoms.
iotic yogurt resulted in reduced intake of energy,
protein.

1. A double-blind, randomized,
crossover study;
2. Study conducted in healthy
population; lacks disease specificity.

(Tulk
et al., 2013)

elerated GI transit, the synbiotic group was superior
rebiotic or probiotic group.
three groups significantly alter the composition of
microbiota. Although there are differences in their
ts on specific microbial communities, they can all
re the abundance of Prevotellaceae
Akkermansia.
eased the expression of GDNF, and decreased NOS,
levels in probiotic group.
eased 5-HT levels in synbiotic group.
eased SP, MTL levels in three groups.

1. Although studies showed increased
SCFA levels, mechanisms by which
SCFAs exert key roles in constipation
prevention remain unelucidated.
2. Constipation models exhibit
differences in gut microbiota
compared with clinical pediatric
constipation, notably for Bacteroidota.
3. Demonstrated only the correlation
between Prevotella and constipation;
failed to investigate causality further.

(Guo
et al., 2023b)
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among patients with DGE. Future efforts should focus on developing

personalized regimens integrating host metabolic status and gut

microbiota characteristics.
5.2 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT), which reestablishes

microbial homeostasis by colonizing functional microbiota from

healthy donors in the host gut, has demonstrated therapeutic

potential in various gastrointestinal diseases (Ooijevaar et al., 2019).

In Clostridioides difficile infection (CDI), FMT achieves a clinical

symptom resolution rate of 92% (Hvas et al., 2019; Rokkas et al.,

2019); in inflammatory bowel disease, systematic reviews report

clinical remission rates of 47.5% for Crohn’s disease and 39.6% for

ulcerative colitis (Lai et al., 2019); its long-term ameliorative effects on

chronic constipation have also been validated, suggesting unique

value in repairing intestinal motility disorders (Zhang et al., 2018).

More importantly, FMT can modulate the ENS via the “microbiota-

neuron” axis: for instance, FMT lowers serum 5-HT and GABA levels

and increases dopaminergic neurotransmission to help children with

autism who experience digestive issues such as diarrhea, constipation,

dyspepsia, and abdominal pain (Li et al., 2021a); in a Parkinson’s

mouse model, FMT from healthy donors also improves GI motility

by preventing TLR4/TNF-a signaling and neuroinflammation (Sun

et al., 2018). These findings support FMT as a potential intervention

for neurogenic gastrointestinal motility disorders. In metabolic

diseases, FMT regulates 15 key metabolites, including indole-3-

propionic acid, reduces leptin levels, and improves insulin

sensitivity in patients with T2DM (Zhang et al., 2020; Wu et al.,

2022b), indirectly indicating its potential in DGE. However, FMT

application in DGE lacks direct clinical evidence, with minimal

research addressing core DGE pathologies. The mechanisms by

which FMT directly restores the ENS via microbial metabolites also

remain unelucidated.

As a special population, diabetic populations face unique risks

and challenges in the application of FMT. First, amplified infection

risks. Long-term hyperglycemia in diabetes causes immune

dysfunction, potentially increasing infection risk with FMT

(Campbell et al., 2023). Second, distinct adverse reactions. Beyond

common FMT-related symptoms (abdominal pain, diarrhea, nausea)

(Aroniadis et al., 2019), patients with diabetes may experience

exacerbated intestinal bacterial translocation due to impaired

intestinal barrier, triggering systemic inflammation, elevated C-

reactive protein, or even bacteremia (Quera et al., 2014). Third,

standardization barriers: Unoptimized protocols for stool processing,

preservation, and delivery combined with diabetic-specific gut

microenvironment alterations compromise donor microbiota

engraftment efficiency. Fourth, therapeutic heterogeneity: Zhang

et al., 2021a demonstrated that baseline gut microbiota diversity

critically determines efficacy, with lower diversity correlating with

superior outcomes. Several RCTs have shown that FMT from healthy

donors can reverse insulin resistance in diabetes and even preserve

islet function in new-onset T1DM (de Groot et al., 2021; Ng et al.,

2022; Wu et al., 2022b). However, in mouse models, administration
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of Parabacteroides distasonis accelerated progression of diabetes,

primarily due to aberrant immune cross-reactivity and reduced

Foxp3+ CD4+ Treg cells. Thus, given these uncertainties, large-scale

multicenter randomized controlled trials are imperative to confirm its

long-term efficacy and safety (Zecheng et al., 2023). Addressing these

core challenges is essential for translating FMT from theoretical

promise to clinically effective therapy for diabetes and DGE.
6 Conclusion and perspectives

The dynamic regulatory network formed by gut microbiota and

the ENS constitutes a central regulator of intestinal homeostasis,

with its dysfunction playing a pivotal role in the pathogenesis and

progression of DGE. This review systematically elucidates how the

microbiota-ENS axis modulates the function of the ENS through

multilevel signaling transduction involving microbial metabolites

(SCFAs, BAs), intestinal hormones (GLP-1, CCK, leptin, ghrelin),

and neurotransmitters (5-HT, Ach, VIP, NO, GABA), thereby

regulating gastrointestinal motility. This mechanism provides a

robust theoretical framework for microbiota-targeted therapies in

DGE. Current evidence confirms that probiotics, prebiotics, and

synbiotics can reshape the structure of gut microbiota and enhance

neuroprotection, demonstrating potential to alleviate gastroparesis

and improve motility in animal models and limited clinical trials.

Although FMT shows advantages in microbiota reconstitution for

refractory gastrointestinal diseases, direct evidence for its

application in DGE remains insufficient; in particular, the specific

association between donor microbiota composition and ENS

restoration in patients with DGE requires clarification.

However, clinical translation of microbiome-based therapies still

faces multiple challenges. Firstly, causal ambiguity: specific microbiota

associated with GI motility in DGE remain unidentified, as most

studies are limited to pan-microbial community analyses at the genus

or species level. Notably, functional differences between strains of the

same species are substantial, and causal validation of the “microbiota-

metabolite-nerve” axis is lacking. Secondly, therapeutic heterogeneity:

clinical trials exhibit marked heterogeneity, such as the efficacy of

probiotics or prebiotics being influenced by the baseline microbiota

of host, diabetic duration, and glycemic control, while the scarcity of

large-scale, multicenter RCT data hinders the establishment of

uniform treatment standards. Thirdly, immune dysfunction may

amplify infection risks from probiotics, hyperglycemia-altered

microenvironments may reduce the efficiency of microbial

colonization, and long-term safety of prolonged interventions lacks

longitudinal follow-up data. Fourthly, technical standardization: there

is a lack of consensus on viable probiotic delivery, FMT donor

screening, and outcome evaluation.

Future research could focus on interdisciplinary breakthroughs

(Bober et al., 2018; Wang et al., 2022b): applying spatial

transcriptomics and single-cell sequencing to map spatial

localization of microbiota-ENS interactions, and decipher

interaction sites between specific strains and ENS neuron subsets;

engineering probiotics via synthetic biology to achieve precise

regulation of neurotransmitters and targeted ENS; establishing a
frontiersin.org
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DGE microbiota typing system based on multi-omics integration

(genomics, metabolomics, neuroelectrophysiology) to guide

personalized interventions; exploring combined strategies of

microbial therapies with hypoglycemic agents to balance glycemic

control and gastrointestinal motility improvement.

Through refinement of mechanism, personalization of

intervention strategies, and scaling of clinical evidence,

microbiome research is expected to advance from laboratory to

clinical practice, ultimately providing DGE patients with novel

therapeutic regimens that integrate neural repair, metabolic

regulation, safety, and tolerability, thereby tangibly improving

their gastrointestinal function and quality of life.
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Karačić, A., Renko, I., Krznarić, Ž., Klobučar, S., and Liberati Prsǒ, A.-M. (2024). The
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Glossary
DGE Diabetic gastroenteropathy
Frontiers in Cellular a
GI gastrointestinal
T2DM type 2 diabetes mellitus
GSRS Gastrointestinal Symptom Rating Scale
GCSI Gastroparesis Cardinal Symptom Index
FDA Food and Drug Administration
ENS enteric nervous system
CNS central nervous system
ICCs interstitial cells of Cajal
ECCs enterochromaffin cells
EGCs enteric glial cells
EECs enteroendocrine cells
IBS irritable bowel syndrome
IBS-D diarrhea-predominant
IBS-C constipation-predominant
IBD inflammatory bowel disease
SCFAs short-chain fatty acids
FMT fecal microbiota transplantation
AHR aryl hydrocarbon receptors
TLRs Toll-like receptors
GDNF glial cell line-derived neurotrophic factor
LPS lipopolysaccharides
NF-kB nuclear factor kappa-B
HDAC inhibiting histone deacetylase
TMA trimethylamine
nd Infection Microbiology 26
SERT serotonin transporter
PYY peptide YY
Kyn kynurenine
DCA deoxycholic acid
LCA lithocholic acid
NO nitric oxide
CGRP calcitonin gene-related peptide
IBAT ileal bile acid transporter
CCK cholecystokinin
GIP glucose-dependent insulinotropic polypeptide
TNF-a tumor necrosis factor-a
GHSR1a growth hormone secretagogue receptor 1a;Ach:acetylcholine
GABA g-aminobutyric acid
VIP Vasoactive Intestinal Peptide
ChAT choline acetyltransferase
NOS nitric oxide synthase
nNOS neuronal NOS
GAD glutamate decarboxylase
SS somatostatin
MTL motilin
SP substance P
FOS fructooligosaccharides
GOS galactooligosaccharides
WGTT whole-gut transit time.
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