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Background

This study aimed to evaluate the predictive utility of routine hematological, inflammatory, and metabolic markers for bacteremia and to compare the classification performance of logistic regression and random forest models.





Methods

A retrospective study was conducted on 287 inpatients who underwent blood culture testing at Fuding Hospital, Fujian University of Traditional Chinese Medicine between March and August 2024. Patients were divided into bacteremia (n = 137) and non-bacteremia (n = 150) groups based on blood culture results. Hematological indices, inflammatory markers (e.g., C-reactive protein (CRP), procalcitonin (PCT)), metabolic indices (e.g., glucose, cholesterol) and nutritional markers (e.g., albumin) were analyzed. Univariate and multivariate binary logistic regression analyses were used to identify independent risk factors. Logistic regression and random forest models were developed using 33 features with a 70:30 train-test split and evaluated using the receiver operating characteristic (ROC) curves, confusion matrices and standard classification.





Results

Hemoglobin, cholesterol, and albumin levels were significantly lower in the bacteremia group, while platelet count, CRP, PCT, glucose, and triglycerides were significantly elevated (all p < 0.05). Logistic regression identified platelet count (Odds ratios (OR) = 1.003, 95% confidence interval (CI): 1.001–1.006), PCT (OR = 1.032, 95% CI: 1.004–1.060), triglycerides (OR = 1.740, 95% CI: 1.052–2.879), and low cholesterol (OR = 0.523, 95% CI: 0.383–0.714) as independent risk factors. The area under the ROC curve (AUC) was 0.75 for the random forest model and 0.74 for logistic regression, with recall rates of 0.69 and 0.60, respectively.





Conclusion

Routine laboratory markers integrated into machine learning models demonstrated potential for early bacteremia prediction. Random forest exhibited superior sensitivity compared to logistic regression, suggesting its potential utility as a clinical screening tool.
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Background

Bacteremia is a systemic infection resulting from the invasion of pathogenic microorganisms into the bloodstream. Without prompt recognition and treatment, it can progress rapidly to sepsis or septic shock, with mortality rates ranging between 30% and 50% (Rudd et al., 2020). While blood culture remains the diagnostic gold standard, it is hindered by delayed turnaround times (24–72 hours) and reduced sensitivity, especially when prior antibiotic exposure or contamination occurs. These limitations can delay critical treatment decisions (Evans et al., 2021). As a result, there is growing demand for rapid, cost-effective tools to support early bacteremia detection and guide clinical management.

In recent years, routine hematological parameters, such as white blood cell count and the neutrophil-to-lymphocyte ratio, and metabolic markers like glucose and cholesterol have gained attention for their utility in infection detection due to their accessibility and affordability (Zhang et al., 2024). These biomarkers offer partial insight into host inflammatory responses and infection-induced metabolic alterations, with studies demonstrating their moderate diagnostic sensitivity and specificity in infectious disease contexts (Agnello et al., 2021; Gatica et al., 2023; Zhang et al., 2024). However, individual parameters lack predictive power due to complex, nonlinear interactions in systemic infections (Moor et al., 2023). Recent studies have explored the use of machine learning approaches for early bacteremia and sepsis prediction, demonstrating improved risk stratification compared to traditional clinical scores (Moor et al., 2021; Yan et al., 2022; Chua et al., 2025). Machine learning models, which capture such interactions, remain underexplored in resource-limited settings.

This study integrated routine hematological, inflammatory, and metabolic markers to develop logistic regression and random forest prediction models. The primary objective was to evaluate the comparative performance of these models in the early identification of bacteremia and to explore a simple, practical tool for clinical screening support. Additionally, the findings may provide a theoretical foundation for the broader application of such predictive models across diverse healthcare settings.





Materials and methods




Study population

This pilot study retrospectively included 287 hospitalized patients who underwent blood culture testing at Fuding Hospital, Fujian University of Traditional Chinese Medicine, between March and August 2024. Based on the results of blood culture, patients were classified into two groups: the bacteremia group (culture-positive, n = 137) and the non-bacteremia group (culture-negative, n = 150). The sample size reflects all eligible patients meeting the inclusion and exclusion criteria during the specified period, representing the entire population available for analysis at the study center.





Inclusion and exclusion criteria




Inclusion criteria

Patients who underwent at least one blood culture during hospitalization; Availability of complete clinical and laboratory data.





Exclusion criteria

	Suspected contamination in blood culture results (e.g., common skin flora);

	Antibiotic use within the preceding three days;

	Coexisting severe hematological disorders or immunodeficiency;

	Missing key clinical or laboratory parameters;

	Blood culture-positive cases lacking clinical signs of infection (e.g., absence of fever, hypotension, or organ dysfunction).







Diagnostic criteria

Diagnosis of bacteremia followed the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) (Seymour et al., 2016), and was established if one or more of the following criteria were met: (1) body temperature > 38 °C or <36 °C; (2) systolic blood pressure < 90 mmHg or a drop > 40 mmHg from baseline; (3) isolation of pathogenic organisms from blood cultures (in the case of skin commensals, at least two positive cultures from separate draws were required); (4) evidence of organ dysfunction, such as a Sequential Organ Failure Assessment (SOFA) score ≥ 2.






Ethical approval and compliance

The study protocol was approved by the Ethics Committee of Fuding Hospital, Fujian University of Traditional Chinese Medicine (Approval No. 2023012). All data were anonymized prior to analysis to ensure compliance with ethical and privacy standards. Due to the retrospective nature of the study, the requirement for written informed consent was waived by the ethics committee.





Data collection and laboratory Indicators

Clinical and laboratory data were extracted from the hospital information system and laboratory information system. The following indicators were collected:

Hematological parameters: red blood cell count, hemoglobin, white blood cell count, neutrophils, lymphocytes, platelet count, mean platelet volume (MPV), platelet distribution width (PDW).

Inflammatory markers: CRP and PCT.

Metabolic markers: fasting blood glucose, total cholesterol, triglycerides, uric acid.

Nutritional marker: albumin.

Categorical variables: sex, smoking history, drinking history, hypertension, coronary heart disease, tumor history, diabetes, site of infection.





Laboratory procedures and equipment

All blood samples were obtained prior to the initiation of antimicrobial therapy. Hematological analyses were performed using the Sysmex XN-9000 automated hematology analyzer (Japan). Biochemical markers (glucose, cholesterol, triglycerides, uric acid, albumin) were measured with the Beckman AU5800 automated chemistry analyzer. CRP and PCT levels were assessed using electrochemiluminescence immunoassay. Blood cultures were processed using the BacT/ALERT 3D automated system and pathogen identification was performed with the VITEK MS mass spectrometry system (bioMérieux, France).

Blood cultures were collected using a bilateral dual-bottle approach (aerobic and anaerobic pairs from both arms). If common skin flora such as coagulase-negative staphylococci or Propionibacterium species were isolated, at least two positive cultures from separate sites or repeated collections were required to confirm true infection rather than contamination.

All procedures strictly followed standard operating protocols (SOPs), with internal quality control maintained and coefficients of variation kept below 5%. The present study was centered on bacterial pathogens retrieved from blood cultures. To maintain the research’s focus on bacterial infections and ensure the consistency of statistical analysis, fungi, Mycoplasma, Chlamydia, parasites, and viruses were excluded.





Statistical analysis

Normality of continuous variables was assessed using the Shapiro-Wilk test. Normally distributed data were expressed as mean ± standard deviation and compared using independent samples t-test. Non-normally distributed data were expressed as median (interquartile range, P25 - P75) and analyzed using the Mann-Whitney U test. Categorical variables were presented as frequencies and percentages, with between-group comparisons performed using the chi-square (χ2) test.

To identify risk factors for bacteremia, univariate logistic regression was first conducted. Variables with p < 0.20 were included in the multivariate logistic regression model, and backward stepwise elimination was used to determine independent predictors. Odds ratios (ORs) with 95% confidence intervals (CIs) were reported.





Model development and performance evaluation

Both the logistic regression and random forest models included 33 features, comprising 22 continuous variables (e.g., age, complete blood count indices, CRP, PCT, glucose, cholesterol) and 11 one-hot encoded categorical variables (e.g., sex, comorbidities, site of infection).

The dataset was randomly divided into a training set (n = 201) and a testing set (n = 86) in a 70:30 ratio, with stratification to maintain the proportion of bacteremia cases in both subsets.

Logistic regression model: L2 regularization was applied. Model tuning included optimization of the regularization parameter C (range: 0.001 - 100) and solver type (liblinear, lbfgs).

Random forest model: Hyperparameter optimization was performed via grid search across n_estimators (50, 100, 200), max_depth (None, 10, 20), min_samples_split (2, 5, 10), and min_samples_leaf (1, 2, 4), using five-fold stratified cross-validation. The final model selected 200 decision trees with a maximum tree depth of 20.

Performance metrics included accuracy, precision, recall, F1 score, and AUC.

All traditional statistical analyses were performed using SPSS version 22.0. Machine learning model development and evaluation were conducted in Python 3.7 using the Scikit-learn library. A two-tailed p-value < 0.05 was considered statistically significant.






Results




Shapiro–Wilk test for normality

The Shapiro-Wilk test was applied to assess the distribution of all continuous variables. Results indicated that variables such as hemoglobin, MPV, and albumin conformed to a normal distribution in both groups (p > 0.05). In contrast, most other variables, including CRP, blood glucose, and PCT, exhibited significant deviations from normality (p < 0.05). Accordingly, parametric or non-parametric statistical methods were applied as appropriate in subsequent analyses.





Baseline characteristics of study participants

Baseline characteristics of the bacteremia and non-bacteremia groups are summarized in Table 1. The proportion of female patients was significantly higher in the bacteremia group compared to the non-bacteremia group (47.4% vs. 34.0%, p = 0.020). Additionally, the prevalence of diabetes mellitus was significantly elevated in the bacteremia group (32.1% vs. 20.7%, p = 0.027). Other variables, including age, hypertension, coronary artery disease, malignancy, alcohol consumption, and smoking history, showed no statistically significant differences between groups (all p > 0.05), indicating overall comparability of the two populations with respect to most baseline comorbidities.


Table 1 | Baseline characteristics of patients in bacteremia and non-bacteremia groups [n (%)].
	Variable
	Category
	Non-bacteremia group (N = 150)
	Bacteremia group (N = 137)
	χ2/U Statistic
	P-value



	Sex
	Female
	51 (34.00)
	65 (47.40)
	5.375
	0.020


	Male
	99 (66.00)
	72 (52.60)
	 
	 


	Alcohol consumption
	No
	128 (85.30)
	126 (92.00)
	3.100
	0.078


	Yes
	22 (14.70)
	11 (8.00)
	 
	 


	Smoking
	No
	132 (88.00)
	129 (94.20)
	3.299
	0.069


	Yes
	18 (12.00)
	8 (5.80)
	 
	 


	Hypertension
	No
	52 (40.00)
	59 (43.10)
	0.005
	0.946


	Yes
	78 (60.00)
	72 (61.00)
	 
	 


	Coronary artery disease
	No
	135 (90.00)
	127 (92.70)
	0.657
	0.418


	Yes
	15(10.00)
	10 (7.30)
	 
	 


	Malignancy
	No
	136 (90.70)
	123 (89.80)
	0.064
	0.801


	Yes
	14 (9.30)
	14 (10.20)
	 
	 


	Diabetes mellitus
	No
	119 (79.30)
	93 (67.90)
	4.863
	0.027


	Yes
	31 (20.70)
	44 (32.10)
	 
	 


	Age (years)
	Median (P25-P75)
	68.00 (58.00 - 76.00)
	66.00 (56.00 - 76.00)
	- 0.843
	0.399


	Range
	22.00 - 92.00
	2.00 - 95.00
	 
	 





Group comparisons were conducted using chi-square tests for categorical variables and Mann–Whitney U tests for non-normally distributed continuous variables. P25: 25th percentile; P75: 75th percentile.







Comparison of clinical laboratory parameters

As shown in Table 2, patients in the bacteremia group had significantly lower levels of hemoglobin, red blood cell count, cholesterol, and albumin compared to those in the non-bacteremia group (all p < 0.01). Conversely, levels of platelet count, CRP, PCT, blood glucose, and triglycerides were significantly higher in the bacteremia group (all p < 0.05). No statistically significant differences were observed in other parameters such as mean corpuscular hemoglobin concentration (MCHC) and platelet distribution width (PDW).


Table 2 | Comparison of laboratory parameters between the bacteremia and Non-bacteremia groups [median (P25–P75)].
	Parameter
	Non-bacteremia group (N = 150)
	Bacteremia group (N = 137)
	Z-value
	P-value



	RBC (×1012/L)
	4.08 (3.61 - 4.97)
	3.72 (3.27 - 4.21)
	-4.063
	< 0.001


	Hemoglobin (g/L)
	120.00 (103.00 - 137.00)
	108.00 (94.50 - 122.00)
	-4.029
	< 0.001


	MCH (pg)
	29.65 (28.10 - 30.80)
	29.10 (27.95 - 30.40)
	-1.216
	0.224


	MCV(fL)
	90.30 (87.23 - 93.88)
	90.00 (86.00 - 94.00)
	-0.431
	0.667


	RDW (%)
	13.20 (12.40 - 15.10)
	13.40 (12.50 - 15.10)
	-1.036
	0.300


	WBC (×109/L)
	6.64 (5.23 - 9.08)
	7.66 (5.58 - 9.60)
	-1.820
	0.069


	Neutrophils (×109/L)
	4.36 (3.00 - 6.39)
	5.33 (3.31 - 7.16)
	-1.917
	0.055


	Lymphocytes (×109/L)
	1.47 (1.08 - 2.00)
	1.39 (0.96 - 1.83)
	-1.324
	0.186


	Eosinophils (×109/L)
	0.13 (0.06 - 0.20)
	0.11 (0.05 - 0.18)
	-0.777
	0.437


	Basophils (×109/L)
	0.03 (0.02 - 0.05)
	0.04 (0.02 - 0.05)
	-0.367
	0.714


	Platelets (×109/L)
	246.50 (189.00 - 309.00)
	282.00 (208.00 - 383.00)
	-2.817
	0.005


	PDW (%)
	10.60 (9.40-12.30)
	10.50 (9.20 - 13.40)
	-0.189
	0.850


	MPV (fL)
	9.80 (9.20 - 10.40)
	9.60 (9.00 - 10.35)
	-1.161
	0.246


	CRP (mg/L)
	14.04 (5.10 -34.64)
	19.72 (6.76 - 52.40)
	-2.390
	0.017


	Procalcitonin (ng/mL)
	0.11 (0.06 - 0.34)
	0.20 (0.09 - 0.77)
	-3.655
	< 0.001


	Glucose (mmol/L)
	5.40 (4.78 - 7.25)
	5.88 (5.00 - 8.41)
	-2.251
	0.024


	Cholesterol (mmol/L)
	4.00 (3.34 - 4.70)
	3.53 (3.07 - 4.04)
	-3.663
	< 0.001


	Triglycerides (mmol/L)
	1.19 (0.80 - 1.38)
	1.31 (0.90 - 1.55)
	-2.416
	0.016


	Uric acid (μmol/L)
	270.00 (189.00-353.00)
	221.00 (169.00-297.00)
	-2.832
	0.005


	Albumin (g/L)
	35.65 (32.20 - 37.90)
	33.30 (30.50 - 36.50)
	-3.666
	<0.001





As data were non-normally distributed, group comparisons were conducted using the non-parametric Mann–Whitney U test. P25, 25th percentile; P75, 75th percentile; RBC, Red blood cells; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; RDW, red cell distribution width; WBC, White blood cells; PDW, platelet distribution width; MPV, mean platelet volume; CRP, C-reactive protein.







Univariate and multivariate logistic regression analysis

As shown in Table 3, univariate logistic regression analysis revealed that several variables - including hemoglobin, platelet count, PCT, blood glucose, cholesterol, albumin, and diabetes mellitus - were significantly associated with bacteremia. These candidate variables were subsequently entered into a multivariate logistic regression model to identify independent predictors (Table 4).


Table 3 | Univariate logistic regression analysis for predictors of bacteremia.
	Variable
	B (Coefficient)
	SE
	Wald χ2
	P-value
	OR (95% CI)



	Hemoglobin (g/L)
	-0.021
	0.005
	15.209
	<0.001
	0.979 (0.969 - 0.990)


	MCH (pg)
	-0.035
	0.043
	0.669
	0.413
	0.965 (0.887 - 1.051)


	MCV (fL)
	-0.003
	0.016
	0.035
	0.851
	0.997 (0.965 - 1.030)


	MCHC (g/L)
	-0.014
	0.010
	2.019
	0.155
	0.987 (0.968 - 1.005)


	RDW (%)
	0.058
	0.048
	1.432
	0.231
	1.059 (0.964 - 1.165)


	WBC (×109/L)
	0.066
	0.032
	4.113
	0.043
	1.068 (1.002 - 1.138)


	Neutrophils (×109/L)
	0.074
	0.033
	4.920
	0.027
	1.076 (1.009 - 1.149)


	Lymphocytes (×109/L)
	-0.177
	0.166
	1.132
	0.287
	0.838(0.604 - 1.161)


	Eosinophils (×109/L)
	-0.323
	0.633
	0.260
	0.610
	0.724(0.210 - 2.502)


	Basophils (×109/L)
	-0.378
	4.922
	0.006
	0.939
	0.685 (0.000 -10608.263)


	Platelets (×109/L)
	0.003
	0.001
	8.271
	0.004
	1.003 (1.001 - 1.005)


	PDW (%)
	0.042
	0.049
	0.763
	0.382
	1.043 (0.949 - 1.148)


	MPV (fL)
	-0.098
	0.122
	0.637
	0.425
	0.907 (0.714 - 1.153)


	CRP (mg/L)
	0.004
	0.002
	3.058
	0.080
	1.004 (0.999-1.009)


	PCT (ng/mL)
	0.020
	0.014
	2.187
	0.139
	1.021 (0.993 - 1.049)


	Glucose (mmol/L)
	0.124
	0.042
	8.680
	0.003
	1.132 (1.042-1.230)


	Cholesterol (mmol/L)
	-0.464
	0.125
	13.886
	<0.001
	0.628 (0.492-0.802)


	Triglycerides (mmol/L)
	0.284
	0.197
	2.064
	0.151
	1.328 (0.902 - 1.955)


	Uric acid (μmol/L)
	-0.002
	0.001
	5.376
	0.020
	0.998 (0.996-1.000)


	Albumin (g/L)
	-0.095
	0.027
	12.126
	<0.001
	0.909 (0.862-0.959)


	Age (years)
	-0.009
	0.007
	1.431
	0.232
	0.991 (0.977 - 1.006)


	Sex
	-0.561
	0.243
	5.336
	0.021
	0.571 (0.355 - 0.919)


	Alcohol consumption
	-0.677
	0.390
	3.017
	0.082
	0.508 (0.236 - 1.091)


	Smoking
	-0.788
	0.443
	3.169
	0.075
	0.455 (0.191 - 1.083)


	Hypertension
	0.016
	0.239
	0.005
	0.946
	1.016 (0.637 - 1.623)


	Coronary artery disease
	-0.344
	0.427
	0.652
	0.419
	0.709 (0.307 - 1.635)


	Malignancy
	0.100
	3.398
	0.064
	0.801
	1.106 (0.507 - 2.412)


	Diabetes mellitus
	0.597
	0.272
	4.803
	0.028
	1.816 (1.065 - 3.097)


	Site of infection


	Head
	-0.981
	0.709
	1.913
	0.167
	0.375 (0.093 - 1.505)


	Respiratory tract
	-2.175
	0.557
	15.271
	<0.001
	0.114 (0.038 - 0.338)


	Gastrointestinal tract
	-0.685
	0.554
	1.528
	0.216
	0.504 (0.170 - 1.494)


	Urinary tract
	0.288
	0.719
	0.160
	0.689
	1.333 (0.326 - 5.455)





CI, confidence interval; PDW, platelet distribution width; RDW, red cell distribution width; MCH, mean corpuscular hemoglobin; WBC, White blood cells; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; MPV, mean platelet volume; CRP, C-reactive protein; PCT, Procalcitonin.




Table 4 | Multivariate logistic regression analysis for independent predictors of bacteremia.
	Variable
	Reference
	B (Coefficient)
	SE
	Wald χ2
	P -value
	OR (95% CI)



	MCHC (g/L)
	 
	-0.019
	0.011
	2.708
	0.100
	0.982 (0.960 - 1.004)


	Platelet (×109/L)
	 
	0.003
	0.001
	6.654
	0.010
	1.003 (1.001 - 1.006)


	Procalcitonin (ng/mL)
	 
	0.031
	0.014
	5.181
	0.023
	1.032 (1.004 - 1.060)


	Glucose (mmol/L)
	 
	0.091
	0.049
	3.363
	0.067
	1.095 (0.994 - 1.206)


	Cholesterol (mmol/L)
	 
	-0.648
	0.159
	16.654
	0.000
	0.523 (0.383 - 0.714)


	Triglycerides (mmol/L)
	 
	0.554
	0.257
	4.650
	0.031
	1.740 (1.052 - 2.879)


	Sex
	Female
	-0.497
	0.301
	2.727
	0.099
	0.608(0.337 -1.097)


	Site of infection
	Other
	
	
	
	
	


	Head
	 
	-1.192
	0.591
	4.062
	0.044
	0.304 (0.095 - 0.968)


	Respiratory tract
	 
	0.407
	0.585
	0.484
	0.487
	1.503 (0.477 - 4.734)


	Gastrointestinal tract
	 
	1.212
	0.757
	2.563
	0.109
	3.359 (0.762 -14.811)


	Urinary tract
	 
	0.528
	0.764
	0.478
	0.489
	1.695 (0.379 - 7.578)


	Constant
	 
	6.550
	3.822
	2.937
	0.087
	698.993





CI, confidence interval; MCHC, mean corpuscular hemoglobin concentration.



The multivariate analysis identified the following as statistically significant independent risk factors for bacteremia: Platelet count (OR = 1.003, p = 0.010); PCT (OR = 1.032, p = 0.023); Triglycerides (OR = 1.740, p = 0.031); Cholesterol (OR = 0.523, p < 0.001).





Performance evaluation of machine learning models

The classification performance of the logistic regression and random forest models on the testing set is presented in Tables 5, 6. The logistic regression model achieved an accuracy of 0.69, with a recall rate of 0.60 for the bacteremia (positive) group and an area under the ROC curve (AUC) of 0.74. The random forest model demonstrated the same overall accuracy (0.69), but with an improved recall rate of 0.69 for the positive group and a slightly higher AUC of 0.75. The confusion matrix (Figure 1) indicated that while the random forest model enhanced sensitivity, it did so at the expense of a modest reduction in specificity. Comparative analysis of the ROC curves (Figure 2) showed similar overall performance between the two models.


Table 5 | Classification report for logistic regression model.
	Class
	Precision
	Recall
	F1-Score
	Support



	Negative
	0.67
	0.78
	0.72
	45


	Positive
	0.71
	0.60
	0.65
	42


	Accuracy
	 
	 
	0.69
	87


	Macro average
	0.69
	0.69
	0.69
	87


	Weighted average
	0.69
	0.69
	0.69
	87





Negative and Positive classes correspond to non-bacteremia and bacteremia groups, respectively. Precision reflects the model’s ability to avoid false positives, Recall (sensitivity) measures its capacity to identify true positives, and F1-Score balances these metrics.




Table 6 | Classification report for random forest model.
	Class
	Precision
	Recall
	F1-Score
	Support



	Negative
	0.72
	0.76
	0.74
	45


	Positive
	0.72
	0.69
	0.71
	42


	Accuracy
	 
	 
	0.69
	87


	Macro average
	0.72
	0.72
	0.72
	87


	Weighted average
	0.72
	0.72
	0.72
	87





Macro average refers to the unweighted mean of performance metrics across all classes, treating each class equally regardless of its frequency. Weighted average accounts for the number of instances in each class (support) and is especially relevant in imbalanced datasets.



[image: Two confusion matrices compare logistic regression and random forest models. The logistic regression matrix shows 35 true negatives, 10 false positives, 17 false negatives, and 25 true positives. The random forest matrix shows 34 true negatives, 11 false positives, 13 false negatives, and 29 true positives. Both matrices use a color gradient to indicate frequency.]
Figure 1 | Confusion matrices of logistic regression and random forest models. This figure illustrates the confusion matrices for the logistic regression model (left) and the random forest model (right) on the test dataset. Compared with logistic regression, the random forest model achieved a slightly higher number of true positives (TP = 29 vs. 25) and fewer false negatives (FN = 13 vs. 17), indicating improved sensitivity. However, the random forest model also showed a modest increase in false positives (FP = 11 vs. 10), suggesting a slight reduction in specificity as a trade-off for higher sensitivity.

[image: ROC curve comparison graph showing False Positive Rate on the x-axis and True Positive Rate on the y-axis. Two curves represent Logistic Regression (blue, AUC = 0.74) and Random Forest (red, AUC = 0.75). A diagonal reference line indicates random performance.]
Figure 2 | Comparison of ROC curves between logistic regression and random forest models. The ROC curves of the two models exhibit similar shapes, indicating that logistic regression and random forest achieved comparable classification performance on this dataset.






Discussion

This study investigated the early predictive value of routine hematological and metabolic biomarkers for bacteremia and compared the classification performance of logistic regression and random forest models. Based on clinical data from 287 hospitalized patients, we identified several biomarkers significantly associated with bacteremia and demonstrated that both machine learning models achieved moderate predictive performance. These findings support the potential utility of routine laboratory indicators as tools for  early bacteremia screening.




Independent risk factors

Multivariate logistic regression analysis identified elevated platelet count, PCT, and triglycerides, as well as decreased cholesterol levels, as independent predictors of bacteremia. Increased platelet count may reflect the systemic inflammatory response and coagulation activation during acute infection. Previous studies have associated reactive thrombocytosis with poor outcomes in sepsis (Presume et al., 2022). With respect to procalcitonin (PCT), levels ≥ 0.5 ng/mL are generally regarded as indicative of systemic bacterial infection, while levels >2 ng/mL are associated with higher likelihood of sepsis (Jongwutiwes et al., 2009; Kubo et al., 2024). In our cohort, the median PCT level in bacteremia cases was 0.202 ng/mL (IQR: 0.094 - 0.771), suggesting that even modest elevations may carry predictive value when combined with other biomarkers. This underscores the importance of integrating multiple parameters rather than relying on a single threshold.

Our findings that low cholesterol and elevated triglycerides were independently associated with bacteremia are consistent with the phenomenon of infection-induced metabolic dysregulation (Górecka et al., 2022). Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) are known to promote hypertriglyceridemia through enhanced hepatic lipogenesis and reduced lipoprotein lipase activity, while simultaneously suppressing cholesterol synthesis and increasing cholesterol catabolism (Górecka et al., 2022; Agnello et al., 2021). Similarly, stress-induced hyperglycemia observed in systemic infections reflects cytokine-driven insulin resistance and increased gluconeogenesis (Leonidou et al., 2008). These mechanisms highlight the pathophysiological basis for the observed metabolic alterations.

Although hyperglycemia did not reach statistical significance in the multivariate analysis (p = 0.067), its borderline association suggests that it should still be considered a clinically relevant risk factor. Bacteremia-induced insulin resistance and enhanced gluconeogenesis may lead to stress-induced hyperglycemia, which can exacerbate organ dysfunction and negatively impact prognosis (Leonidou et al., 2008). Similarly, decreased levels of hemoglobin and albumin, which were significant in univariate analysis, may reflect chronic inflammation, malnutrition, or bone marrow suppression commonly observed in patients with bacteremia (Allison and Lobo, 2024).





Model performance and clinical applicability

The random forest model demonstrated superior sensitivity in detecting positive cases (recall = 0.69) compared to logistic regression (recall = 0.60), with a slightly higher AUC (0.75 vs. 0.74). This suggests that random forest may be more suitable in clinical settings prioritizing sensitivity, such as early screening. In contrast, logistic regression provides interpretable coefficients and stable performance, which may facilitate risk communication and clinical decision-making (Agnello et al., 2024). Our findings are consistent with previous reports. For example, prior machine learning studies, including those by Hernandez et al (Hernandez et al., 2025), incorporated both clinical and laboratory data and achieved AUCs up to 0.83 - 0.90, outperforming our models.

Several established tools, such as qSOFA, SIRS, and NEWS, also rely on physiological parameters that are not captured in our laboratory-based model. The primary advantage of our approach lies in its reliance on inexpensive, routine laboratory tests that can be automated and rapidly obtained, particularly useful in resource-limited settings where clinical scoring may be incomplete. However, the exclusion of physiological data limits our model’s discriminative power, highlighting the need for future multimodal model development.





Future perspectives

Further research should aim to: Incorporate multicenter datasets to enhance model adaptability and robustness. Integrate multimodal data, including clinical scores, microbiological profiles, and imaging features, to improve predictive accuracy. Explore advanced algorithms and interpretability tools, such as XGBoost, LightGBM, SHAP, and LIME, to balance predictive performance with clinical transparency.






Conclusion

In this study, we developed two machine learning models—logistic regression and random forest—to predict bacteremia based on routine hematological and metabolic indicators. Our findings identified elevated platelet count, procalcitonin, and triglycerides, along with decreased cholesterol levels, as independent risk factors for bacteremia. Both models achieved comparable performance with moderate predictive accuracy, while the random forest model demonstrated slightly better sensitivity for identifying positive cases.

The integration of machine learning algorithms with widely available laboratory parameters offers a cost-effective and accessible approach to support early detection of bacteremia, especially in clinical settings where rapid microbiological confirmation is limited. Nonetheless, to improve model generalizability and precision, future work should focus on incorporating high-dimensional clinical, physiological, and molecular data, and validating the models in multicenter prospective cohorts.





Limitations

This study has several limitations. First, as a pilot single-center study with a modest sample size, the statistical power is limited, which may affect the stability and reliability of the predictive models. Second, the restricted time frame may limit the generalizability of the findings, as temporal variability in patient populations or clinical practices was not captured. Third, the single-center design further constrains external validity because patient characteristics and infection epidemiology may differ across institutions and regions.

To address these limitations, we are planning to extend the study period in future research to include a broader range of data over time, which will allow evaluation of temporal trends and enhance model robustness. In addition, we are preparing a multicenter, prospective validation study across hospitals in Fujian Province and beyond, aiming to assess the generalizability, calibration, and clinical utility of our models in diverse healthcare settings. Such external validation will be essential before clinical implementation.
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Chinese Medicine, Fuding, Fujian, China, 3Department of Nephrology, Ningde Hospital of Traditional
Chinese Medicine, Ningde, Fujian, China

Background: This study aimed to evaluate the predictive utility of routine


hematological, inflammatory, and metabolic markers for bacteremia and to


compare the classification performance of logistic regression and random


forest models.


Methods: A retrospective study was conducted on 287 inpatients who


underwent blood culture testing at Fuding Hospital, Fujian University of


Traditional Chinese Medicine between March and August 2024. Patients were


divided into bacteremia (n = 137) and non-bacteremia (n = 150) groups based on


blood culture results. Hematological indices, inflammatory markers (e.g.,


C-reactive protein (CRP), procalcitonin (PCT)), metabolic indices (e.g., glucose,


cholesterol) and nutritional markers (e.g., albumin) were analyzed. Univariate


and multivariate binary logistic regression analyses were used to identify


independent risk factors. Logistic regression and random forest models were


developed using 33 features with a 70:30 train-test split and evaluated using the


receiver operating characteristic (ROC) curves, confusion matrices and


standard classification.


Results: Hemoglobin, cholesterol, and albumin levels were significantly lower in


the bacteremia group, while platelet count, CRP, PCT, glucose, and triglycerides


were significantly elevated (all p < 0.05). Logistic regression identified platelet


count (Odds ratios (OR) = 1.003, 95% confidence interval (CI): 1.001–1.006), PCT


(OR = 1.032, 95% CI: 1.004–1.060), triglycerides (OR = 1.740, 95% CI: 1.052–


2.879), and low cholesterol (OR = 0.523, 95% CI: 0.383–0.714) as independent


risk factors. The area under the ROC curve (AUC) was 0.75 for the random forest
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model and 0.74 for logistic regression, with recall rates of 0.69 and


0.60, respectively.


Conclusion: Routine laboratory markers integrated into machine learning


models demonstrated potential for early bacteremia prediction. Random forest


exhibited superior sensitivity compared to logistic regression, suggesting its


potential utility as a clinical screening tool.

KEYWORDS


bacteremia, blood culture, machine learning, random forest, logistic regression, biomarkers

Background


Bacteremia is a systemic infection resulting from the invasion of


pathogenic microorganisms into the bloodstream. Without prompt


recognition and treatment, it can progress rapidly to sepsis or septic


shock, with mortality rates ranging between 30% and 50% (Rudd


et al., 2020). While blood culture remains the diagnostic gold


standard, it is hindered by delayed turnaround times (24–72


hours) and reduced sensitivity, especially when prior antibiotic


exposure or contamination occurs. These limitations can delay


critical treatment decisions (Evans et al., 2021). As a result, there


is growing demand for rapid, cost-effective tools to support early


bacteremia detection and guide clinical management.


In recent years, routine hematological parameters, such as white


blood cell count and the neutrophil-to-lymphocyte ratio, and


metabolic markers like glucose and cholesterol have gained


attention for their utility in infection detection due to their


accessibility and affordability (Zhang et al., 2024). These


biomarkers offer partial insight into host inflammatory responses


and infection-induced metabolic alterations, with studies


demonstrating their moderate diagnostic sensitivity and specificity


in infectious disease contexts (Agnello et al., 2021; Gatica et al.,


2023; Zhang et al., 2024). However, individual parameters lack


predictive power due to complex, nonlinear interactions in systemic


infections (Moor et al., 2023). Recent studies have explored the use


of machine learning approaches for early bacteremia and sepsis


prediction, demonstrating improved risk stratification compared to


traditional clinical scores (Moor et al., 2021; Yan et al., 2022; Chua


et al., 2025). Machine learning models, which capture such


interactions, remain underexplored in resource-limited settings.


This study integrated routine hematological, inflammatory, and


metabolic markers to develop logistic regression and random forest


prediction models. The primary objective was to evaluate the


comparative performance of these models in the early


identification of bacteremia and to explore a simple, practical tool


for clinical screening support. Additionally, the findings may


provide a theoretical foundation for the broader application of


such predictive models across diverse healthcare settings.

02

Materials and methods


Study population


This pilot study retrospectively included 287 hospitalized


patients who underwent blood culture testing at Fuding Hospital,


Fujian University of Traditional Chinese Medicine, between March


and August 2024. Based on the results of blood culture, patients


were classified into two groups: the bacteremia group (culture-


positive, n = 137) and the non-bacteremia group (culture-negative,


n = 150). The sample size reflects all eligible patients meeting the


inclusion and exclusion criteria during the specified period,


representing the entire population available for analysis at the


study center.

Inclusion and exclusion criteria


Inclusion criteria
Patients who underwent at least one blood culture during


hospitalization; Availability of complete clinical and laboratory data.


Exclusion criteria


1. Suspected contamination in blood culture results (e.g.,


common skin flora);


2. Antibiotic use within the preceding three days;


3. C o e x i s t i n g s e v e r e h ema t o l o g i c a l d i s o r d e r s


or immunodeficiency;


4. Missing key clinical or laboratory parameters;


5. Blood culture-positive cases lacking clinical signs of


infection (e.g., absence of fever, hypotension, or


organ dysfunction).

Diagnostic criteria
Diagnosis of bacteremia followed the Third International


Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)


(Seymour et al., 2016), and was established if one or more of the
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following criteria were met: (1) body temperature > 38 °C or <36 °C;


(2) systolic blood pressure < 90 mmHg or a drop > 40 mmHg from


baseline; (3) isolation of pathogenic organisms from blood cultures


(in the case of skin commensals, at least two positive cultures from


separate draws were required); (4) evidence of organ dysfunction,


such as a Sequential Organ Failure Assessment (SOFA) score ≥ 2.

Ethical approval and compliance


The study protocol was approved by the Ethics Committee of


Fuding Hospital, Fujian University of Traditional Chinese Medicine


(Approval No. 2023012). All data were anonymized prior to


analysis to ensure compliance with ethical and privacy standards.


Due to the retrospective nature of the study, the requirement for


written informed consent was waived by the ethics committee.

Data collection and laboratory Indicators


Clinical and laboratory data were extracted from the hospital


information system and laboratory information system. The


following indicators were collected:


Hematological parameters: red blood cell count, hemoglobin,


white blood cell count, neutrophils, lymphocytes, platelet count,


mean platelet volume (MPV), platelet distribution width (PDW).


Inflammatory markers: CRP and PCT.


Metabolic markers: fasting blood glucose, total cholesterol,


triglycerides, uric acid.


Nutritional marker: albumin.


Categorical variables: sex, smoking history, drinking history,


hypertension, coronary heart disease, tumor history, diabetes, site


of infection.

Laboratory procedures and equipment


All blood samples were obtained prior to the initiation of


antimicrobial therapy. Hematological analyses were performed


using the Sysmex XN-9000 automated hematology analyzer


(Japan). Biochemical markers (glucose, cholesterol, triglycerides,


uric acid, albumin) were measured with the Beckman AU5800


automated chemistry analyzer. CRP and PCT levels were assessed


using electrochemiluminescence immunoassay. Blood cultures were


processed using the BacT/ALERT 3D automated system and


pathogen identification was performed with the VITEK MS mass


spectrometry system (bioMérieux, France).


Blood cultures were collected using a bilateral dual-bottle


approach (aerobic and anaerobic pairs from both arms). If


common skin flora such as coagulase-negative staphylococci or


Propionibacterium species were isolated, at least two positive


cultures from separate sites or repeated collections were required


to confirm true infection rather than contamination.

Frontiers in Cellular and Infection Microbiology 03

All procedures strictly followed standard operating protocols


(SOPs), with internal quality control maintained and coefficients of


variation kept below 5%. The present study was centered on


bacterial pathogens retrieved from blood cultures. To maintain


the research’s focus on bacterial infections and ensure the


consistency of statistical analysis, fungi, Mycoplasma, Chlamydia,


parasites, and viruses were excluded.

Statistical analysis


Normality of continuous variables was assessed using the


Shapiro-Wilk test. Normally distributed data were expressed as


mean ± standard deviation and compared using independent


samples t-test. Non-normally distributed data were expressed as


median (interquartile range, P25 - P75) and analyzed using the


Mann-Whitney U test. Categorical variables were presented as


frequencies and percentages, with between-group comparisons


performed using the chi-square (c2) test.
To identify risk factors for bacteremia, univariate logistic


regression was first conducted. Variables with p < 0.20 were


included in the multivariate logistic regression model, and


backward stepwise elimination was used to determine


independent predictors. Odds ratios (ORs) with 95% confidence


intervals (CIs) were reported.

Model development and performance
evaluation


Both the logistic regression and random forest models included


33 features, comprising 22 continuous variables (e.g., age, complete


blood count indices, CRP, PCT, glucose, cholesterol) and 11 one-


hot encoded categorical variables (e.g., sex, comorbidities, site


of infection).


The dataset was randomly divided into a training set (n = 201)


and a testing set (n = 86) in a 70:30 ratio, with stratification to


maintain the proportion of bacteremia cases in both subsets.


Logistic regression model: L2 regularization was applied. Model


tuning included optimization of the regularization parameter C


(range: 0.001 - 100) and solver type (liblinear, lbfgs).


Random forest model: Hyperparameter optimization was


performed via grid search across n_estimators (50, 100, 200),


max_depth (None, 10, 20), min_samples_split (2, 5, 10), and


min_samples_leaf (1, 2, 4), using five-fold stratified cross-


validation. The final model selected 200 decision trees with a


maximum tree depth of 20.


Performance metrics included accuracy, precision, recall, F1


score, and AUC.


All traditional statistical analyses were performed using SPSS


version 22.0. Machine learning model development and evaluation


were conducted in Python 3.7 using the Scikit-learn library. A two-


tailed p-value < 0.05 was considered statistically significant.
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Results


Shapiro–Wilk test for normality


The Shapiro-Wilk test was applied to assess the distribution of


all continuous variables. Results indicated that variables such as


hemoglobin, MPV, and albumin conformed to a normal


distribution in both groups (p > 0.05). In contrast, most other


variables, including CRP, blood glucose, and PCT, exhibited


significant deviations from normality (p < 0.05). Accordingly,


parametric or non-parametric statistical methods were applied as


appropriate in subsequent analyses.

Baseline characteristics of study
participants


Baseline characteristics of the bacteremia and non-bacteremia


groups are summarized in Table 1. The proportion of female


patients was significantly higher in the bacteremia group


compared to the non-bacteremia group (47.4% vs. 34.0%, p =


0.020). Additionally, the prevalence of diabetes mellitus was


significantly elevated in the bacteremia group (32.1% vs. 20.7%, p


= 0.027). Other variables, including age, hypertension, coronary


artery disease, malignancy, alcohol consumption, and smoking


history, showed no statistically significant differences between
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groups (all p > 0.05), indicating overall comparability of the two


populations with respect to most baseline comorbidities.

Comparison of clinical laboratory
parameters


As shown in Table 2, patients in the bacteremia group had


significantly lower levels of hemoglobin, red blood cell count,


cholesterol, and albumin compared to those in the non-


bacteremia group (all p < 0.01). Conversely, levels of platelet


count, CRP, PCT, blood glucose, and triglycerides were


significantly higher in the bacteremia group (all p < 0.05). No


statistically significant differences were observed in other


parameters such as mean corpuscular hemoglobin concentration


(MCHC) and platelet distribution width (PDW).

Univariate and multivariate logistic
regression analysis


As shown in Table 3, univariate logistic regression analysis


revealed that several variables - including hemoglobin, platelet


count, PCT, blood glucose, cholesterol, albumin, and diabetes


mellitus - were significantly associated with bacteremia. These


candidate variables were subsequently entered into a multivariate


logistic regression model to identify independent predictors (Table 4).

TABLE 1 Baseline characteristics of patients in bacteremia and non-bacteremia groups [n (%)].


Variable Category Non-bacteremia group
(N = 150)


Bacteremia group
(N = 137)


c2/U Statistic P-value


Sex Female 51 (34.00) 65 (47.40) 5.375 0.020


Male 99 (66.00) 72 (52.60)


Alcohol consumption No 128 (85.30) 126 (92.00) 3.100 0.078


Yes 22 (14.70) 11 (8.00)


Smoking No 132 (88.00) 129 (94.20) 3.299 0.069


Yes 18 (12.00) 8 (5.80)


Hypertension No 52 (40.00) 59 (43.10) 0.005 0.946


Yes 78 (60.00) 72 (61.00)


Coronary artery disease No 135 (90.00) 127 (92.70) 0.657 0.418


Yes 15(10.00) 10 (7.30)


Malignancy No 136 (90.70) 123 (89.80) 0.064 0.801


Yes 14 (9.30) 14 (10.20)


Diabetes mellitus No 119 (79.30) 93 (67.90) 4.863 0.027


Yes 31 (20.70) 44 (32.10)


Age (years) Median (P25-P75) 68.00 (58.00 - 76.00) 66.00 (56.00 - 76.00) - 0.843 0.399


Range 22.00 - 92.00 2.00 - 95.00

Group comparisons were conducted using chi-square tests for categorical variables and Mann–Whitney U tests for non-normally distributed continuous variables. P25: 25th percentile; P75:
75th percentile.
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The multivariate analysis identified the following as statistically


significant independent risk factors for bacteremia: Platelet count


(OR = 1.003, p = 0.010); PCT (OR = 1.032, p = 0.023); Triglycerides


(OR = 1.740, p = 0.031); Cholesterol (OR = 0.523, p < 0.001).

Performance evaluation of machine
learning models


The classification performance of the logistic regression and


random forest models on the testing set is presented in Tables 5, 6.


The logistic regression model achieved an accuracy of 0.69, with a


recall rate of 0.60 for the bacteremia (positive) group and an area


under the ROC curve (AUC) of 0.74. The random forest model


demonstrated the same overall accuracy (0.69), but with an


improved recall rate of 0.69 for the positive group and a slightly


higher AUC of 0.75. The confusion matrix (Figure 1) indicated that


while the random forest model enhanced sensitivity, it did so at the


expense of a modest reduction in specificity. Comparative analysis


of the ROC curves (Figure 2) showed similar overall performance


between the two models.
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Discussion


This study investigated the early predictive value of routine


hematological and metabolic biomarkers for bacteremia and


compared the classification performance of logistic regression and


random forest models. Based on clinical data from 287 hospitalized


patients, we identified several biomarkers significantly associated


with bacteremia and demonstrated that both machine learning


models achieved moderate predictive performance. These findings


support the potential utility of routine laboratory indicators as tools


for early bacteremia screening.

Independent risk factors


Multivariate logistic regression analysis identified elevated


platelet count, PCT, and triglycerides, as well as decreased


cholesterol levels, as independent predictors of bacteremia.


Increased platelet count may reflect the systemic inflammatory


response and coagulation activation during acute infection.


Previous studies have associated reactive thrombocytosis with

TABLE 2 Comparison of laboratory parameters between the bacteremia and Non-bacteremia groups [median (P25–P75)].


Parameter Non-bacteremia group (N = 150) Bacteremia group (N = 137) Z-value P-value


RBC (×1012/L) 4.08 (3.61 - 4.97) 3.72 (3.27 - 4.21) -4.063 < 0.001


Hemoglobin (g/L) 120.00 (103.00 - 137.00) 108.00 (94.50 - 122.00) -4.029 < 0.001


MCH (pg) 29.65 (28.10 - 30.80) 29.10 (27.95 - 30.40) -1.216 0.224


MCV(fL) 90.30 (87.23 - 93.88) 90.00 (86.00 - 94.00) -0.431 0.667


RDW (%) 13.20 (12.40 - 15.10) 13.40 (12.50 - 15.10) -1.036 0.300


WBC (×109/L) 6.64 (5.23 - 9.08) 7.66 (5.58 - 9.60) -1.820 0.069


Neutrophils (×109/L) 4.36 (3.00 - 6.39) 5.33 (3.31 - 7.16) -1.917 0.055


Lymphocytes (×109/L) 1.47 (1.08 - 2.00) 1.39 (0.96 - 1.83) -1.324 0.186


Eosinophils (×109/L) 0.13 (0.06 - 0.20) 0.11 (0.05 - 0.18) -0.777 0.437


Basophils (×109/L) 0.03 (0.02 - 0.05) 0.04 (0.02 - 0.05) -0.367 0.714


Platelets (×109/L) 246.50 (189.00 - 309.00) 282.00 (208.00 - 383.00) -2.817 0.005


PDW (%) 10.60 (9.40-12.30) 10.50 (9.20 - 13.40) -0.189 0.850


MPV (fL) 9.80 (9.20 - 10.40) 9.60 (9.00 - 10.35) -1.161 0.246


CRP (mg/L) 14.04 (5.10 -34.64) 19.72 (6.76 - 52.40) -2.390 0.017


Procalcitonin (ng/mL) 0.11 (0.06 - 0.34) 0.20 (0.09 - 0.77) -3.655 < 0.001


Glucose (mmol/L) 5.40 (4.78 - 7.25) 5.88 (5.00 - 8.41) -2.251 0.024


Cholesterol (mmol/L) 4.00 (3.34 - 4.70) 3.53 (3.07 - 4.04) -3.663 < 0.001


Triglycerides (mmol/L) 1.19 (0.80 - 1.38) 1.31 (0.90 - 1.55) -2.416 0.016


Uric acid (mmol/L) 270.00 (189.00-353.00) 221.00 (169.00-297.00) -2.832 0.005


Albumin (g/L) 35.65 (32.20 - 37.90) 33.30 (30.50 - 36.50) -3.666 <0.001

As data were non-normally distributed, group comparisons were conducted using the non-parametric Mann–Whitney U test. P25, 25th percentile; P75, 75th percentile; RBC, Red blood cells;
MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; RDW, red cell distribution width; WBC, White blood cells; PDW, platelet distribution width; MPV, mean platelet
volume; CRP, C-reactive protein.
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poor outcomes in sepsis (Presume et al., 2022). With respect to


procalcitonin (PCT), levels ≥ 0.5 ng/mL are generally regarded as


indicative of systemic bacterial infection, while levels >2 ng/mL are


associated with higher likelihood of sepsis (Jongwutiwes et al., 2009;


Kubo et al., 2024). In our cohort, the median PCT level in
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bacteremia cases was 0.202 ng/mL (IQR: 0.094 - 0.771),


suggesting that even modest elevations may carry predictive value


when combined with other biomarkers. This underscores the


importance of integrating multiple parameters rather than relying


on a single threshold.

TABLE 3 Univariate logistic regression analysis for predictors of bacteremia.


Variable B (Coefficient) SE Wald c2 P-value OR (95% CI)


Hemoglobin (g/L) -0.021 0.005 15.209 <0.001 0.979 (0.969 - 0.990)


MCH (pg) -0.035 0.043 0.669 0.413 0.965 (0.887 - 1.051)


MCV (fL) -0.003 0.016 0.035 0.851 0.997 (0.965 - 1.030)


MCHC (g/L) -0.014 0.010 2.019 0.155 0.987 (0.968 - 1.005)


RDW (%) 0.058 0.048 1.432 0.231 1.059 (0.964 - 1.165)


WBC (×109/L) 0.066 0.032 4.113 0.043 1.068 (1.002 - 1.138)


Neutrophils (×109/L) 0.074 0.033 4.920 0.027 1.076 (1.009 - 1.149)


Lymphocytes (×109/L) -0.177 0.166 1.132 0.287 0.838(0.604 - 1.161)


Eosinophils (×109/L) -0.323 0.633 0.260 0.610 0.724(0.210 - 2.502)


Basophils (×109/L) -0.378 4.922 0.006 0.939 0.685 (0.000 -10608.263)


Platelets (×109/L) 0.003 0.001 8.271 0.004 1.003 (1.001 - 1.005)


PDW (%) 0.042 0.049 0.763 0.382 1.043 (0.949 - 1.148)


MPV (fL) -0.098 0.122 0.637 0.425 0.907 (0.714 - 1.153)


CRP (mg/L) 0.004 0.002 3.058 0.080 1.004 (0.999-1.009)


PCT (ng/mL) 0.020 0.014 2.187 0.139 1.021 (0.993 - 1.049)


Glucose (mmol/L) 0.124 0.042 8.680 0.003 1.132 (1.042-1.230)


Cholesterol (mmol/L) -0.464 0.125 13.886 <0.001 0.628 (0.492-0.802)


Triglycerides (mmol/L) 0.284 0.197 2.064 0.151 1.328 (0.902 - 1.955)


Uric acid (mmol/L) -0.002 0.001 5.376 0.020 0.998 (0.996-1.000)


Albumin (g/L) -0.095 0.027 12.126 <0.001 0.909 (0.862-0.959)


Age (years) -0.009 0.007 1.431 0.232 0.991 (0.977 - 1.006)


Sex -0.561 0.243 5.336 0.021 0.571 (0.355 - 0.919)


Alcohol consumption -0.677 0.390 3.017 0.082 0.508 (0.236 - 1.091)


Smoking -0.788 0.443 3.169 0.075 0.455 (0.191 - 1.083)


Hypertension 0.016 0.239 0.005 0.946 1.016 (0.637 - 1.623)


Coronary artery disease -0.344 0.427 0.652 0.419 0.709 (0.307 - 1.635)


Malignancy 0.100 3.398 0.064 0.801 1.106 (0.507 - 2.412)


Diabetes mellitus 0.597 0.272 4.803 0.028 1.816 (1.065 - 3.097)


Site of infection


Head -0.981 0.709 1.913 0.167 0.375 (0.093 - 1.505)


Respiratory tract -2.175 0.557 15.271 <0.001 0.114 (0.038 - 0.338)


Gastrointestinal tract -0.685 0.554 1.528 0.216 0.504 (0.170 - 1.494)


Urinary tract 0.288 0.719 0.160 0.689 1.333 (0.326 - 5.455)

CI, confidence interval; PDW, platelet distribution width; RDW, red cell distribution width; MCH, mean corpuscular hemoglobin; WBC, White blood cells; MCV, mean corpuscular volume;
MCHC, mean corpuscular hemoglobin concentration; MPV, mean platelet volume; CRP, C-reactive protein; PCT, Procalcitonin.
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Our findings that low cholesterol and elevated triglycerides were


independently associated with bacteremia are consistent with the


phenomenon of infection-induced metabolic dysregulation


(Górecka et al., 2022). Inflammatory cytokines such as


interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a) are
known to promote hypertriglyceridemia through enhanced hepatic


lipogenesis and reduced lipoprotein lipase activity, while


simultaneously suppressing cholesterol synthesis and increasing


cholesterol catabolism (Górecka et al., 2022; Agnello et al., 2021).


Similarly, stress-induced hyperglycemia observed in systemic


infections reflects cytokine-driven insulin resistance and increased


gluconeogenesis (Leonidou et al., 2008). These mechanisms


highlight the pathophysiological basis for the observed


metabolic alterations.


Although hyperglycemia did not reach statistical significance in


the multivariate analysis (p = 0.067), its borderline association


suggests that it should still be considered a clinically relevant risk


factor. Bacteremia-induced insulin resistance and enhanced
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gluconeogenesis may lead to stress-induced hyperglycemia, which


can exacerbate organ dysfunction and negatively impact prognosis


(Leonidou et al., 2008). Similarly, decreased levels of hemoglobin


and albumin, which were significant in univariate analysis, may


reflect chronic inflammation, malnutrition, or bone marrow


suppression commonly observed in patients with bacteremia


(Allison and Lobo, 2024).

Model performance and clinical
applicability


The random forest model demonstrated superior sensitivity in


detecting positive cases (recall = 0.69) compared to logistic


regression (recall = 0.60), with a slightly higher AUC (0.75 vs.


0.74). This suggests that random forest may be more suitable in


clinical settings prioritizing sensitivity, such as early screening. In


contrast, logistic regression provides interpretable coefficients and

TABLE 4 Multivariate logistic regression analysis for independent predictors of bacteremia.


Variable Reference B (Coefficient) SE Wald c2 P -value OR (95% CI)


MCHC (g/L) -0.019 0.011 2.708 0.100 0.982 (0.960 - 1.004)


Platelet (×109/L) 0.003 0.001 6.654 0.010 1.003 (1.001 - 1.006)


Procalcitonin (ng/mL) 0.031 0.014 5.181 0.023 1.032 (1.004 - 1.060)


Glucose (mmol/L) 0.091 0.049 3.363 0.067 1.095 (0.994 - 1.206)


Cholesterol (mmol/L) -0.648 0.159 16.654 0.000 0.523 (0.383 - 0.714)


Triglycerides (mmol/L) 0.554 0.257 4.650 0.031 1.740 (1.052 - 2.879)


Sex Female -0.497 0.301 2.727 0.099 0.608(0.337 -1.097)


Site of infection Other


Head -1.192 0.591 4.062 0.044 0.304 (0.095 - 0.968)


Respiratory tract 0.407 0.585 0.484 0.487 1.503 (0.477 - 4.734)


Gastrointestinal tract 1.212 0.757 2.563 0.109 3.359 (0.762 -14.811)


Urinary tract 0.528 0.764 0.478 0.489 1.695 (0.379 - 7.578)


Constant 6.550 3.822 2.937 0.087 698.993

CI, confidence interval; MCHC, mean corpuscular hemoglobin concentration.

TABLE 5 Classification report for logistic regression model.


Class Precision Recall
F1-


Score
Support


Negative 0.67 0.78 0.72 45


Positive 0.71 0.60 0.65 42


Accuracy 0.69 87


Macro average 0.69 0.69 0.69 87


Weighted average 0.69 0.69 0.69 87

Negative and Positive classes correspond to non-bacteremia and bacteremia groups,
respectively. Precision reflects the model’s ability to avoid false positives, Recall (sensitivity)
measures its capacity to identify true positives, and F1-Score balances these metrics.

TABLE 6 Classification report for random forest model.


Class Precision Recall
F1-


Score
Support


Negative 0.72 0.76 0.74 45


Positive 0.72 0.69 0.71 42


Accuracy 0.69 87


Macro average 0.72 0.72 0.72 87


Weighted average 0.72 0.72 0.72 87

fr

Macro average refers to the unweighted mean of performance metrics across all classes,
treating each class equally regardless of its frequency. Weighted average accounts for the
number of instances in each class (support) and is especially relevant in imbalanced datasets.
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stable performance, which may facilitate risk communication and


clinical decision-making (Agnello et al., 2024). Our findings are


consistent with previous reports. For example, prior machine


learning studies, including those by Hernandez et al (Hernandez


et al., 2025), incorporated both clinical and laboratory data and


achieved AUCs up to 0.83 - 0.90, outperforming our models.


Several established tools, such as qSOFA, SIRS, and NEWS, also


rely on physiological parameters that are not captured in our


laboratory-based model. The primary advantage of our approach


lies in its reliance on inexpensive, routine laboratory tests that can


be automated and rapidly obtained, particularly useful in


resource-limited settings where clinical scoring may be


incomplete. However, the exclusion of physiological data limits
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our model’s discriminative power, highlighting the need for future


multimodal model development.

Future perspectives


Further research should aim to: Incorporate multicenter


datasets to enhance model adaptability and robustness. Integrate


multimodal data, including clinical scores, microbiological profiles,


and imaging features, to improve predictive accuracy. Explore


advanced algorithms and interpretability tools, such as XGBoost,


LightGBM, SHAP, and LIME, to balance predictive performance


with clinical transparency.

Conclusion


In this study, we developed two machine learning models—


logistic regression and random forest—to predict bacteremia based


on routine hematological and metabolic indicators. Our findings


identified elevated platelet count, procalcitonin, and triglycerides,


along with decreased cholesterol levels, as independent risk factors


for bacteremia. Both models achieved comparable performance


with moderate predictive accuracy, while the random forest


model demonstrated slightly better sensitivity for identifying


positive cases.


The integration of machine learning algorithms with widely


available laboratory parameters offers a cost-effective and accessible


approach to support early detection of bacteremia, especially in


clinical settings where rapid microbiological confirmation is


limited. Nonetheless, to improve model generalizability and


precision, future work should focus on incorporating high-


dimensional clinical, physiological, and molecular data, and


validating the models in multicenter prospective cohorts.

FIGURE 1


Confusion matrices of logistic regression and random forest models. This figure illustrates the confusion matrices for the logistic regression model
(left) and the random forest model (right) on the test dataset. Compared with logistic regression, the random forest model achieved a slightly higher
number of true positives (TP = 29 vs. 25) and fewer false negatives (FN = 13 vs. 17), indicating improved sensitivity. However, the random forest
model also showed a modest increase in false positives (FP = 11 vs. 10), suggesting a slight reduction in specificity as a trade-off for higher sensitivity.

FIGURE 2


Comparison of ROC curves between logistic regression and random
forest models. The ROC curves of the two models exhibit similar
shapes, indicating that logistic regression and random forest
achieved comparable classification performance on this dataset.
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Limitations


This study has several limitations. First, as a pilot single-center


study with a modest sample size, the statistical power is limited,


which may affect the stability and reliability of the predictive


models. Second, the restricted time frame may limit the


generalizability of the findings, as temporal variability in patient


populations or clinical practices was not captured. Third, the single-


center design further constrains external validity because patient


characteristics and infection epidemiology may differ across


institutions and regions.


To address these limitations, we are planning to extend the study


period in future research to include a broader range of data over time,


which will allow evaluation of temporal trends and enhance model


robustness. In addition, we are preparing a multicenter, prospective


validation study across hospitals in Fujian Province and beyond,


aiming to assess the generalizability, calibration, and clinical utility of


our models in diverse healthcare settings. Such external validation


will be essential before clinical implementation.
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