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osteoarthritis: epidemiology, 
mechanistic analysis, 
and new horizons for 
pharmacological interventions 
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1Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji 
University, Shanghai, China, 2School of Medicine, Tongji University, Shanghai, China, 3Department of 
Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China 
Emerging evidence suggests that gut microbiota dysbiosis is associated with the 
onset and progression of osteoarthritis (OA). While OA was traditionally 
considered a localized degenerative joint condition, it is now increasingly 
viewed as a systemic disorder involving low-grade inflammation and metabolic 
imbalance. This review synthesizes current findings on the gut–joint axis and 
presents a structured overview of how alterations in microbial communities may 
relate to phenotypic variability in OA. Observational studies have identified 
correlations between gut dysbiosis and factors such as obesity and 
hyperuricemia, which are themselves l inked to increased intestinal 
permeability, elevated circulating lipopolysaccharide levels, and reduced 
production of short-chain fatty acids. These features may contribute to 
immune dysregulation and tissue degeneration, although definitive causal 
mechanisms remain unconfirmed. Some reports have also detected microbial 
DNA in joint tissues, raising the possibility of microbial translocation and its 
potential role in local inflammatory processes. In light of these associations, we 
review several microbiota-directed interventions, including probiotics, dietary 
supplements, Traditional Chinese Medicine, and biomaterial-based approaches. 
Although preliminary studies suggest these strategies may influence systemic 
inflammation and joint health, most evidence is derived from preclinical models 
or small-scale clinical trials. Causality has not yet been firmly established, and 
further validation in larger, well-controlled studies is needed. By integrating 
current mechanistic insights with emerging therapeutic directions, this review 
highlights the potential relevance of the gut–joint connection in OA and 
underscores the importance of continued research toward microbiota

informed, individualized approaches to disease understanding and management. 
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1 Introduction 

Osteoarthritis (OA) is one of the most common degenerative 
joint diseases, marked by cartilage degradation, osteophyte 
formation, synovial inflammation, and progressive pain and 
functional impairment (van den Bosch, 2020; Duong et al., 2023). 
With global life expectancy on the rise, OA has become a leading 
cause of disability and healthcare burden, particularly among ageing 
populations. This trend is exacerbated by the increasing prevalence 
of metabolic conditions such as obesity and insulin resistance, 
which are closely linked to both the onset and progression of OA 
(Steinmetz et al. 2023; Tang et al., 2025). Although it was 
traditionally regarded as a localized process driven primarily by 
mechanical wear and tear with minimal inflammatory involvement, 
current understanding has shifted to recognize OA as a 
multifactorial disease in which systemic processes play a crucial 
part. Metabolic dysregulation and chronic, low-grade inflammation 
are now considered major contributors to cartilage degradation, 
heightened pain sensitivity, and disease progression (Steves et al., 
2016; Ryu et al., 2020; Wei et al., 2023; Yang et al., 2024). 

The gut microbiota constitutes a diverse and dynamic microbial 
ecosystem that influences host physiology through immune, 
metabolic, and neuroendocrine pathways. Recent advances in 
high-throughput sequencing and integrative omics technologies 
have revealed extensive associations between gut dysbiosis and 
chronic inflammatory conditions, including cardiovascular 
diseases, diabetes, and OA (Foley et al., 2019; Seely et al., 2021; 
Talmor-Barkan et al., 2022; Jang et al., 2024; Wang et al., 2025). 
Notably, alterations in microbial composition—often observed in 
individuals with obesity, hyperuricemia, or metabolic syndrome— 
may compromise intestinal barrier integrity, increase endotoxin 
translocation, and activate immune cascades that contribute to joint 
inflammation and cartilage degradation (Pushpakumar et al., 2021; 
Hou et al., 2022; Graham and Xavier, 2023; Byndloss et al., 2024). 

Support  for  the  gut– joint  axis  has  emerged  from  
epidemiological and clinical studies. For example, specific 
microbial metabolites derived from tryptophan have been linked 
to increased joint pain, while reduced microbial diversity has been 
associated with greater OA severity in certain populations 
(Pedersini et al., 2020; Li et al., 2021). Moreover, the detection of 
microbial DNA in synovial fluid and cartilage suggests a possible 
translocation of gut microbes or microbial components to joint 
tissues, directly contributing to local immune activation and 
structural damage (He and Chen, 2022; Basak et al., 2023). 

Mechanistic studies have identified several key microbial-derived 
molecules—such as lipopolysaccharide (LPS), short-chain fatty acids 
(SCFAs), and altered amino acid metabolites—that influence immune 
responses, chondrocyte homeostasis, and nociceptive signaling 
(Rahman et al., 2023; Karim, 2024). These findings underscore the 
importance of the intestinal mucosal barrier as a regulatory  interface in  
OA, particularly among metabolically vulnerable individuals. 

In light of these insights, the gut microbiota has become 
a promising target for disease-modifying interventions. 
Beyond conventional OA treatments focused on symptom control 
and surgical repair (Katz et al., 2021), emerging strategies such as 
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probiotics, prebiotics, dietary modulation, and functional 
supplements are being investigated for their capacity to reshape 
host–microbiome interactions. Traditional Chinese Medicine 
(TCM), including herbal formulations and external therapies like 
acupuncture and moxibustion, has also demonstrated potential in 
modulating gut microbial balance and attenuating joint pathology 
via immunometabolic pathways (Li et al., 2024). 

This review synthesizes recent advances in understanding the 
gut microbiota ’s  role  in  OA  pathogenesis.  We  discuss  
epidemiological and clinical evidence, characterize microbial 
compositional and metabolic features associated with OA, 
elucidate key molecular mechanisms, and evaluate microbiota

targeted therapies, including TCM-based approaches. By 
integrating findings across human, animal, and cellular models, 
this review aims to clarify the gut–joint axis and explore its 
translational potential in OA management and prevention. 
2 Epidemiological studies on gut 
microbiota and osteoarthritis 

Traditional epidemiological studies of OA have primarily 
focused on conventional risk factors, including obesity, ageing, 
and joint mechanical loading (Bennell et al., 2022; Messier et al., 
2022; Ferrari et al., 2024). However, with the rapid advancement of 
high-throughput single-cell transcriptomics and metabolomics 
technologies, researchers have increasingly recognized the 
potentially significant role of gut microbiota in systemic 
inflammation and metabolic disturbances (Figure 1) (Han et al., 
2021; Muñoz et al., 2024; Delzenne et al., 2025; Shen et al., 2025). 
Multiple large-scale population-based and cohort studies have 
further uncovered a potential association between gut microbiota 
and OA initiation and progression (Table 1) (Boer et al., 2019; Wei 
et al., 2021; Wei et al., 2022; Binvignat et al., 2023; Wei et al., 2023a). 
From the association between disturbed tryptophan metabolism 
and hand OA related pain to the connections linking intestinal 
dysbiosis with hyperuricemia and joint pain, these findings 
collectively offer supporting evidence for the hypothesis of a “gut– 
joint axis”. 

While these studies have advanced our understanding of the 
potential microbiome–articular connection, it is important to 
recognize their methodological constraints. Although cross
sectional studies have yielded important insights supporting the 
hypothesis of a microbiome–articular axis, their inherent 
limitations prevent the establishment of definitive causal 
relationships between microbial alterations and OA pathogenesis, 
thus necessitating cautious interpretation of the findings (Wei et al., 
2021). In addition, notable methodological heterogeneity exists— 
for example, Wei et al. employed a metagenomic sequencing 
approach, whereas Boer et al. used 16S rRNA gene sequencing— 
making direct comparisons between studies challenging (Boer et al., 
2019; Wei et al., 2023a). To address these issues, future research 
should adopt multidimensional, longitudinal designs and 
standardized sequencing methodologies to strengthen the 
evidence base for microbiome-targeted therapeutic strategies in OA. 
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2.1 Gut microbiota and hand osteoarthritis 

Several independent cohort studies focusing on hand OA have 
consistently emphasized the critical metabolic pathway involving 
tryptophan derivatives. The DIGICOD cohort, comprising 416 
patients with hand OA, systematically measured 20 distinct 
tryptophan metabolites and identified specific molecules  such  as
indole-3-aldehyde as significantly correlated with the severity of 
erosive hand OA (Binvignat et al., 2023). Another investigation 
involving two independent populations similarly reported elevated 
levels of multiple tryptophan metabolites in symptomatic hand OA 
patients, accompanied by a marked reduction in indole-3-lactic acid 
and skatole (Wei et al., 2023a). Despite differences in study 
populations and experimental designs, both studies consistently 
reinforced a close association between disrupted tryptophan 
metabolism and joint pain or erosion severity. Given that 
tryptophan metabolism relies heavily on gut microbiota to produce 
numerous bioactive metabolites, gut dysbiosis may be associated with 
inflammation and pain phenotypes in hand OA (Agus et al., 2021). 

The Xiangya Osteoarthritis Study, conducted on the same 
community-based population, focused on the relationship 
between “symptomatic OA” and the macro composition of the 
gut microbiota (Wei et al., 2021). In total, 1,388 participants were 
enrolled, and the analysis revealed significant alterations in gut 
microbial b-diversity among individuals diagnosed with 
symptomatic hand OA based on clinical symptoms and 
radiographic findings. Specifically, an increased abundance of 
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potentially pro-inflammatory and hydrogen sulfide-producing 
bacteria, such as Bilophila and Desulfovibrio, was observed 
alongside a notable reduction in typical butyrate-producing 
beneficial bacteria, exemplified by Roseburia. This microbial 
pattern of “increased pro-inflammatory bacteria and decreased 
beneficial bacteria” aligns closely with the previously discussed 
concept of microbial dysbiosis driving low-grade inflammation 
suggested by tryptophan metabolism studies, and further suggests 
a possible link between systemic inflammatory signals and local 
pathological changes in hand OA (Mulrooney et al., 2021). 
2.2 Gut microbiota and knee osteoarthritis 

Large-scale cohort studies have similarly demonstrated t a 
potential association between gut microbiota and knee OA and its 
associated pain phenotypes. The Rotterdam Study and the Lifelines-
DEEP study, covering extensive populations of European adults, 
employed 16S sequencing and absolute quantitative analyses, 
revealing a significant correlation between joint pain and 
increased abundance of the genus Streptococcus (Boer et al., 
2019). Subsequent analyses further suggested that this association 
is closely related to local joint inflammation, proposing that 
macrophage-mediated inflammation, possibly related to microbial 
endotoxins, may be associated with joint pain progression.Within 
the broader spectrum of metabolic factors, hyperuricemia 
represents another significant research focus (Taskina et al., 
FIGURE 1 

Interactions between gut microbiota and risk factors of OA. Risk factors of OA exhibit a dual pathogenic mechanism, in that they can directly trigger 
OA and indirectly accelerate its progression by disrupting gut microbial homeostasis. The gut microbiota is modulated not only by the host genetic 
background but also significantly responds to environmental exposures, thereby indirectly influencing OA pathogenesis. 
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2021). Based on 1392 participants from the Xiangya Osteoarthritis 
Study, and subsequently replicated in another validation cohort, it 
was observed that individuals with hyperuricemia exhibited a 
significantly reduced gut microbial diversity, alongside enhanced 
functional pathways related to amino acid and nucleotide 
metabolism, and a decreased abundance of beneficial bacterial 
genera, including Coprococcus (Wei et al., 2022). Such patterns of 
gut microbial dysbiosis, frequently associated with obesity or gout, 
further suggest that OA individuals with concurrent hyperuricemia 
may be more susceptible to patterns observed along the microbiota– 
metabolism–joint inflammation axis (Wang et al., 2024). 

Gut microbial dysbiosis at both compositional and functional 
levels, including disturbances in amino acid metabolism, 
enrichment of pro-inflammatory bacterial genera, and depletion 
of critical beneficial bacteria, may contribute to the initiation or 
Frontiers in Cellular and Infection Microbiology 04
exacerbation of OA clinical manifestations (Biver et al., 2019). 
Although existing epidemiological studies have predominantly 
adopted cross-sectional designs, making it challenging to 
determine causality between microbiota alterations and OA, these 
studies clearly highlight a close relationship between gut microbiota 
and OA (Wei et al., 2023b). In the future, if these results can be 
further validated in larger prospective or interventional studies, it 
will help to clarify the potential value of gut microbiome 
intervention in the prevention and treatment of OA. 
2.3 Other studies 

In studies exploring the relationship between gut microbiota 
and OA, certain findings have not demonstrated significant 
TABLE 1 Overview of major epidemiological/cohort studies. 

Source 
cohort 
research 

title 

Sample 
size 

Experimental 
group size 

Control group 
and 

its conditions 
Measurement Findings Conclusion Reference 

Xiangya 
osteoarthritis 

study 
(Hand OA) 

1388 72 

1316; Significantly 
higher abundance of 
Roseburia; Markedly 
lower abundance of 

pro
inflammatory genera 

Bacterial 16S 
rRNA gene 

The abundance of pro
inflammatory bacteria 

Bilophila and 
Desulfovibrio 

increased, while the 
butyrate-producing 

bacterium 
Roseburia decreased 

Suggests a close 
association between 

dysbiosis, low
grade 

inflammation, and 
hand OA 

(Wei 
et al., 2021) 

DIGICOD 
cohort 

416 141 

275; A more 
comprehensive 
tryptophan 

metabolic profile; 
lower activity of 
inflammatory 
pathways; and 

milder 
clinical symptoms 

Quantification of 
tryptophan 
metabolites 

Molecules such as 
indole-3-aldehyde are 
significantly associated 
with the severity of 
erosive hand OA. 

Suggests a close 
association between 

tryptophan 
derivatives and 

joint pain 
and inflammation 

(Binvignat 
et al., 2023) 

Independent 
cohort study of 

hand OA 
1359, 142 

discovery cohort: 
70; validation 
cohort: 71 

discovery cohort: 
1289; validation 

cohort: 71; 
Enhanced amino 
acid metabolism 
pathways and 

cofactor metabolism 

Quantification of 
tryptophan 
metabolites 

Several tryptophan 
metabolites were 

elevated, while indole
3-lactic acid and 
skatole decreased. 

Further validates 
the association 

between 
tryptophan 

imbalance and 
joint pain 

(Wei 
et al., 2023a) 

Xiangya 
osteoarthritis 

study 
(Hyperuricemia) 

1392, 480 
discovery cohort: 
239; validation 
cohort: 240 

discovery cohort: 
1153; validation 
cohort: 240; Gut 
microbiota of 

individuals with 
healthy serum uric 
acid levels exhibits 
greater diversity 
and stability 

Bacterial 16S rRNA 
gene 

Functional 
pathway analysis 

In individuals with 
hyperuricemia, gut 
diversity decreased, 

amino acid/nucleotide 
pathways were 

upregulated, and the 
beneficial bacterium 

Coprococcus 
was reduced. 

Suggests that 
individuals with 
hyperuricemia are 
more susceptible to 

damage in the 
microbiome
metabolism
arthritis 

inflammation 
pathway 

(Wei 
et al., 2022) 

Rotterdam 
Study 

Lifelines-DEEP 
1427, 867 

discovery cohort: 
285; validation 
cohort: 197 

discovery cohort: 
1142; validation 
cohort: 670; High 
microbial diversity 
and low abundance 
of streptococci 

Bacterial 16S 
rRNA gene 

Joint pain is associated 
with an increase in the 

abundance of 
Streptococcus species 
and is significantly 
correlated with 

local inflammation. 

Hypothesizes that 
the "microbial 
endotoxin

macrophage" axis 
exacerbates 
OA pain 

(Boer 
et al., 2019) 
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differences in microbial diversity or composition. A metagenomic 
sequencing analysis involving 93 dogs with naturally occurring OA 
reported no significant differences in microbial a and b diversity 
between the pain group and healthy controls (Stevens et al., 2024). 
Similarly, another cross-sectional study conducted in an obese 
human population observed significantly elevated serum LPS 
levels in the OA group but found no substantial difference in 
microbial composition compared to controls (Loeser et al., 2022). 
The negative results do not negate the importance of intestinal 
microbiota in OA, but provide some suggestions for the subsequent 
work in terms of research objects, sampling scale, analysis methods 
and selection of microbiota function indicators. 

Taken together, these epidemiological findings lay the 
groundwork for exploring underlying biological mechanisms 
through which gut microbiota may contribute to OA pathology. 
 

3 Gut microbiota and metabolic 
characteristics in osteoarthritis 

3.1 Microbial DNA in cartilage 

Previous studies tended to focus on microbial dysregulation in 
intestinal samples (Hao et al., 2021; Sánchez Romero et al., 2021). The 
research on whether there is microbial DNA in articular cartilage has 
made this issue a new hot topic (Dunn et al., 2020; Izda et al., 2023). 
After inoculating  germ-free mice with normal gut microbes, microbial 
DNA was detectable within articular cartilage within only 48 hours. 
Such rapid deposition indicates cross-tissue microbial translocation 
from the gut to joints, and further implies that microbes or their 
genomic components raises the possibility that microbes or their 
genomic components are associated with local inflammation. 
Moreover, when mice experienced obesity, high-fat diet feeding, or 
osteoarthritis induced by anterior cruciate ligament or meniscal injury, 
cartilage microbial DNA exhibited synchronous alterations with the 
gut microbiota, suggesting a close association between systemic 
metabolic states and joint pathology (Izda et al., 2023). Another 
study using 16S sequencing in human knee and hip cartilage 
samples identified significantly decreased a-diversity in OA cartilage, 
along with relative enrichment of Gram-negative bacteria, along  with  
the up-regulation of genes related to inflammation and metabolic 
pathways such as LPS synthesis and phosphatidylinositol signaling 
(Dunn et al., 2020). These findings  support the  concept that joints
might not be completely sterile, and microbial DNA translocation 
across mucosal barriers into the joint may amplify local inflammatory 
signaling, thereby accelerating cartilage degeneration. 
3.2 Endemic osteoarthritis: Kashin-Beck 
disease 

Kashin-Beck disease (KBD), an endemic osteoarthritis subtype 
prevalent in specific regions of China, has been investigated through 
16S rRNA gene sequencing and serum metabolomics analyses 
comparing patients with healthy controls (Wang et al., 2021). The 
Frontiers in Cellular and Infection Microbiology 05 
results demonstrated increased abundances of bacterial phyla, 
including Fusobacteria and Bacteroidetes, along with significant 
enrichment  of  bacterial  genera  such  as  Alloprevotella , 
Megamonas, and  Escherichia_Shigella in the KBD population. 
Furthermore, widespread disturbances in lipid metabolism 
pathways, particularly involving unsaturated fatty acids and 
glycerophospholipids, were identified among KBD subjects. These 
metabolic abnormalities were significantly correlated with changes 
in specific microbial genera, providing typical evidence that “gut 
microbial dysbiosis coupled with host metabolic disturbance” may 
contribute to or be associated with osteochondral pathology. Given 
that nutritional and environmental toxin-related factors may also 
be involved in KBD pathogenesis, findings further illustrate that 
microbial-host interactions remain a critical pathogenic pathway 
even in relatively rare or distinct OA subtypes. 
3.3 Obesity associated osteoarthritis 

In addition to geographical factors, obesity is also recognized as 
an important trigger for the high incidence of OA (Elmaleh-Sachs 
et al., 2023; Delzenne et al., 2025). A study employing fecal untargeted 
metabolomics and 16S sequencing in obese patients with concurrent 
hand and knee OA revealed significant accumulation of dipeptides 
and tripeptides, alongside disrupted metabolic pathways involving 
multiple amino acids and lipids, as well as abnormal levels of 
microbial-derived metabolites such as propionate and indoles 
(Rushing et al., 2021). Imbalanced proteolysis and microbial

metabolic disturbances are frequently associated with increased 
intestinal permeability and chronic low-grade inflammation, which 
may be associated with more severe joint degeneration and pain. 
Furthermore, regression modeling in this study demonstrated that 
these metabolic characteristics, in combination with microbial 
abundance, could be utilized to discriminate phenotypes among 
obese OA populations. Within the complex metabolic context of 
obesity, gut microbial modulation of protein, amino acid, and lipid 
metabolism is associated with variations in systemic and joint 
inflammation levels (Sampath et al., 2023; Binvignat et al., 2024; Li 
et al., 2024). These findings also provide potential biomarkers and 
novel perspectives for future microbiota-targeted therapeutic 
interventions in obese OA populations. 
3.4 Post traumatic osteoarthritis and 
exercise intervention 

Post traumatic osteoarthritis (PTOA), a degenerative 
condition triggered by injuries to joint structures such as 
ligaments or menisci, differs etiologically from primary OA 
(Jeon  et  al . ,  2017; Kraus  and  Hsueh,  2024).  A  study  
demonstrated that gut microbiota also plays a significant role in 
PTOA models (Hao et al., 2022). Rats undergoing ligament and 
meniscal injury surgery commonly exhibited a pathological 
microbiota shift characterized by increased abundance of 
Fusobacteria and reduced proportions of potentially beneficial 
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bacteria. Importantly, eight weeks of treadmill exercise partially 
reversed these microbial alterations, helping to preserve the 
structural integrity of cartilage and subchondral bone while 
concurrently reducing systemic inflammatory markers. These 
findings further support the beneficial regulatory effects of 
exercise on gut microbiota composition, supporting the 
potential relevance of the “gut–joint” axis theory across OA 
types with different etiologies and phenotypes. By maintaining 
or restoring a healthy microbiota, exercise may confer benefits to 
PTOA patients, protecting joints not only at the mechanical level 
but also through immunological and metabolic mechanisms (Gao 
et al., 2024; Hawley et al., 2025). 

Across diverse OA subtypes and pathological contexts, the 
critical interplay between microbial dysbiosis and host metabolic 
disturbances consistently emerges as a central theme (Chen et al., 
2022; Fábio, 2022; Gaspar et al., 2024). Whether exogenous 
microbial DNA crosses the intestinal mucosa and deposits in the 
joint, or the double disturbance of microbiota and metabolism 
brought by high fat diet and environmental toxins, all point to the 
key position of “microbiota–metabolism–inflammation” in 
promoting the degeneration of articular cartilage (Figure 2). 

With continuous advances in analytical technologies and 
omics approaches, researchers are now able to achieve increasingly 
refined and multidimensional characterization of both the joint 
microenvironment and gut ecosystem, thereby providing new 
opportunities for further dissecting OA pathogenesis and exploring 
novel microbiota-targeted intervention strategies (Rozera et al., 
2025). These findings underscore the complex and multi-level 
Frontiers in Cellular and Infection Microbiology 06
influence of gut microbiota across OA phenotypes. This has 
prompted growing interest in uncovering the specific microbial and 
molecular pathways that may mediate such effects. 
4 Mechanisms underlying gut 
microbiota effects on osteoarthritis 

4.1 Endotoxin and low grade inflammation 

Individuals with obesity and metabolic syndrome often exhibit 
impaired intestinal mucosal barrier function, allowing LPS 
translocation from the intestinal lumen into systemic circulation, 
thereby exacerbating systemic low-grade inflammation and 
worsening the course of OA (Liu et al., 2023; Li et al., 2024). A 
“two-hit” model proposed by a previous study emphasized that 
elevated serum LPS levels, in the context of pre-existing joint injury, 
amplify inflammatory responses in synovial and cartilage cells 
through pathways such as TLR4/NF-kB, subsequently aggravating 
OA severity (Figure 3A) (Huang and Kraus, 2015). In this model, 
the first “hit” involves systemic metabolic dysfunction—most 
notably, elevated circulating LPS resulting from compromised gut 
barrier integrity—which primes the innate immune system to 
mount an inflammatory response. The second “hit” consists of 
joint injury or mechanical stress, which further stimulates 
inflammation in this already sensitized immune environment. 
Acting in concert, these two factors accelerate joint degeneration 
and drive OA progression. Concurrent studies have also indicated 
FIGURE 2 

Dual regulatory role of gut microbiota in osteoarthritis. Gut microbiota associated with OA are categorized into beneficial bacteria (left panel) and 
harmful bacteria (right panel) groups. Beneficial bacteria, including Roseburia, Lactobacillus, Ruminococcaceae, Coprococcus, Akkermansia, 
Prevotellaceae_NK3B31_group, and Bacteroides salyersiae, contribute to reduced cartilage degradation and inflammation primarily through the 
production of short-chain fatty acids, restoration of intestinal mucosal barrier integrity, and modulation of immune homeostasis. Conversely, harmful 
bacteria, such as Bilophila, Desulfovibrio, Streptococcus, Escherichia-Shigella, Fusobacteria, Bacteroidetes, Alloprevotella, Megamonas, and Blautia, 
when increased in abundance, are frequently associated with elevated levels of LPS and other pathogenic metabolites, leading to exacerbation of 
synovial inflammation, pain, and cartilage degeneration. 
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that increased LPS burden is common not only in obese OA 
patients (Huang et al., 2016). Analysis of serum and synovial fluid 
samples from knee OA patients revealed significant associations of 
LPS and LPS-binding protein levels with joint pain, osteophyte 
formation, and local macrophage activation. These findings suggest 
that both systemic and intra-articular LPS exposure can be linked to 
joint structural abnormalities and inflammatory symptoms (Bonato 
et al., 2021; Franco-Trepat et al., 2021). Furthermore, microbial 
transplantation experiments indicated that gut microbiota from 
metabolically impaired individuals could induce higher 
inflammation levels and more severe degenerative joint changes 
in recipient mice, often associated with elevated transmembrane 
absorption of LPS (Huang et al., 2020). One study revealed sex
Frontiers in Cellular and Infection Microbiology 07 
specific susceptibility to microbiota alterations, showing that male 
mice were more prone to developing severe OA, potentially linked 
to stronger pro-inflammatory signaling (Schlupp et al., 2023). 
Collectively, these findings indicate that LPS-mediated subclinical 
inflammation occupies a central role in OA progression in the 
context of obesity, sex differences, or metabolic syndrome. 
4.2 Short chain fatty acids and immune 
regulation 

In contrast to the pro-inflammatory effects mediated by LPS, 
SCFAs are generally considered immunoprotective factors derived 
FIGURE 3 

Mechanisms underlying gut microbiota effects on OA. (A) Under conditions such as obesity, metabolic syndrome, or compromised intestinal 
mucosal barriers, elevated levels of LPS translocate from the gut into systemic circulation. Subsequently, LPS amplifies inflammatory responses in 
synoviocytes and chondrocytes through activation of signaling pathways including TLR4/NF-kB, leading to joint pain and tissue degeneration. (B) 
SCFAs produced via microbial fermentation in the gut, modulate immune homeostasis through GPCRs. Specifically, SCFAs promote the 
differentiation and activity of regulatory T cells (Tregs) and M2 macrophages, thereby suppressing inflammation and preserving chondrocyte 
homeostasis. (C) The gut-derived metabolite capsiate suppresses HIF-1a expression and upregulates SLC2A1 to alleviate chondrocyte ferroptosis 
and inflammation. (D) SCFAs, IGF-1, serotonin and other microbial metabolites influence the balance between osteoblast and osteoclast activities, 
thereby ameliorating abnormal bone remodeling in OA. 
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from gut microbiota (Kim, 2021; Liu et al., 2024). A study focusing on 
knee osteoarthritis demonstrated that administration of live 
Lactobacillus (strain LA-1) promoted the production of SCFAs such 
as butyrate, enhanced cartilage autophagy, and reduced necroptosis and 
synovial inflammation (Cho et al., 2022). Another study similarly 
confirmed that supplementation with Lactobacillus rhamnosus or 
butyrate ameliorated joint destruction and inflammation, highlighting 
the significant role of SCFAs in suppressing inflammatory pathways in 
chondrocytes and regulating cellular autophagy and apoptosis (Jhun 
et al., 2021). From a broader perspective on microbial-nutritional 
interactions, research has shown that strains such as Bacteroides 
salyersiae efficiently degrade chondroitin sulfate, releasing substantial 
amounts of SCFAs and chondroitin sulfate oligosaccharides (Wang 
et al., 2024). These metabolites not only support the growth 
requirements of commensal bacteria but may also provide novel anti
inflammatory or reparative factors beneficial to the host. Collectively, 
SCFAs mediate immune homeostasis through G protein-coupled 
receptors (GPCR) or epigenetic dependent modulation of regulatory 
T cells (Tregs) and M2 macrophages, suggesting that microbiota serve 
as a critical bridge linking immune regulation to joint homeostasis 
(Figure 3B) (Mann et al., 2024). 
4.3 Other microbial metabolites 

In addition to LPS and SCFAs, tryptophan and its derivatives 
also constitute crucial chemical mediators through which gut 
microbiota influence OA (Zhuang et al., 2023). Although specific 
regulatory pathways involving metabolites such as indoleacetic acid 
and kynurenine require further experimental verification, 
numerous cohort studies and preclinical experiments have widely 
indicated that disturbances in the tryptophan-indole pathway may 
initiate or exacerbate joint inflammation, pain, and matrix 
degradation (Binvignat et al., 2023; Wei et al., 2023a). Given the 
complexity and multiple dimensions of tryptophan metabolism, in
depth investigations into the upstream and downstream roles of gut 
microbiota in this metabolic pathway could potentially uncover 
novel molecular targets for OA therapy. Additionally, recent studies 
have reported a microbiota-mediated regulatory mechanism 
involving ferroptosis inhibition. The gut-derived metabolite 
capsiate suppresses HIF-1a expression and upregulates SLC2A1, 
thereby reducing chondrocyte apoptosis and inflammation induced 
by iron homeostasis imbalance (Figure 3C) (Guan et al., 2023). 
4.4 Bone remodeling and subchondral 
bone change 

Numerous recent studies have demonstrated that gut 
microbiota may be associated with processes, thereby affecting 
osteoarthritic bone phenotypes (Lu et al., 2021; Contino et al., 
2022; Yang et al., 2024). One study revealed that germ-free mice 
subjected to non-invasive anterior cruciate ligament rupture, a 
model for PTOA, showed significantly reduced trabecular bone 
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loss, suggesting that exogenous microbiota might serve as a catalyst 
linking acute inflammation with subsequent bone resorption (Hahn 
et al., 2021). Another study further employed microbiota 
transplantation experiments between “super-healer” MRL mice 
and OA susceptible mice, demonstrating that the microbiota from 
MRL mice protected recipient mice from severe cartilage 
degeneration and induced beneficial shifts in host immune 
phenotypes (Prinz et al., 2024). Collectively, these findings 
highlight the potential role of gut microbiota in maintaining 
osteoarticular integrity via immune and metabolic pathways. 
Recent studies have begun to elucidate the molecular mechanisms 
involved. In addition to immune modulation through microbial 
components such as LPS and SCFAs, gut microbiota also influences 
bone remodeling via endocrine signaling. Colonization with a 
healthy gut microbiota promotes the production of SCFAs, which 
in turn stimulate insulin-like growth factor-1 (IGF-1) synthesis in 
the liver and adipose tissue, may play a role in enhancing bone 
formation (Figure 3D) (Yan et al., 2018). Conversely, gut dysbiosis 
reduces SCFA availability, leading to lower IGF-1 levels and 
impaired skeletal development. SCFAs can also increase 
peripheral serotonin levels, which are thought to influence the 
differentiation and function of osteoblasts and osteoclasts. 
Disruption of this SCFA–IGF-1/serotonin axis has been 
implicated in bone abnormalities commonly observed in 
osteoarthritis. Incorporating this “microbiota–bone remodeling” 
relationship into the broader OA framework may help explain 
why microbial dysbiosis frequently coincides with osteophyte 
formation and subchondral bone sclerosis, thereby providing 
novel opportunities for the future development of microbiota

targeted interventions aimed at protecting osteoarticular 
structures (Zhu et al., 2024; Xi et al., 2025). 

The mechanisms by which gut microbiota influence OA can be 
broadly summarized into four key aspects. First, transmembrane 
absorption of LPS induced by obesity and metabolic syndrome 
significantly exacerbates joint inflammatory responses (Guido et al., 
2021); second, SCFAs function as critical immunomodulators, 
playing a central role in maintaining chondrocyte homeostasis and 
promoting autophagy (Kim, 2023); third, the tryptophan-indole and 
other microbial metabolites deeply participate in ferroptosis, 
oxidative stress, and chondrocyte metabolism (Yadav et al., 2024); 
Fourth, microorganisms have the ability to remotely regulate bone 
remodeling and subchondral bone changes, which can both enhance 
and protect joint structure (Zheng et al., 2024). Multiple studies have 
further validated, through obesity contexts and GWAS analyses, that 
specific microbial taxa may be associated with variation in 
inflammation and disease progression in OA. Approaches such as 
microbiota transplantation, probiotic administration, and microbial

derived metabolite supplementation have collectively provided novel 
perspectives for mechanistic research on OA, laying a solid 
foundation for future microbiota-targeted interventions in both 
clinical and animal studies (Schott et al., 2018; Yu et al., 2021). 
With the growing understanding of these mechanistic pathways, 
several therapeutic approaches targeting the gut microbiota have been 
proposed, including TCM. 
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5 Multi-target advantages and clinical 
potential of TCM 

5.1 Monomeric extracts: quercetin and 
pterostilbene 

Among monomeric extracts derived from TCM, quercetin and 
pterostilbene have attracted widespread attention due to their 
antioxidative and anti-inflammatory properties. In a study utilizing 
monosodium iodoacetate (MIA)-induced osteoarthritic rats, gavage 
for quercetin for 28 days significantly improved cartilage degradation 
and inflammatory markers, accompanied by beneficial changes in gut 
microbiota composition and associated metabolites such as SCFAs 
(Lan et al., 2021). These findings suggest that quercetin not only 
exerts direct anti-inflammatory and chondroprotective effects but 
also may help modulate disturbances in gut microbiota and 
associated metabolic pathways. Another study, conducted in mouse 
and in vitro models, confirmed that pterostilbene inhibited the 
activation of the NLRP3 inflammasome and NF-kB signaling

pathways, thereby reducing chondrocyte apoptosis and joint 
damage. Importantly, pterostilbene was associated with a reduced 
abundance of inflammation-associated microbiota (Lee et al., 2024). 
These results indicate that monomeric extracts of TCM may exhibit 
dual therapeutic effects through integrated inflammatory control and 
microbial regulation in both joint and gut environments. 
5.2 Regulation of microbiota and metabolic 
networks by TCM formulas 

Regarding compound formulas, the multi-component nature 
typically imparts broader modulatory effects on both host and 
microbiota (Lin et al., 2021; Huang et al., 2022; Fan et al., 2023; 
Gou et al., 2023; Li et al., 2023; Jiang et al., 2024). One such example is 
Guizhi Shaoyao Zhimu Decoction (GSZD), a classical TCM formula 
from the Synopsis of Golden Chamber traditionally used to treat gout 
and rheumatoid arthritis, which comprises nine herbs including 
Cinnamomum cassia (Guizhi), Paeonia lactiflora (Shaoyao), and 
Anemarrhena asphodeloides (Zhimu). A study focusing on the 
effects of GSZD in a gouty arthritis model demonstrated that 
treatment markedly reduced joint swelling, bone erosion, and 
serum levels of uric acid and LPS (Bian et al., 2024). Concurrently, 
the abundances of beneficial gut bacteria, such as Lactobacillus and 
Ruminococcaceae, were increased, while pro-inflammatory bacteria 
including Blautia were reduced, thus suggesting a potential 
therapeutic pattern of “microbial correction combined with 
inflammation alleviation”. Similarly, Zushima tablet, commonly 
used in rheumatoid and osteoarthritis diseases also presents similar 
characteristics in rats with collagen-induced arthritis: it can not only 
improve joint pathology, but also may be involved in modulating 
host and bacterial metabolic pathways (Shan et al., 2018). Another 
study reported that Xiong Fu Powder reduced osteoclast 
accumulation and joint inflammation by restoring intestinal 
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mucosal immunity and Treg/Th17 balance under conditions of 
spleen deficiency (Xi et al., 2022). Furthermore, Ershiwuwei Lvxue 
Pill was found to downregulate MMP expression and inhibit 
RANKL and NF-kB signaling pathways, while simultaneously 
optimizing the abundance of probiotic genera such as Lactobacillus 
and reducing arachidonic acid levels in the gut (Li et al., 2022). These 
findings illustrate that TCM formulas, through integrative effects of 
multiple active components, exert comprehensive therapeutic actions 
on arthritis via modulation of gut microbiota, inflammatory 
pathways, and energy metabolism (Xu et al., 2021; Zuo et al., 2023; 
Luo et al., 2024). 
5.3 Moxibustion and electroacupuncture 

In addition to oral administration of TCM, external treatments 
such as moxibustion also hold an essential position in traditional 
Chinese medical practice. One study applied moxibustion therapy 
to mice with ACLT-induced osteoarthritis by stimulating specific 
acupoints (Shenshu and Zusanli) continuously for 28 days, and 
results showed significant protective effects on cartilage and 
subchondral bone (Fu et al., 2023). Through 16S sequencing and 
untargeted metabolomics analysis, the intervention was confirmed 
to restore both gut microbiota composition and systemic 
inflammatory markers toward healthy levels. This beneficial effect 
may be mediated by modulation of critical pathways, such as the 
cAMP signaling pathway, providing novel insights into how 
localized stimulation can exert systemic effects through the gut– 
joint axis. Similarly, another study demonstrated that different 
courses of moxibustion treatment significantly alleviated cartilage 
damage and inflammation in a KOA rat model by reshaping gut 
microbiota balance, specifically by increasing beneficial bacterial 
populations and reducing pathogenic species, suggesting an 
association between microbiota modulation and improved OA 
symptoms (Jia et al., 2022). Similarly, electroacupuncture was 
found to regulate gut microbiota, mitigate inflammation, alleviate 
pain, and improve functional in KOA patients, thus opening a novel 
perspective for KOA interventions via the microbiota– 
inflammation axis (Wang et al., 2021). 

TCM demonstrates potential multi-pathway advantages in 
modulating microbiota-host interactions. From monomeric 
extracts and herbal formulas to external treatments such as 
moxibustion, TCM can bridge immune-inflammation responses, 
gut microbial composition, and metabolic homeostasis (Table 2) 
(Hu et al., 2021; Wei et al., 2024). Compared with single-target 
Western medical approaches, TCM typically offers a holistic 
perspective with relative safety; however, rigorous, large-scale 
randomized controlled trials remain necessary to robustly 
evaluate clinical efficacy and potential side effects, as well as 
clarify specific molecular mechanisms through modern omics 
methodologies. Despite increasing use of omics-based approaches 
in this field, the current body of research remains largely correlative, 
lacking robust causal validation and mechanistic clarity. In 
 frontiersin.org 

https://doi.org/10.3389/fcimb.2025.1605860
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fcimb.2025.1605860 
addition, many studies suffer from methodological constraints, such 
as limited sample sizes, absence of longitudinal design, and 
inconsistent application of randomization and blinding 
procedures. These issues collectively hinder reproducibility and 
limit the generalizability of findings across populations and 
settings. Addressing these challenges will be essential to 
advancing  TCM-based  interventions  beyond  empirical  
observation toward evidence-based clinical application. 

Overall, Integration of TCM with probiotics, exercise, or other 
microbiota-targeted interventions may lead to a more comprehensive 
and personalized strategy for the prevention and treatment of OA 
and related joint inflammation. Beyond TCM, emerging 
interventions including probiotics, biomaterials, and dietary 
modulation have also demonstrated promising effects on the 
gut–joint axis. 
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6 Diversified microbial interventions: 
probiotics, innovative biomaterials, 
and nutritional regulation 

6.1 Probiotics, prebiotics, and postbiotics 

In OA prevention and treatment, a growing number of studies 
have focused on regulating gut microbiota to achieve anti
inflammatory effects and joint protection (Dunn and Jeffries, 2022; 
Liang et al., 2023; Gilat et al., 2025). One study demonstrated that 
administration of crude mulberry polysaccharides significantly 
ameliorated inflammation, cartilage degradation, and bone loss in a 
rat model of knee OA, while concurrently restoring a healthier gut 
microbiota composition (Zheng et al., 2024). When gut microbiota 
TABLE 2 Summary of studies on Traditional Chinese Medicine/natural product interventions in arthritis and gut microbiota regulation. 

Treatment Duration Model Subject Mechanism Result Reference 

Reshaping the gut 
microbiota 

Quercetin 
100 mg/kg 

8 weeks Monoiodoacetate OA rat 

Altering gut microbiota 
metabolic products 
Modulating host 

metabolomics through the 
regulation of the 
gut microbiome 

Increase the proportion of lactobacilli 
and elevate SCFAs levels 

Significant related changes are observed 
in host metabolomics 

(Lan 
et al., 2021) 

Inhibition of the NLRP3 

Pterostilbene 
100 or 200 mg/kg 

4 weeks 
octacalcium phosphate 

induced OA 
mice (n 
= 3)  

inflammasome and 
reduction of IL-1b and IL-6, 

suppressing NF-kB 

Alleviate cartilage damage and 
inflammation levels 

Increase the proportion of Bacteroidetes 
(Lee 

et al., 2024) 
Alteration of the gut and Firmicutes 

microbiota composition 

Downregulation of TNF-a 
and IL-1b expression Serum uric acid and LPS levels 

Guizhi Shaoyao 
Zhimu Decoction 
3.2, 1.6, 0.8 g/kg/d 

3 weeks 

Hyperuricemic diet 
combined with locally 

injected gouty 
arthritis induction 

rat (n = 6) 

Inhibition of the TLR4 
Inflammatory pathway 
improvement of purine 

metabolism 

decreased 
Joint swelling and bone erosion were 

reduced 
The abundance of 

(Bian 
et al., 2024) 

Modulation of gut Lactobacillus increased 
microbiota abundance 

Regulation of immunity Improve cartilage and subchondral bone 

Moxibustion 
20min/d 

4 weeks ACLT OA 
C57BL/6 
mice (n 
= 6)  

through the cAMP signaling 
pathway 

Restoration of the 

structure 
Reduce systemic inflammation 

Validate the effect of external stimuli on 

(Fu 
et al., 2023) 

proportion of gut probiotics the "gut-joint axis 

Moxibustion 
2 weeks, 4 
weeks, 
6 weeks 

Monoiodoacetate OA 
rat (n = 
5, 6) 

Regulate inflammatory 
factors 

Modulate gut 
microbiota abundance 

Cartilage damage was significantly 
improved 

The abundance increased significantly 
after moxibustion 

Moxibustion only exerts a noticeable 
protective effect on knee joint cartilage 

when a certain cumulative dose 

(Jia 
et al., 2022) 

is reached 

Electroacupuncture 8 weeks – 

KOA 
population 

and 
healthy 

controls (n 
= 30) 

Modulate the composition 
of the gut microbiota. 

Electroacupuncture can also reverse 
bacteria associated with KOA, such as 

Clostridium, Bacteroides, Agaricomycetes, 
and Streptococcus 

OA pain was alleviated 

(Wang 
et al., 2021) 
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depletion or transplantation was performed in these rats, the 
protective effects of mulberry polysaccharides were correspondingly 
weakened or transferred, suggesting an association among 
polysaccharides, microbiota, and joint pathology. Conversely, 
another study showed that antibiotic-induced gut microbiota 
disruption in mice unexpectedly reduced knee inflammation and 
cartilage degradation to a certain extent, suggesting that extreme 
microbiota reshaping could occasionally confer experimental benefits 
(Guan et al., 2020). However, this observation also highlights 
concerns about safety and controllability, indicating that large-scale 
microbial disturbances might produce complex and unpredictable 
consequences. Thus, gentler regulatory methods such as probiotics, 
prebiotics, or postbiotics may provide greater clinical feasibility (Ji 
et al., 2023; Billington et al., 2023). 
6.2 Low molecular weight chondroitin 
sulfate and collagen 

Certain nutritional supplements have also gained attention in 
relation to OA and gut microbiota regulation (Ross et al., 202; 
Bhardwaj et al., 2021; Liu et al., 2023; Laurindo et al., 2024). Studies 
indicate that low-molecular-weight chondroitin sulfate extracted 
from sturgeon cartilage exhibits superior efficacy in OA treatment 
compared to conventional high-molecular-weight forms, 
manifesting in stronger anti-inflammatory effects and greater 
inhibition of joint cell apoptosis. Critically, these beneficial effects 
are directly associated with its ability to modulate gut microbiota 
composition, including increasing the abundance of beneficial 
bacteria such as Akkermansia and Prevotellaceae_NK3B31_group, 
and concurrently elevating short-chain fatty acid levels such as 
butyrate, thereby reducing inflammatory factors and matrix 
degradation associated with OA progression (Jing et al., 2025). In 
addition, studies have investigated the fermentative potential of 
collagen hydrolysates in the colon (Larder et al., 2021). Findings 
indicate that certain collagen supplements retain peptide structures 
accessible to gut microbiota following simulated gastrointestinal 
digestion in vitro, and are subsequently metabolized by intestinal 
microorganisms into short-chain fatty acids, branched-chain fatty 
acids, and other metabolites with prebiotic properties beneficial to 
host metabolism. By optimizing molecular weight and amino acid 
composition, both chondroitin sulfate and collagen peptides can 
directly support joint matrix homeostasis and simultaneously 
maintain or stimulate probiotic activity in the gut environment, 
thus presenting new opportunities for future interventions that 
integrate nutritional supplementation with microbiota regulation in 
OA management (Gentile and Weir, 2018; Yu et al., 2024). 
6.3 Innovative biomaterial and 
conventional pharmaceutical 

In addition to probiotics, prebiotics, and nutritional 
supplements, innovative biomaterials and conventional 
pharmaceuticals also exhibit potential in gut microbiota 
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modulation (Lindell et al., 2022). Using GNPs in an ACLT
induced mouse model, researchers observed a significant 
attenuation of articular cartilage degeneration, an effect closely 
associated with modulation of the gut microbiota (Deng et al., 
2024). Specifically, GNP treatment increased the abundance of 
beneficial bacterial taxa such as Akkermansia and Lactobacillus, 
enhanced the production of SCFAs including butyrate, and elevated 
levels of anti-inflammatory cytokines such as IL-10, collectively 
indicating a potential interaction mechanism involving the 
“nanoparticle–microbiota–joint” axis. Another study revealed that 
the conventional antihypertensive drug captopril not only reduced 
blood pressure in DOCA salt hypertensive rats but also decreased 
the abundance of pro-inflammatory gut bacteria, such as 
Escherichia-Shigella, consequently alleviating chondrocyte 
senescence and bone destruction (Chan et al., 2022). These 
findings suggest that contemporary or existing pharmaceuticals 
may also exert unexpected regulatory effects within the 
microbiota–joint axis. With appropriate therapeutic design and 
application, such strategies could synergistically enhance joint 
function (Garcia-Santamarina et al., 2024). 

Whether using biological preparations such as prebiotics or 
probiotics, or employing low-molecular-weight chondroitin sulfate, 
collagen supplements, nanomaterials, or pharmaceutical 
combinations, these approaches collectively offer practical 
strategies for alleviating OA-associated inflammation, bone 
destruction, and pain through modulation of the gut microbiota. 
However, certain studies indicate that antibiotic-induced extreme 
dysbiosis can also temporarily relieve OA symptoms, suggesting 
that microbiota-targeted interventions might yield diverse 
experimental outcomes (Guan et al., 2020). Therefore, when 
translating these interventions into clinical practice, greater 
attention should be devoted to their safety and controllability. 

Restoring or optimizing gut microbial homeostasis may help 
alleviate systemic inflammation and protect joint structures (Peng 
et al., 2021; Liu et al., 2023). Integrating probiotics or prebiotics, 
nanomaterials, and pharmaceuticals with individualized lifestyle 
interventions may establish a more comprehensive framework for 
OA management (Nicholson et al., 2012; Cheung et al., 2023). 
From supplementation with chondroitin sulfate and collagen 
peptides to the combined application of pharmaceuticals such as 
captopril, individually tailored strategies may yield improved 
therapeutic outcomes aligned with specific patient needs (Sun 
et al., 2023). With the deepening of subsequent trials and clinical 
studies, “diversified microbial intervention” may further enrich 
the frontier map of OA precision treatment. However, at the 
mechanistic level, although the association between SCFAs and 
macrophage polarization has been demonstrated, the specific 
molecular pathways and regulatory networks involving key 
bacterial strains remain poorly defined. In addition, the use of 
antibiotic treatment in experimental models does not fully 
replicate sterile conditions, which may compromise the 
reliability and interpretability of the results. In the context of 
translational medicine, important gaps persist, including a lack of 
well-designed dose–response studies and long-term safety 
assessments. Furthermore, the extrapolation of findings from 
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TABLE 3 Animal studies on the regulation of gut microbiota in osteoarthritis. 

Intervention Model Duration Subject Mechanism Results/Conclusion Reference 

cecal microbiota 
suspension of 
SPF mice 

Aseptic model 
DMM OA model 

4h, 24h, 
48h, 1 
weeks, 2 
weeks, 
4 weeks 

GF mice (n = 6) 
C57BL/6J mice (n 

= 6)  

Regulate the gut microbiota 
Modulate 

intestinal permeability 

The microbial DNA in cartilage 
originates from the gut microbiota 

Serum LPS levels are elevated 
The proportion of Actinobacteria, 

Staphylococcus, and other 
bacteria increases 

(Izda 
et al., 2023) 

Fecal 
microbiota 

transplantation 

Meniscal 
ligamentous 
injury OA 

10 weeks GF C57BL/6J mice 

Affect systemic 
inflammation 

Impact gut microbiota 
abundance 

Increase intestinal 
wall permeability 

Cartilage and synovial damage are 
aggravated 

The average systemic concentration of 
inflammatory biomarkers increases 

The abundance of 
Ruminococcus decreases 

(Huang 
et al., 2020) 

Microbiota 
transplantation 

DMM OA 8 weeks 
C57BL6/J mice (n 

= 9,  7)  

Regulate systemic 
inflammatory factors 

Modulate gut 
microbiota composition 

Osteophyte formation is reduced 
The proportion of protective bacteria 

such as Lactobacillus increases 
The microbiota may be a key mediator 

in the hormonal regulation of OA 

(Schlupp 
et al., 2023) 

Probiotics 
/ Postbiotics 

Sodium 
iodoacetate 
injection OA 

24 days Rat (n = 6) 

Modulate gut microbiota 
metabolites Inhibit 

pathways such as NF-kB 
and NLRP3 

Increase the expression 
of Foxp3 

SCFAs production increases 
Joint damage and pain are alleviated 
Immune homeostasis is restored 

(Cho 
et al., 2022) 

Indole-3
propionic acid 

ACLT OA 8 weeks rat (n = 5) 

Downregulate the 
expression of TNF-a and 

IL-1b 
Enhance chondrocyte 

activity 
Inhibit through the aryl 
hydrocarbon receptor/ 

NF-kB 

Cartilage degradation and synovial 
inflammation are reduced 

The expression of proteoglycans and 
type II collagen is significantly increased 

(Zhuang 
et al., 2023) 

Capsaicin, a 
metabolic 

product of the 
gut microbiota 

DMM OA 8 weeks mice (n = 9) 
Capsaicin inhibits the 

expression of HIF-1a by 
activating SLC2A1 

Ferroptosis slows the 
osteoarthritis progression 

(Guan 
et al., 2023) 

SCFA 
Osteoclast

mediated arthritis 
8 weeks 

R26STAT3Cstopfl/ 
flC mice 

Inhibition of IFN in bone 
marrow progenitor cells 

affects 
osteoclast differentiation 

The positive regulator of 
osteoclastogenesis, Car2, is 

downregulated 
Bone erosion ceases 

(Yang 
et al., 2024) 

Aseptic 
conditions 

ACLT OA 1 week 
GF mice (n = 8, 5) 
C57BL/6 mice (n 

= 10, 9) 

Downregulate arachidonic 
acid metabolism, TCA 

cycle, arginine and proline 
metabolism, as well as 
pyruvate metabolism 

The trabecular bone loss in GF mice is 
significantly lower 

The gut microbiota may promote the 
development of post-traumatic 

osteoarthritis (PTOA) during the acute 
phase by regulating the innate 

immune system 

(Hahn 
et al., 2021) 

Microbiota 
transplantation 

DMM OA 8 weeks 

C57BL6/J mice (n 
= 12) 

MRL/MpJ mice (n 
= 10, 6) 

Modulate intestinal 
permeability 

Alter microbiota 
characteristics 
CD25+CD4+ T 
cells decrease 

The gut microbiome is partly 
responsible for the OA protection in 

MRL mice 
This protection can be transferred 
through microbiota transplantation 
Transplantation induces systemic 

immune phenotype changes, which are 
associated with OA protection 

(Prinz 
et al., 2024) 

Oral 
Propolis 

Nanoemulsions 

Ovariectomy
induced bone loss 

8 weeks mice (n = 5) 

PNEs promote GM 
metabolite L-arginine to 

inhibit osteoclast formation 
and function 

Bone resorption is significantly 
inhibited, while bone formation markers 

remain unchanged 
The trabecular structure is dense 

(Zheng 
et al., 2024) 

(Continued) 
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TABLE 3 Continued 

Intervention Model Duration Subject Mechanism Results/Conclusion Reference 

Oligofructose DMM OA 12 weeks mice (n = 6-8) 

Modulate gut microbiota 
abundance 

Regulate serum 
inflammatory factors 

The gut microbiota of obese mice is 
restored to a state similar to that of lean 

mice 
Cartilage damage and cartilage 
hypertrophy are alleviated 

(Schott 
et al., 2018) 

Crude 
mulberry 

polysaccharide 

Sodium 
iodoacetate 
injection OA 

4 weeks SD rat (n = 9) 

Regulate chondroitin 
sulfate 

Inhibit MMP-13 
Modulate gut microbiota 

abundance 
Regulate bacterial activity 

through 
bacterial fermentation 

Trabecular thickness, bone density, and 
bone volume fraction are improved 
a-diversity and b-diversity of the gut 

microbiota are increased 
Crude mulberry polysaccharides inhibit 
the progression of KOA by modulating 
gut microbiota composition, and their 
efficacy strictly depends on the presence 

of the microbiota 

(Zheng 
et al., 2024) 

Ampicillin (1.0 g) 
or 

Neomycin (0.5 g) 
DMM OA 8 weeks 

C57BL/6J mice (n 
= 9)  

Reduce the expression of 
MMP-13 

Lower serum calcium and 
increase serum magnesium 
Alter the composition of 

the gut microbiota 

Trabecular thickness increases 
The levels of Firmicutes and 

Bacteroidetes are significantly lower in 
male mice compared to female mice 

(Guan 
et al., 2020) 

Milk-derived 
extracellular 
vesicles 

DMM OA 10 weeks 
C57BL/6J mice (n 

= 3,  5)  
Modulate gut 

microbiota abundance 

Cartilage damage is significantly 
alleviated 

The DMM-induced reduction of 
COL2A1 is largely reversed 

The abundance of Gram-negative 
bacilli decreases 

(Liu 
et al., 2023) 

low molecular 
Increase beneficial bacteria 
such as Akkermansia and Superior to the macromolecule CS 

weight Monoiodoacetate 
8 weeks 

C57BL/6 mice (n 
Prevotellaceae It significantly improves both the joint 

(Jing 
chondroitin OA = 10) 

Enhance matrix and gut microbiota 
et al., 2025) 

sulfate 
butyrate production 

Slow down cartilage degeneration 
Gold C57BL/6J mice (n 

Regulate the gut microbiota 
Upregulation of Akkermansia and (Deng 

nanoparticles 
ACLT OA 8 weeks 

= 5, 7, 10) 
Enhance anti

inflammatory factors 
Lactobacillus produces a synergistic 

anti-inflammatory effect 
et al., 2024) 

Captopril 
DOCA-salt 
induced 

hypertension 
2 weeks Rat (n = 8) 

Inhibit the pro
inflammatory bacteria 
Escherichia-Shigella 

Reduce the accumulation 
of senescent cells in 
synovial joint tissues 

Lower the expression of 
MMP-13 

Joint cartilage degeneration in 
hypertensive rats is improved, and 
DOCA-induced subchondral cell 

senescence is reversed 
Conventional antihypertensive drugs 
may protect cartilage through the 

gut microbiota 

(Chan 
et al., 2022) 
F
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TABLE 4 Human studies on the regulation of gut microbiota in osteoarthritis. 

Research Sample 
size 

Detection 
method 

Finding Conclusion Reference 

Identification of cartilage 
microbiome DNA 

characteristics and their 
correlation with knee and 

hip osteoarthritis 

95 
16s rRNA gene 
deep sequencing 

Revealed microbial DNA markers in 
human cartilage 

This characteristic changes during the 
development and progression of human 
OA, including an increase in Gram

negative components 

(Dunn 
et al., 2020) 

Changes in gut microbiota 
and metabolite profiles in 
patients with endemic 

osteoarthritis and Kashin-
Beck disease in China 

67 

16S rDNA gene 
and metabolomic 
sequencing liquid 
chromatography
mass spectrometry 

(LC/MS). 

In subjects with Kashin-Beck disease, 
the differential abundance of gut 

microbiota primarily belongs to the 
Prevotella genus 

Serum metabolomics analysis reveals 
that differential metabolites in grade I 

These differences in metabolite levels are 
associated with changes in the abundance 

of specific species 
These differences in metabolite levels are 
associated with changes in the abundance 

of specific species 

(Wang 
et al., 2021) 

(Continued) 
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animal models to clinical practice remains uncertain and requires 
further validation. These limitations underscore the need for more 
rigorous and mechanistically grounded investigations before 
microbiota-targeted strategies can be reliably implemented in 
OA management. 

Collectively, these findings reinforce the therapeutic potential of 
targeting the gut microbiota in OA. Accordingly, the final section 
discusses overarching perspectives and future research directions. 
7 Conclusion and perspective 

With increasing life expectancy, age related conditions and 
diseases have become widespread and pose a significant social 
burden (Giovarelli et al., 2025). Osteoarthritis, a disease whose 
prevalence increases with age, is also receiving increasing attention 
(Steinmetz et al. 2023). In recent years, extensive evidence has 
confirmed the critical role of gut microbiota in the onset, 
progression, and symptomatic manifestations of OA (Ramasamy 
et al., 2021). Evidence ranging from epidemiological investigations 
to multi-omics analyses consistently indicates that microbial 
dysbiosis is closely associated with systemic inflammation and 
nutritional metabolic disturbances (Han et al., 2021; Bauermeister 
et al., 2022; Tansey et al., 2022; Takeuchi et al., 2023). These include 
endotoxin-induced low-grade inflammation, immune homeostasis 
mediated by short-chain fatty acids, and the effects of other 
microbial metabolites on chondrocyte ferroptosis (van Eeden 
et al., 2021; Bell et al., 2022; Zhao et al., 2022; Violi et al., 2023; 
Krause et al., 2024; Zhang et al., 2025). Additionally, gut microbiota 
can exert remote regulatory effects on bone remodeling, thereby 
either exacerbating or alleviating the pathological progression of 
OA (Ding et al., 2022; Wu et al., 2022; Aurora and Silva, 2023; 
Lyu et al., 2024). 
Frontiers in Cellular and Infection Microbiology 14 
The application of probiotics and prebiotics, the introduction of 
novel functional materials such as low-molecular-weight chondroitin 
sulfate and collagen peptides, integration of traditional therapies 
including Chinese traditional medicine and moxibustion, and 
microbiota-targeted interventions involving nanomaterials or 
conventional pharmaceuticals, have collectively demonstrated 
potential value for joint protection and inflammation alleviation. 
These approaches hold promise for establishing an integrated 
therapeutic model of “joint repair coupled with microbiota 
modulation”. However, most existing studies remain at the stage of 
animal experiments or small-scale clinical trials, while large-sample 
prospective randomized controlled trials are relatively limited. In real
world clinical practice, issues such as individual variability, the dynamic 
equilibrium of gut microbiota ecology, and long-term safety of 
interventions still require comprehensive investigation (Tables 3, 4). 

In conclusion, gut microbiota research has expanded novel 
frontiers in the etiological understanding and therapeutic strategies 
for OA. Through continued advancement in comprehending 
microbiota-immune-metabolic interactions and actively integrating 
multidisciplinary approaches and advanced technological 
methodologies, significant breakthroughs are anticipated in the 
precise prevention and personalized treatment of OA, ultimately 
enhancing patient quality of life and overall health outcomes. 
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TABLE 4 Continued 

Research 
Sample 
size 

Detection 
method Finding Conclusion Reference 

and II Kashin-Beck disease participate 
in lipid metabolism networks, 

including unsaturated fatty acids 
and glycerophospholipids 

Fecal metabolomics Untargeted fecal 
reveals the products of metabolomics 

Adults with obesity and knee and 

protein hydrolysis 
dysregulation and 92 

analysis 
16S ribosomal 

hand OA have distinct fecal 
metabolomes, characterized by 

increased protein hydrolysis products, 

Metabolic dysregulation suggests a 
potential role of protein hydrolysis 

(Rushing 
et al., 2021)

microbial metabolic RNA 
leukotriene metabolism dysregulation, 

dysregulation in OA 
changes in obesity amplicon 

and changes in microbial metabolites 
related osteoarthritis sequencing 

Diet influences knee 
osteoarthritis through gut 

microbiota and 
serum metabolites 

200 

16S rDNA 
sequencing 
Untargeted 

metabolomics 
study 

The abundance of Blautia is enriched 
in the osteophyte group of KOA 

Serum metabolites LTB4 and PGD2 
are expressed at higher levels in the 

KOA osteophyte group 

KOA patients in Inner Mongolia, due to 
their preference for cheese, exhibit lower 
abundance of Blautia in the gut and 

reduced expression levels of five related 
serum metabolites, which may lead to a 

decrease in osteophyte formation 

(Zhu 
et al., 2024) 
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