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LILRA5+ macrophages drive
early oxidative stress surge
in sepsis: a single-cell
transcriptomic landscape
with therapeutic implications
Peng Xu1†, Haoze Li2†, Zuo Tao1†, Zixuan Zhang1,
Xiaohuan Wang1* and Cheng Zhang1*

1Department of General Surgery, General Hospital of Northern Theater Command, Shenyang,
Liaoning, China, 2Department of General Surgery, Beijing Haidian Hospital, Beijing, China
Background: In sepsis, oxidative stress (OS) triggers essential adaptive responses

and emerging OS-related biomarkers show potential for enhancing sepsis

diagnosis and therapy.

Methodology: In this study, we used single-cell datasets and the OS gene set to

identify immune cell types with the highest oxidative activity across different

sepsis states. Differential expression genes (DEG) between “high state” cells and

“low state” cells were screened. High-dimensional weighted gene co-expression

network analysis (hdWGCNA), combined with multiple machine learning

methods, was used for the selection of hub genes. Expressions of hub genes

were then validated. Cell–cell communication and transcription factor analysis

were performed later. Real-time quantitative reverse transcription (qRT-PCR)

andWestern blotting validated expression of LILRA5 in both the cecal ligation and

puncture (CLP) model and the lipopolysaccharide-induced sepsis model.

Reactive oxygen species (ROS) levels were also detected in THP-1 cells after

silencing LILRA5.

Results: In the early stages of sepsis, oxidative activity reaches its peak, with

macrophages displaying the highest OS among all cell types. Through the

application of the “Quartile method”, all cells were clustered into three states

based on OS activity (low, medium, and high). LILRA5, MGST1, PLBD1, and

S100A9 were selected as hub genes and significantly upregulated in sepsis.

LILRA5 was predominantly expressed in macrophages and was highly expressed

in the early stage of macrophage. Specifically, LILRA5+ macrophages exhibit the

strongest OS. LILRA5 showed a higher expression in both mouse sepsis models

and the THP-1 cell after lipopolysaccharide stimulation. Silencing LILRA5 resulted

in a significant reduction of ROS in THP-1 cells.
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Conclusion: In conclusion, our study has mapped the landscape of OS dynamics

in sepsis and found that LILRA5+ macrophages in the early stage of sepsis exhibit

the highest OS. LILRA5 emerges as a promising gene for modulating

macrophage-mediated OS in sepsis.
KEYWORDS

oxidative stress, sepsis, LILRA5, macrophage, single-cell
Introduction

Sepsis is a life-threatening clinical syndrome characterized by

organ dysfunction resulting from a dysregulated host response to

infection. As a leading cause of critical illness worldwide, it carries

substantial mortality and poses significant therapeutic challenges

due to its complex pathophysiology (Liu et al., 2022; Vincent,

2022). Sepsis-induced immunosuppression significantly

contributes to adverse outcomes. The progression of sepsis can

be categorized into three stages: severe sepsis, septic shock, and

multiple organ dysfunction, reflecting the increasing severity and

complexity of the condition (Delano and Ward, 2016). Key

pathophysiological processes in these stages include oxidative

stress (OS), endothelial and mitochondrial dysfunction, and

angiogenesis-related factors (Vera et al., 2015; Joffre and

Hellman, 2021). OS reflects an imbalance between antioxidant

defense mechanisms and free radical production (Neri et al.,

2016). In sepsis, OS promotes adaptive responses to bacterial

clearance, endothelial repair, and hypoxia. These responses are

crucial for the body’s defense mechanisms and tissue homeostasis

during infection (Joffre and Hellman, 2021). Therefore, new

biomarker categories of OS are drawing attention for the

diagnosis and treatment of sepsis.

Single-cell RNA sequencing (scRNA-seq) is highly effective in

discerning cell types, states, and lineages (Wang et al., 2022). This

powerful technique allows for a deeper understanding of cellular

heterogeneity and the intricate dynamics within complex

biological systems (Baysoy et al., 2023). Machine learning

algorithms, employing both supervised and unsupervised
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techniques, have demonstrated significant potential for

analyzing the underlying relationships within high-dimensional

data (Zhang et al., 2023). This approach allows researchers to

uncover key genetic factors that may be pivotal in understanding

complex biological processes and diseases. In our study, we

applied scRNA transcriptome, bulk RNA analysis, and multiple

machine learning algorithm to better understand the dynamic

changes of OS in sepsis.

In our study, we firstly emphasized the dynamic changes of OS

in sepsis. Compared with other cells, macrophages, neutrophils,

and dendritic cells (DCs) are three cell types with the most OS in

sepsis. Moreover, we also revealed the spatial and temporal

heterogeneity on OS in sepsis. OS is more active in the early

stage of sepsis. In sepsis, OS proved to be crucial in the initial

stage. Next, we also identified multiple cell clusters with different

OS activities based on a new classified method, and the high-

dimensional weighted gene co-expression network analysis

(hdWGCNA) revealed the specific gene modules with high OS

activity. Hub genes were then screened by multiple machine

learning algorithms and matched with the special cell type. Our

results defined a special cluster of macrophage with high OS

activity and its driving function in the early state of sepsis. Our

findings showed crucial insights into the dynamic changes of OS

and the potential immune therapeutics of sepsis.
Materials and methods

Data acquisition

The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo) was used to access the GSE167363

(n = 12) and GSE175453 (n = 9) scRNA-seq sets. These two

datasets (GSE167363 and GSE175453) utilized in this study can

be found in Supplementary Tables 1 and 2. For bulk RNA-seq

data, we utilized the GSE57065 dataset (n = 107) as the training

dataset and the GSE95233 dataset (n = 124) as the test dataset.

These two datasets (GSE57065 and GSE95233) utilized in this

study can be found in Supplementary Tables 3 and 4. We

selected OS-related genes (n = 807) from the Genecards

database (https://www.genecards.org/). Genes are listed in

Supplementary Table 5.
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scRNA-seq dataset analysis

In the processing of scRNA-seq data, we retained high-quality

cells with less than 20% mitochondrial gene content and expressing

more than 200 genes. Additionally, we prioritized genes with

expression levels ranging from 200 to 7,000 and active in at least

three cells. A total of 103,851 eligible cells were retained for further

analysis. Subsequently, data integration was performed using the

Seurat pipeline. The remaining cells were then scaled and normalized

via a linear regression model employing the “Log-normalization”

method. Additionally, the top 3,000 highly variable genes were

identified using the “FindVariableFeatures” function. Following

this, the dimensionality of the scRNA-seq data was reduced using

principal component analysis (PCA). To eliminate batch effects

among samples, soft k-means clustering was performed with the

“Harmony” package. Cell clustering was subsequently carried out

using the “FindClusters” function, with the resolution parameter

adjusted to 0.6. The annotation of cell clusters was based on genes

with high expression levels, genes displaying distinct expression

patterns, and established canonical cell markers (Yang et al., 2024).
Evaluation of OS activity

Five algorithms (including AUCell, Ucell, singscore, ssgsea, and

AddModuleScore) were used to evaluate each cell’s OS activity at the

single-cell level and determine the overall OS activity. The raw score

matrix underwent sequential Z-score standardization and Min–Max

normalization: initial standardization transformed features to zero-

mean and unit-variance distributions, followed by a custom

normalization function linearly scaling values to the [0,1] range

applied column-wise to ensure feature-wise consistency. The

processed matrix was converted into a data frame format, with a

composite score derived from row-wise summation of normalized

feature values. Based on the quartile method, cells with a score below

the 25th percentile were categorized into the low-OS activity state

group, those between the 25th and 75th percentiles were classified as

those belonging to the “transition state”, and those above the 75th

percentile were designated as the high-OS state group. The correlation

analysis was used to explore the association between genes and OS

activity. The “FindMarkers” function was used to perform differentially

expressed gene (DEG) analysis in the upregulated OS group

(avg_log2FC > 0.25, padj < 0.05). To assess whether the distribution

of cell types differs significantly across the high-, medium-, and low-

scoring groups, we constructed contingency tables for each cell type

and performed chi-squared tests of independence. For cell types with

small sample sizes, robustness was checked with Fisher’s exact test. The

resulting p-values were adjusted for multiple testing using the false

discovery rate (FDR) method.
High-dimensional weighted correlation
network analysis

The hdWGCNA was used to construct a co-expression network

using the “hdWGCNA” package. We used the genes expressed in more
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than 5% of cells, and the “MetacellsByGroups” function was used to

construct the metacell gene expression matrix. The soft power was

determined by the “TestSoftPowers” function. The “ConstructNetwork”

function is employed to build the co-expression network.
Machine learning algorithms

To identify optimal feature genes associated with overall survival,

we performed an integrative analysis of the pre-screened gene set using

five distinct machine learning approaches: (1) least absolute shrinkage

and selection operator (LASSO) regression, (2) support vector

machine–recursive feature elimination (SVM-RFE), (3) Boruta

feature selection, (4) random forest (RF), and (5) gradient boosting

machine (GBM). This multi-algorithm framework ensured robust

identification of hub genes while mitigating model-specific biases.

Feature genes were determined by intersecting the outputs of all five

algorithms (LASSO, SVM-RFE, Boruta, RF, and GBM), ensuring

robust selection. LASSO algorithms eliminated redundant predictors

while maintaining discriminative power. SVM-RFE was employed to

iteratively prune the feature set by removing the least informative

features, thereby improving the model’s predictive performance. The

Boruta algorithm assessed the significance of each feature by repeatedly

sampling from the original dataset and constructing RFs. Meanwhile,

the RF algorithm built multiple decision trees through random

sampling and feature selection, and generated predictions via voting

or averaging mechanisms. These approaches collectively clarified the

correlations and interactions among features. GBM is a powerful

ensemble technique that builds models iteratively to minimize a loss

function. It is highly effective for a wide range of tasks but requires

careful tuning and regularization to avoid overfitting.
Cell–cell communication and inference of
transcription factors

We leveraged CellChat to analyze variations in cell–cell

communication modules by integrating gene expression data.

Following the standard CellChat pipeline, we employed the

default CellChatDB as the ligand–receptor interaction database.

Cell type-specific interactions were inferred by identifying

overexpressed ligands or receptors within each cell cluster, and

validated through the assessment of enhanced ligand–receptor

interactions upon their upregulation. This approach ensured

robust inference of communication patterns while maintaining

alignment with established analytical frameworks. Additionally,

the activity of gene regulatory networks was inferred using the R

package “Scenic”, while for pseudotime analysis, three algorithms

[“Monocyte” (Xu et al., 2024), slingshot (Street et al., 2018), and

“CytoTRACE” (Wang et al., 2022)] were used for analysis.
THP-1 cell cultures

The THP-1 human monocytic leukemia cell line (Type Culture

Collection of Chinese Academy of Sciences, China) was cultured in
frontiersin.org
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RPMI-1640 medium (Gibco, USA) containing 10% fetal bovine serum

(FBS) (Gibco, USA) with 2 mM L-glutamine (Solarbio, China), 1 mM

sodium pyruvate (Solarbio, China), 10 mMHEPES (Gibco, USA), and

penicillin/streptomycin (Solarbio, China) (50 U/mL each).

The differential protocol of macrophage was according to a

previous study (Lai et al., 2023). Cells were maintained at 37°C in a

5% CO2 humidified incubator. For lipopolysaccharide (LPS) (Selleck,

USA) stimulation experiments, triplicate cultures (1×106 cells/mL/well

in 12-well plates) were treated with 10 ng/mL LPS for 24 h. Post-

treatment cell pellets obtained by centrifugation (1,000 rpm, 5 min)

were divided for parallel processing: RNA extraction using Trizol

(TaKaRa Bio Inc., Japan) and protein isolation.
siRNA transfection

Gene silencing of LILRA5 was achieved using siRNA

technology with Lipofectamine™ 2000 (Invitrogen, USA).

Specifically, the siRNA duplexes targeting the sequence were

commercially synthesized (Sangon Biotech, Shanghai). When cells

reached 30%–50% confluency, transfection was performed with

either LILRA5-targeting siRNA or non-targeting control (NC)

using the Lipofectamine™ 2000 system. Following 6 h of

transfection, cells were processed for downstream analyses.
Real-time quantitative reverse transcription
detecting system

RNA concentration was measured using the NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, MA, USA). For

reverse transcription, the SuperScript First-Strand Synthesis

System RT-PCR kit (TaKaRa Bio Inc., Japan) was employed to

synthesize complementary DNA (cDNA) from RNA. Quantitative

PCR was conducted using the GoTAq qPCR Master Mix (Promega,

USA) on the Rotor-Gene Q PCR detection system (Qiagen,

Germany). A 10-µL reaction mixture was subjected to thermal

cycling, beginning with an initial denaturation at 95°C for 10 min.

This was followed by 40 cycles of amplification, consisting of 95°C

for 5 s, 60°C for 30 s, and 72°C for 30 s. Subsequently, gene

expression levels were quantified using the2–DDCt method. Primer

sequences are listed in Table 1.
Western blotting

THP-1 cells were seeded at a density of 1×106 cells/mL in

triplicate wells of 12-well plates. Experimental groups were

stimulated with LPS (10 ng/mL) for 30 min, while control groups

were treated with phosphate-buffered saline (PBS) (Thermo Fisher,

USA). Proteins were extracted from THP-1 cells using RIPA

(Solarbio, China) and phenylmethanesulfonyl fluoride (PMSF)

(Boster, USA). After polyacrylamide gel electrophoresis, proteins
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were transferred to a polyvinylidene fluoride (PVDF) membrane

(Vazyme, China). The membrane was blocked, incubated overnight

with a primary antibody against LILRA5 and b-actin (Proteintech,

USA), and then incubated with a secondary antibody for 1 h.

Results were detected using a Western Blot Imaging System (4000R,

CareTream, USA).
Establishment of the sepsis mouse model

Cecal ligation and puncture (CLP) models: Eight-week C57

mice were put into slumber after inhaling isoflurane, and a 22-gauge

needle was used once to puncture a stump in order to release stool.

The abdomen was then closed after the cecum was moved

intraabdominally. Saline (0.2 mL) was injected via the abdomen

for fluid resuscitation. Sham-operated mice were not ligated or

punctured. Four hours following the procedure, the mice were put

back in their cages and slaughtered. We induced sepsis in mice

through intraperitoneal injection of LPS at a dose of 20 mg/kg, with

some mice receiving PBS as a control group. This method

established an LPS-induced sepsis model.
Reactive oxygen species detection assay

Intracellular ROS levels were quantified in THP-1 cells

following LPS stimulation (10 ng/mL) or vehicle treatment (0.1%

BSA). After a 24-h incubation at 37°C in a humidified 5% CO2

incubator, ROS induction was assessed using the ROS assay kit

(Beyotime, China), which employs the cell-permeant fluorogenic

probe 2′-7′-dichlorofluorescein diacetate (DCFH-DA). This probe

is hydrolyzed by cellular esterases into DCFH carboxylate, which is

subsequently oxidized by intracellular ROS into the fluorescent 2′-
7′-dichlorofluorescein (DCF). For the assay, cells were loaded with

15 mM DCFH-DA in culture media, incubated at 37°C for 30 min,

and analyzed by flow cytometry without washing. The intracellular

ROS levels were expressed as mean fluorescence intensity

(MFI) values.
TABLE 1 Sequences of primers.

Primer Sequence

LILRA5 (homo) -Forward 5’-TCACGGCTGAGATTCGACAG-3’

LILRA5 (homo) -Reverse 5’-CCTGCGAGAGCCATAGCATC-3’

LILRA5 (mouse) -Forward 5’-CGGAAGGGAATCCGCACAA-3’

LILRA5 (mouse) -Reverse 5’-CACCTCACATGAGATGGTCAC-3’

GAPDH (homo) -Forward 5’-GGAGCGAGATCCCTCCAAAAT-3’

GAPDH (homo) -Reverse 5’-GGCTGTTGTCATACTTCTCATGG-3’

GAPDH (mouse) -Forward 5’-AGGTCGGTGTGAACGGATTTG-3’

GAPDH (mouse) -Reverse 5’-GGGGTCGTTGATGGCAACA-3’
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Statistical analysis

Data handling and visualization were performed using R 4.2.0.

Statistical significance was determined using a two-tailed test, with

p-values less than 0.05 considered significant.
Results

The scRNA profiling of sepsis

Our study comprised a total of 21 samples, each demonstrating

a uniform cell distribution. Given the consistency observed across

all samples, we infer that batch effects likely had minimal influence

on the results (Supplementary Figure 1). Distributions of each

sample on the single-cell level were visualized by the UMAP

algorithm (Figure 1A). Based on single-cell analysis, cells were

categorized into 23 different clusters (Figure 1B). Diverse cell

types (monocytes, CD4+ T cells, B cells, neutrophils, NK cells,

megakaryocytes, macrophages, CD8+ T cells, DCs, and mast cells)

were unveiled according to different markers (Figure 1C). The

densities of markers were shown (monocyte: S100A8, S100A12,

CD14, and LYE; CD4+ T cell: CD3E, IL7R, CD27, and CCR7; B cell:

CD79A and MS4A1; neutrophil: JAML and GOS2; NK cell: NKG7,

GNLY, KLRB1, and KLRD1; megakaryocyte: PF4, GP9, and PPBP;

macrophage: C1QA, C1QB, and CD68; CD8+ T cell: CD8A and

CD8B; DC: FCER1A and CD1C; mast cell: GATA2, KIT, and

CPA3) (Figure 1D). The density of each marker is shown in

Supplementary Figure 2. The features of markers are shown in

Supplementary Figure 3. Corresponding proportions of 10 cell types

in different states of sepsis (health control, the early stage, and the

late stage) were presented (Figures 1E, F). Gene ontology (GO)

analysis revealed potential functional mechanisms and offered

insights into the biological roles of 10 heterogeneous cell

populations (Supplementary Figure 4).
The heterogeneity of OS activity in each
cell cluster in sepsis

A total of 807 OS-related genes were downloaded from

GeneCards with a relevance score ≥ 7. The OS was elevated in

sepsis in both training and test sets (Figures 2A, B). Notably, the

expression levels of the OS genes were significantly higher in both

sepsis samples than in the control tissues. Supplementary Figure 5A

shows the expression of 807 OS-related genes in three different

stages of sepsis (healthy control, early stage, and late stage). The

expression of the OS-related genes was significantly higher in the

early stage of sepsis. Five algorithms (including AUCell, UCell,

singscore, ssgsea, and AddModuleScore) were applied to evaluate

the index of OS (Figures 2C, D). The expression of 807 OS-related

genes in 10 types of cells is shown (Figure 2E; Supplementary

Figure 5B). According to the OS score, neutrophils, macrophages,

DCs, and mast cells are four cell types with the most OS. Scores and
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density of OS-related genes in 10 types of cells are also visualized in

Figures 2F, G. Moreover, OS scores of 10 cell types were also

visualized in different stages of sepsis (Figure 2H). In contrast,

neutrophils, macrophage, and DCs are three cell types with the

most OS activity in the early stage of sepsis. In conclusion,

neutrophils, macrophages, and DCs may play a potential role in

response to sepsis.
Identification of cells and gene modules
with different OS states

To explore the cell type with the most OS, this study defined three

cell groups by the quartile method according to the OS scores

(Figure 3A). The top 25% cells were defined as the high-OS cells

(25,963 cells with OS score > 2.419). The bottom 25% cells were

defined as the low-OS cells (25,963 cells with OS score < 1.552). The

medium cells were defined as those belonging to the “transition

state”. Macrophages, neutrophils, DCs, and mast cells were four types

of cells with the most OS in response to infection (Figures 3B,C).

Moreover, we also define a new cluster of upregulation genes between

the high-OS cells and the low-OS cells (Figure 3D). This new cluster

of genes may have a real effect in those cells in response to sepsis.

We next applied hdWGCNA to further investigate the

characteristics and functions of genes. After weighing median

connectivity, mean connectivity, and scale-free topology model fit,

a power value of 12 was selected (Figure 3E). Ten modules were

generated accordingly (Figure 3F). Ten gene modules were obtained

and the top huh gene was presented following the hdWGCNA

pipeline (Supplementary Figure 6A). Correlations between every

two modules are shown in Supplementary Figure 6B. Among 10

modules, the brown module showed the most positive correlation

with macrophages and monocytes (Figure 3G). Genes in brown,

yellow, turquoise, and purple modules showed a higher expression

in high-OS cells (Figure 3H). Protein–protein interaction (PPI)

networks of brown, yellow, turquoise, and purple modules were

visualized (Figure 3I), while PPI networks of six other modules were

also visualized (Supplementary Figure 6C). A total of 343 shared

genes between OS-related genes and screened genes from

hdWGCNA may be the real OS-related genes in sepsis

(Figure 3J). Disease oncology (DO) and GO analysis of these hub

genes were visualized (Supplementary Figures 7A, B).
Machine learning algorithms reveal the
OS-related model and hub features

To identify hub genes in the 343 shared genes, the differential

expression analysis showed 292 DEGs (Figure 4A). The selected

genes were then integrated into various machine learning

algorithms, such as LASSO regression, SVM-REF, Boruta, GBM,

and RF. We performed LASSO regression on these genes, which

reduced the gene number to 12 (Figure 4B). The GBM algorithm

screened 49 feature genes (Figure 4C). SVM-REF screened 26
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feature genes. The accuracy and error of the SVM-FRE showed a

good performance (Figures 4D, E). The RF algorithm screened 32

feature genes (Figures 4F, G). Moreover, the Boruta algorithms also

found 77 hub genes (Figures 4H, I). Above all, the Venn diagram

screened four shared genes (LILRA5, MGST1, PLBD1, and S100A9)

as hub genes (Figures 4J).
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Validation of hub features in 10 cell types

To evaluate the reliability and accuracy, we evaluated the four

feature genes (LILRA5, MGST1, PLBD1, and S100A9) in the bulk

level. In the training dataset, the expression of LILRA5, MGST1,

PLBD1, and S100A9 was upregulated significantly in the sepsis group
FIGURE 1

Screening of single-cell data. (A) The results of PCA revealed a relatively stable cell distribution across all analyzed samples with low sensitivity to
batch effects. (B) The results of UMAP indicated that all cells were meticulously classified into 23 clusters. (C) Based on classic marker genes, the
data were manually annotated into 10 different cell types. (D) Expression of classic marker genes in 10 different cell types. (E, F) Cell percentages of
10 cell types originated from samples of different stages in sepsis.
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FIGURE 2

Identification of the most relevant cell types for OS activity. (A) Differences in the oxidative stress in different groups (control and sepsis) of the
training dataset. (B) Differences in the oxidative stress in different groups (control and sepsis) of the test dataset. (C, D) The results of AUCell, Ucell,
singscore, ssgsea, and AddModuleScore algorithms showed that mast cells, DCs, macrophages, and neutrophils had the highest aggregation activity,
while other cells had relatively lower activity. (E) Distribution of OS score in 10 cell types. (F) Scores of oxidative stress activities in 10 types of cells by
the UMAP plot. (G) The density of oxidative stress activities in 10 types of cells by the UMAP plot. (H) Distribution of OS score in 10 cell types of
three stages in sepsis. ***, p<0.001; ****, p<0.0001.
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FIGURE 3

Identification of cells and gene modules with different OS activity states. (A) According to the median of the total OS score, cells were classified as
high-OS cells (top 25%) and low-OS cells (low 25%) according to the median of the total OS activity (25%–75%). (B) Cell distributions in low,
medium, and high state by the UMAP plot. (C) The cell proportions in the low, medium, and high state. (D) The results of DEG analysis of OS by the
volcano map (****p < 0.0001). (E) The top left panel depicted the soft power threshold for choosing a scale-free topology model fit greater than or
equal to 0.9. The other three panels showed the mean, median, and max connectivity of the topological network respectively when different
minimum soft thresholds are chosen, reflecting the connectivity of the network. The average connectivity of the topological network is most stable
at the lowest soft threshold equal. (F) Ten modules were identified as shown in the hdWGCNA dendrogram. (G) Expression density of each module
in the UMAP plot. Yellow indicates the highest activity score of the module in corresponding cells. (H) The bubble plot displayed the scores obtained
by 10 modules in three groups with high, medium, and low OS scores. (I) The results of PPI analysis of the four gene modules (brown, yellow,
turquoise, and purple). (J) Venn diagram for screening 343 shared genes between DEGs and hdWGCNA.
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compared to the normal group (Figure 5A). Moreover, receiver

operating characteristic (ROC) curves were used to evaluate the

diagnostic potential of the four genes. Area under the ROC curves

for LILRA5, MGST1, PLBD1, and S100A9 were 0.980, 0.992, 0.995,

and 0.998, respectively (Figure 5B). Moreover, in the test datasets, the

expression of LILRA5, MGST1, PLBD1, and S100A9 was significantly

elevated in the sepsis group (Figure 5C). In the test dataset, the areas
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under the ROC curve (AUCs) for LILRA5, MGST1, PLBD1, and

S100A9 were 1.000, 0.979, 0.976, and 1.000, respectively (Figure 5D).

To evaluate the correlation between four genes and OS, we utilized the

bulk data for further analysis. Correlations between each of the two

genes and OS-related genes in the training dataset and the test dataset

were revealed (Supplementary Figures 8A, B). In the training and test

dataset, OS activity was elevated in sepsis samples (Supplementary
FIGURE 4

Machine learning algorithms reveal the OS-related model and hub features. (A) DEG analysis identified 292 DEGs in 343 shared genes. (B) The results
of the LASSO algorithm. (C) The results of the GBM algorithm. (D) The accuracy of the SVM-RFE algorithm. (E) The error of the SVM-RFE algorithm.
(F, G) The results of the Random Forest algorithm. (H) The changes in the importance scores of the variables in the Boruta algorithm. (I) Number of
iterations in the Boruta algorithm. (J) The results of the Venn diagram of machine learning algorithms.
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Figures 8C, D). These four genes were also significantly upregulated in

the group with high OS activities (Figure 5E). Correlation of each of

the four genes and the OS gene set in the training dataset and the test

dataset revealed that these four genes were all positively associated
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with OS (Supplementary Figures 8E, F). Expression features of four

genes in different cell types were also delineated at the single-cell level.

The results demonstrated that S100A9, PLBD1, MGST1, and LILRA5

were highly expressed in DCs, macrophages, neutrophils, and
FIGURE 5

Validation of hub features in 10 cell types. (A) Box plots revealed the expression of four feature genes (S100A9, PLBD1, MGST1, and LILRA5) in the
training dataset. (B) ROC curves of our feature genes (S100A9, PLBD1, MGST1, and LILRA5) in the training dataset. (C) Box plots revealed the
expression of four feature genes (S100A9, PLBD1, MGST1, and LILRA5) in the testing dataset. (D) ROC curves of four feature genes (S100A9, PLBD1,
MGST1, and LILRA5) in the testing dataset. (E) The violin plot showed the expression of S100A9, PLBD1, MGST1, and LILRA5 in low-, medium-, and
high-OS groups. (F) Expression of S100A9, PLBD1, MGST1, and LILRA5 in 10 cell types by the bubble plot. (G, H) The results of UMAP indicated the
expression of four feature genes in 10 cell types.
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monocytes (Figure 5F). Moreover, expressions of four genes in 10

types of cells were visualized (Figure 5G) and the results of UMAP also

revealed the expression density of four genes (Figure 5H). Moreover,

four genes were all positively associated with the OS activity at the
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single-cell level (Supplementary Figure 7G). In our study, we chose

LILRA5 for further study. As LILRA5 was significantly upregulated in

the macrophage, LILRA5 may play an important role in the OS

activities in macrophages.
FIGURE 6

Cell–cell communication and transcription factor analysis. (A) Cell chat analysis of all cell types. Both interaction numbers and interaction strengths
are shown. (B) Scatter plot indicates the differences of incoming and outgoing interaction strengths among all cell types. (C) Top cell cytokines were
shown in the heatmap across all cell types in sepsis. (D) As the quasi-temporal process unfolds, the proportions of LILRA5+ macrophage and LILRA5−

macrophage differentiated synchronously. (E) The relative expression of LILRA5 in the pseudotemporal analysis. (F) The slingshot analysis combined
with the expression of LILRA5 by the UMAP plot. (G) The CytoTRACE analysis of LILRA5+ macrophage and LILRA5− macrophage. (H) The predicting
ordering of CytoTRACE by the boxplot. (I) The correlation analysis between LILRA5 expression and cytoTRACE scores.
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Cell–cell communication and transcription
factor analysis

To explore the function of LILRA5 in macrophages, cell–cell

communication and transcription factor analysis were performed.

The overall communication ability of LILRA5+ macrophage and

LILRA5− macrophage with other cell types is shown in Figure 6A.

Interactions between each cell type and other cell types are visualized

in Supplementary Figure 9. Interestingly, the outgoing interaction

strength showed that the secretory ability of LILRA5+ macrophage

was stronger compared with other cells (Figure 6B), including MIF,

GALECTIN, and RESISTIN signaling (Figure 6C). Ligand–receptor

analysis indicated that MIF-(CD74+CXCR4) andMIF-(CD74+CD44)

were more activated in the signaling from LILRA5+ macrophage to B

cells and DCs (Supplementary Figure 10A). Moreover, RETN-CAP1

signaling was most significant between neutrophils to LILRA5−

macrophage and neutrophils to LILRA5+ macrophage

(Supplementary Figure 10B). Compared with LILRA5−

macrophage, LILRA5+ macrophage has a much higher proportion

in the early stage of macrophage (Figure 6D). The pseudotime and

the slingshot analysis showed that LILRA5+ was highly expressed in

the early stage of macrophage (Figures 6E, F). Moreover, the

CytoTRACE analysis was also performed. LILRA5+ macrophage

had higher CytoTRACE scores, which indicated that this cell type

appears in the earlier stage (Figures 6G, H). LILRA5+ macrophages

have a higher tendency towards an “undifferentiated” state based on

the predicted scores. Moreover, expression of LILRA5 correlated

positively with cytoTRACE scores (Figure 6I). The results supported

the conclusion that LILRA5 expression is higher in the early stages

of development.
Validation of LILRA5 in macrophages in
sepsis

To validate the expression of LILRA5 in sepsis, we established the

CLP mouse model, and the blood of mice was derived. Real-time

quantitative reverse transcription (qRT-PCR) showed that LILIR5

was significantly upregulated in sepsis (Figure 7A). Our study proved

that LILRA5 was mostly expressed in macrophages and potentially

regulated OS activity. qRT-PCR showed that the mRNA expression

of LILRA5 was higher following the stimulation of LPS in THP-1 cells

(Figure 7B). The protein level of LILRA5 was higher (Figure 7C). To

explore the role of LILRA5 in regulating OS in macrophage, we first

silenced LILRA5 expression by siRNA (Figure 7D). After silencing

the LILRA5 in THP-1 cells, the ROS levels were then measured. The

result showed that the ROS level was lower when the LILRA5 was

silenced (Figure 7E). In conclusion, LILIRA5 regulated OS of

macrophages positively in sepsis.
Discussion

Sepsis is a life-threatening condition characterized by dysfunction

of multiple organs and dysregulated innate and inflammatory
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responses of the host to infection (Yang et al., 2022). The

fundamental macro- and microcirculatory perturbations induce

hypoxia, manifested by lactate accumulation and the eventual failure

of organs (Kuebart et al., 2023). Production of IL-1b and TNF-a under

stress targeted immune cells (macrophages, neutrophils, and

endothelial cells), inducing secretion of ROS and enhancing the

inflammatory cascade response (Ouyang et al., 2024). ROS, as critical

intracellular signaling molecules, are integral to the development and

progression of inflammatory conditions. A previous study showed that

ROS production was tightly associated with intracellular bacteria

clearance (West et al., 2011). Stimulation of LPS was found to

induce ROS production, which leads to the formation and activation

of Nod-like receptor family pyrin domain-containing 3 (NLRP3)

inflammasome (Sanlioglu et al., 2001; Xu et al., 2025). Activation of

NLRP3 inflammasomes is associated with various organ (central

nervous system, cardiovascular system, respiratory system,

gastrointestinal system, and renal system) damages in sepsis (Bai

et al., 2020; Shi et al., 2021). Moreover, NLRP3 inflammasomes also

co-localize with mitochondria and are responsible for producing

mitochondrial reactive oxygen species (mtROS) (Park et al., 2013).

Another study showed that inhibition of ROS production increases the

survival rate of CLP mice (Gu et al., 2018). The accumulation of excess

ROS leads to OS (Chen et al., 2024). As biological processes of OS play

a vital role in sepsis, relative studies are rare. The interaction between

OS and immune cells needs to be further studied.

The central mechanism in sepsis involves immune dysfunction,

with macrophages, as key components of the innate immune system,

playing a crucial role (Qiu et al., 2019; He et al., 2024). Previous studies

showed that macrophages exhibit a spectrum of dynamic phenotypic

alterations under infection (Yang et al., 2022; Gu et al., 2023). During

inflammation, classically M1 macrophages are reprogrammed to the

M2 phenotype, which contributes to the immunoparalysis in sepsis

(Hotchkiss et al., 2013). Macrophages drive the primary immune

response in the early stage of infection. Macrophages accumulate at

the infection site during the early stages of Staphylococcus aureus S.

aureusinfection, and their numbers decrease in chronic states, which

suggests a pivotal role for macrophages in the initial phase of infection

(Li et al., 2024). In our research, we applied single-cell datasets and the

hdWGCNA method to screen out immune cell types with the most

ROS activity. In sepsis, macrophage was identified as one cell type with

the most ROS activity in sepsis. This result proved that ROS are

essential to macrophage bactericidal activity. Moreover, multiple

machine learning methods (LASSO, SVM-RFE, Boruta, RF, and

GBM) found out that LILRA5 mostly expressed in macrophage and

that LILRA5+ macrophage had the most ROS activity. Our result

validated the higher expression of LILRA5 in sepsis by two sepsis

mouse models; moreover, after silencing LILRA5 expression in THP-1

cells, the OS activity was significant inhibited. Therefore, LILRA5 may

potentially play an important role in ROS-mediated bacterial clearance.

LILRA5 is mostly expressed in monocytes and neutrophils.

Hammoudeh et al. revealed LILRA5 has a potential tissue-specific

immune signature in kidney under severe COVID-19 (Hammoudeh

et al., 2021). LILRA5 triggers the innate immune response and plays a

crucial role in inflammation regulation (Shi et al., 2024). Cross-linking

of LILRA5 receptor induced secretion of IL-1b, IL-6, and TNF-a in
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monocytes, which accelerates the inflammation (Mitchell et al., 2008).

A previous study identified LILRA5 as a marker gene in sepsis (Ning

et al., 2023). Moreover, the host response to distinct bacterial infections

(Gram-negative and Gram-positive) is different (Feezor et al., 2003).

Another study proved that LILRA5 was a diagnosed marker in both

Escherichia coli- and S. aureus-induced sepsis (Irani Shemirani, 2024).

Studies of LILRA5 in macrophages are rare. In cardiac tissue, the HPA

validation showed that LILRA5 expressed highly in macrophages,

highlighting the importance of LILRA5 in cardiac immune response

(Shi et al., 2024). Our study showed that LILRA5+ macrophage may

play a vital role in OS in sepsis; however, its biological mechanism

needs to be further studied. Interestingly, we also found that LILRA5

was highly expressed in the early stage of macrophage. This is

consistent with a study of Willenborg et al. They found that a

subpopulation of early-stage macrophages is characterized by mtROS

production (Willenborg et al., 2021). These results demonstrated that

LILRA5 may regulate OS of macrophage at an early stage.

In our study, we are also looking for an efficient method to identify

cell clusters with the most OS. Previous studies on ROS mainly

downloaded OS-related genes from GeneCards. However, not all

genes exert an influence on OS in sepsis. Therefore, we applied the

“Quartile method” rather than the “Median Method” in identifying

cells with a higher OS activity. Cells were then defined as “high-OS

cells”, “transition state”, and “low-OS cells”. DEGs between cell clusters

with different OS states may make a real difference in sepsis-related

OS activity.
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Multiple studies have focused on screening biomarkers of

sepsis. A previous study showed that S100A8/A9 were predictive

markers based on serum samples of patients with sepsis (Chen et al.,

2025). Given the important role of OS in biological processes in

sepsis, our study focused on exploring hub genes and immune cells,

which drive the OS in sepsis. A previous study showed that LILRA5

was a biomarker of sepsis (Ning et al., 2023). However, our study

emphasized that screening out hub genes correlated with OS.

Targeting LILRA5 may offer therapeutic benefits by modulating

ROS activity in macrophages during early sepsis. However, because

LILRA5 is also expressed in monocytes and neutrophils, systemic

inhibition may disrupt broader immune functions. The lack of

specific antagonists and the potential for immunosuppressive side

effects pose substantial translational challenges. Future efforts

should focus on developing selective inhibitors or antibody-based

modulation strategies with cell-type specificity.

In our manuscript, we validated LILRA5 expression using two

independent bulk RNA sepsis cohorts showing consistent

upregulation in human sepsis whole blood. The dataset used by

the research institute contains clinical information that does not

provide the sepsis etiology (Gram-positive, Gram-negative, and

fungal) of each sample. Therefore, the function of LILRA5+

macrophage varies by pathogen and is still unclear and, thus,

needs further analysis. This study is limited by its reliance on

publicly available datasets with relatively small sample sizes and

potential inter-individual heterogeneity. Although batch correction
FIGURE 7

Validation of LILRA5 in macrophages in sepsis. (A) mRNA expression of LILRA5 in the blood of the CLP mouse model by qRT-PCR. (B) mRNA
expression of LILRA5 in the blood of the LPS-stimulated sepsis mouse model by qRT-PCR. (C) mRNA expression of LILRA5 after siRNA transfection
by qRT-PCR. (D) The protein level of LILRA5 in THP-1 cells by Western blotting. (E) DCFH-DA probes were used to detect total ROS levels in THP-1
cells. After the DCFH-DA probe was pre-loaded into the THP-1 cells, the THP-1 cells were stimulated with LPS, and the fluorescence signal intensity
of the cells was detected (**p < 0.01,***p < 0.001,****p < 0.001).
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and integration strategies were employed, some variability may

persist. Additionally, while experimental validation was performed

in THP-1 cells and murine models, the findings warrant further

confirmation in primary human samples and prospective clinical

cohorts. Moreover, we also performed functional validation in

THP-1-derived macrophages, which is a well-established model

for sepsis-related immunometabolic studies. Although our findings

underwent robust validation across multiple datasets and the THP-

1 model, the absence of validation using primary human

macrophages may impact the direct clinical translation of our

results. Future research should prioritize collaborative efforts to

profile patient-derived macrophages at single-cell resolution, with a

particular focus on LILRA5+ subsets in early sepsis. Moreover, our

study focused on screening out LILRA5+ macrophage subsets with

the most OS. The underlying mechanism of LILRA5-OS is still

unclear and needs to be further studied.
Conclusion

In conclusion, based on a multitude of bioinformatics and

machine learning algorithms, we draw the single-cell landscape of

dynamic changes of OS in sepsis. We found that the macrophage at

the early stage had the most OS activity in sepsis and that LILRA5

may potentially be the gene regulating OS activity in this subtype of

macrophage. Therefore, LILRA5 shows promise in regulating

macrophage-mediated OS activity in sepsis.
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SUPPLEMENTARY FIGURE 1

Preprocessing of scRNA-seq data. (A) The features, counts, percentages of

mitochondrial, percentages of HB, and percentages of ribosome in each of
the analyzed samples. (B) The scatter plot demonstrates the correlation

between cell counts and intracellular gene counts, percentages of

mitochondrial, percentages of HB, and percentages of ribosome
following standardization.

SUPPLEMENTARY FIGURE 2

The density of each marker in each cluster. (A): Monocyte, (B): B cell, (C): CD4+ T
cell, (D): Neutrophil, (E): NK cell, (F) CD8+ T cell, (G): Megakaryocyte, (H):
Macrophage, (I): Mast cell, (J): DC cell.

SUPPLEMENTARY FIGURE 3

The feature of each marker in each cluster. (A): Monocyte, (B): B cell, (C): CD4+ T
cell, (D): Neutrophil, (E): NK cell, (F) CD8+ T cell, (G): Megakaryocyte, (H):
Macrophage, (I): Mast cell, (J): DC cell.

SUPPLEMENTARY FIGURE 4

The relationship between themarker genes of the 10 types of cells mentioned
above, along with the relevant pathways enriched by GO analysis.

SUPPLEMENTARY FIGURE 5

The expression of 807 oxidative stress-related genes. (A) The distribution of
807 oxidative stress-related genes expressed in three different stages of

sepsis. (B) The distribution of 807 oxidative stress-related genes expressed

in ten types of cells.
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SUPPLEMENTARY FIGURE 6

hdWGCNA analysis. (A) Ten gene modules were obtained and the top hub
gene were presented according to the hdWGCNA pipeline. (B) Correlation
analysis between each two gene modules. (C) The results of PPI analysis of
the ten gene modules (black, blue, green, magenta, pink, and red).

SUPPLEMENTARY FIGURE 7

DO and GO analysis. (A) DO analysis conducted visualized by the boxplot. (B)GO
analysis conducted visualized by the boxplot.

SUPPLEMENTARY FIGURE 8

Correlations between each gene and OS activity. (A) Correlation between each

two genes and oxidative stress-related genes in the training dataset. (B)
Correlation between each two genes and oxidative stress-related genes in the
test dataset. (C) The OS activity score in control and sepsis samples of the training
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dataset. (D) The OS activity score in control and sepsis samples of the testing
dataset. (E) Correlation of each four genes and oxidative stress gene set in the

training dataset. (F)Correlation of each four genes and oxidative stress gene set in
the test dataset. (G) Correlations between each genes and oxidative stress scores

based on the single-cell sequencing datasets.

SUPPLEMENTARY FIGURE 9

The results of cellular communication indicated the quantity and intensity of

cellular communication between LILRA5+ macrophage, LILRA5- macrophage
and other cell types.

SUPPLEMENTARY FIGURE 10

The ligand-receptor interactions between different cell types and LILRA5- and
LILRA5+ labeled macrophage.
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