
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Yafei Li,
Nanjing Medical University, China

REVIEWED BY

Dinakaran Vasudevan,
SKAN Research Trust, India
Najla Kharrat,
Centre of Biotechnology of Sfax, Tunisia

*CORRESPONDENCE

Ikram Khan

dr_ikramkhan@outlook.com

Xiaodong Xie

xdxie@lzu.edu.cn

Zhiqiang Li

lizhiqiang6767@163.com

RECEIVED 08 April 2025

ACCEPTED 15 July 2025

PUBLISHED 31 July 2025

CITATION

Khan I, Irfan M, Khan I, Ping X, Xiaohui Y,
Lei S, Song T, Xie X and Li Z (2025)
Integrated oral microbiome and metabolome
analysis unveils key biomarkers and
functional pathway alterations in patients
with acute myocardial infarction.
Front. Cell. Infect. Microbiol. 15:1607845.
doi: 10.3389/fcimb.2025.1607845

COPYRIGHT

© 2025 Khan, Irfan, Khan, Ping, Xiaohui, Lei,
Song, Xie and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 31 July 2025

DOI 10.3389/fcimb.2025.1607845
Integrated oral microbiome and
metabolome analysis unveils key
biomarkers and functional
pathway alterations in patients
with acute myocardial infarction
Ikram Khan1*, Muhammad Irfan2, Imran Khan3, Xie Ping4,
Yu Xiaohui5, Shengnan Lei6, Tianzhu Song6,
Xiaodong Xie1* and Zhiqiang Li6*

1Department of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou,
Gansu, China, 2Department of Medical Laboratory Technology, Xcito School of Nursing and Allied
Health Sciences, Chakdara, Khyber Pakhtunkhwa, Pakistan, 3Department of Microecology, School of
Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China, 4Department of Cardiology,
Gansu Province People’s Hospital, Lanzhou, Gansu, China, 5Department of Gastroenterology, The
940 Hospital Joint Logistic Support Force of People's Liberation Army (PLA), Lanzhou, Gansu, China,
6School of Stomatology, Key Laboratory of Oral Disease, Northwest Minzu University, Lanzhou,
Gansu, China
Introduction: The significance of oral microbiota in acute myocardial infarction

(AMI) has been increasingly appreciated. However, the association between oral

microbiota, metabolites, and AMI parameters, as well as the key microbiota and

metabolites that may play a crucial role in this process, remains unclear. To

investigate the oral microbiome composition and metabolomic profiles

associated with AMI and explore the roles of specific bacterial species and key

metabolites in functional pathways in the progression of AMI.

Methods: A case-control study was conducted involving 24 AMI patients and 24

matched healthy controls. Saliva samples were collected for 16S rRNA

sequencing and untargeted LC-MS metabolomics. Correlation analysis was

then performed to explore associations between microbial taxa, metabolomic

profiles, and AMI clinical parameters, with results visualized as heatmaps of

correlation coefficients.

Results: The component of the oral microbiota of the AMI group showed

significant alterations when compared to the control group. Particularly, a

significant shift in terms of alpha and beta diversity was observed between the

AMI and control groups (p < 0.05). The Streptococcus and Rothia genera, as well

as 9(R)-HODE, 20-HETE ethanolamide, and 5,6 EET metabolites, were identified

as potential biomarkers, achieving an area under the curve of 0.82–0.88.

Functional pathway analysis demonstrated significant upregulation in key

metabolic pathways, including the Citrate Cycle (TCA cycle), Pyruvate

metabolism, and Glucagon signaling pathways, which exhibited strong

correlations with established clinical markers of AMI.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1607845/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1607845/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1607845/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1607845/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1607845/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1607845&domain=pdf&date_stamp=2025-07-31
mailto:dr_ikramkhan@outlook.com
mailto:xdxie@lzu.edu.cn
mailto:lizhiqiang6767@163.com
https://doi.org/10.3389/fcimb.2025.1607845
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1607845
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Khan et al. 10.3389/fcimb.2025.1607845

Frontiers in Cellular and Infection Microbiology
Conclusion: This integrative analysis underscores the diagnostic potential of oral

microbiome-metabolome interactions in AMI and unveils key mechanistic

pathways for guiding future therapeutic interventions.
KEYWORDS

microbial dysbiosis, metabolite dysregulations, pathway disruptions, noninvasive
biomarkers, AMI
Introduction

Acute myocardial infarction is a common and critical

cardiovascular event associated with significant morbidity and

mortality (Ferrero, 2023). As a major global contributor to heart

failure and cardiac-related deaths, AMI constitutes a substantial

burden on public health systems worldwide (Alnemer, 2024). While

percutaneous coronary intervention (PCI) has significantly reduced

mortality associated with AMI, there remains a critical need for

advanced strategies to enhance therapeutic efficacy and long-term

patient outcomes (Buonpane et al., 2024). Recent studies suggest

that the gut microbiome is a dynamic and adaptable environmental

factor that may influence the pathogenesis of AMI and holds

promise as a potential therapeutic target (Rahman et al., 2022).

However, despite being the second-largest microbial community (Li

et al., 2024), the role of oral microbiota in the pathogenesis of AMI

remains poorly understood.

Growing evidence indicates the association between oral

microbiota and AMI, with studies showing that serum antibody

levels against various oral pathogenic microorganisms are positively

associated with an increased risk of myocardial infarction (MI)

(Joshi et al., 2021). Polymerase chain reaction (PCR) and microbial

sequencing technologies have identified oral microbial DNA,

including periodontal and non-periodontal pathogenic bacteria, in

coronary artery thrombi of MI patients (Kwun et al., 2020),

suggesting a potential link between oral bacteria and the

formation of coronary artery thrombi in AMI. Periodontitis

induced by the disruption of oral microbial ecology has been

documented to raise the risk of AMI (Carra et al., 2023; Bijla

et al., 2024). However, the specific alterations in the oral

microbiome and metabolomic profile associated with AMI remain

insufficiently characterized.

Integrative analysis of microbiome and metabolomics has

become a powerful tool for uncovering the complex interactions

between microbiome dynamics and health outcomes (Feng et al.,

2019; Zhao et al., 2021). Metabolites, as small molecules that reflect

underlying biological processes, are widely used in clinical medicine

as biomarkers for diagnosis, prognosis, and assessment of treatment

efficacy (Schmidt et al., 2021). Advances in high-throughput

technologies now allow systematic profiling of the metabolome,

offering comprehensive insights into cardiometabolic alterations.

Blood-based metabolomic studies have identified disease-associated
02
pathways, notably those linked to amino acid and fatty acid

metabolism (Fan and Pedersen, 2021). In addition, cutting-edge

metabolomics studies have provided valuable insights into the risk

of type 2 diabetes (T2D) and its complications, with analyses

conducted on diverse biological samples, including plasma,

serum, and urine (Morze et al., 2022). A previous study explored

the association between paired plasma and salivary metabolomic

datasets in patients with T2D, highlighting the potential utility of

salivary metabolites as biomarkers for assessing systemic metabolic

dysfunction (Sakanaka et al., 2021). These findings emphasize the

oral microbiome’s potential as a powerful tool for disease

discrimination and early diagnosis. Expanding on this evidence,

investigating the roles of the oral microbiome and metabolome in

cardiovascular diseases (CVDs), especially AMI, is essential given

its significant global health burden.

Therefore, this study investigated the interplay between the oral

microbiome and metabolomic profiles in AMI patients and healthy

controls, aiming to identify potential biomarkers and underlying

pathways associated with CVDs, particularly AMI. Integrated

analysis of the microbiome and metabolome revealed significant

alterations in the oral microbiome composition, metabolomic

profile, and functional pathways in AMI patients. We further

explored the interaction between the microbiome, metabolome,

and clinical markers to gain a deeper understanding of their

interrelationships. Understanding these interactions could inform

the development of novel diagnostic biomarkers or therapeutic

targets for AMI. These findings provide a foundation for leveraging

clinical metagenomics to identify novel biomarkers and understand

the mechanistic pathways underlying AMI.
Materials and methods

Study cohort and patient characteristics

Samples were collected from a total of 48 individuals, consisting

of 24 participants who had been diagnosed with acute myocardial

infarction (AMI) and 24 controls. The participants were recruited

from the Department of Cardiology, Gansu Provincial People’s

Hospital, and the Department of Physical Examination, the 940

Hospital Joint Logistic Support Force of PLA. Diagnosis of AMI was

performed based on established guidelines (Members et al., 2012).
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All participants were between the ages of 30 and 60. Exclusion

criteria included ongoing infectious diseases, cancer, renal or

hepatic failure, peripheral neuropathy, stroke, and recent

antibiotic use within 3 months. The control group was comprised

of individuals who did not exhibit any clinically evident symptoms

of AMI when recruited. Clinical and demographic data were

collected for all participants, and individuals with incomplete data

were excluded at the time of recruitment.
Oral examination of the participants

All study participants underwent a detailed oral examination

conducted by a single, calibrated dentist to assess variables

potentially influencing the oral microbiome. The examination

revealed no clinical manifestations of periodontal disease,

including gingivitis or periodontitis. The prevalence of dental

caries was negligible, with teeth generally observed to be in

excellent condition, exhibiting minimal wear, no visible decay,

and an absence of previous restorations. Gingival tissues appeared

healthy, characterized by a pink coloration, firm texture, and tight

adherence to the teeth, with no evidence of bleeding, inflammation,

or other pathological signs. Furthermore, no active oral lesions were

identified, such as ulcers, sores, or neoplastic changes indicative of

oral malignancies. Participants demonstrated adequate oral

hygiene, maintaining a normal complement of functional teeth

that required only routine care. Notably, none of the participants

had undergone professional dental cleaning within the preceding

year or received periodontal treatment in the 3 months before

enrollment, ensuring standardized and comparable oral health

conditions across the cohort.
Sample collection

Samples were collected from each patient on the first day of

hospital admission, before primary coronary interventions. All

participants were instructed to gargle and avoid eating and

drinking for at least 1 hour before oral sample collection. Saliva

samples were collected in 50 ml centrifuge tubes with saliva DNA

preservation solution. All samples were transported to the

laboratory on ice packs within 2 hours after collection and stored

at -80°C.

Blood samples were collected after an overnight fast of at least 8

hours for clinical chemistry analyses. The samples were collected in

tubes with anticoagulants, centrifuged at 3500 rpm for 15 min, and

the supernatants were stored at 80°C. Blood variables, such as

systolic blood pressure and diastolic blood pressure, were measured

in mmHg values. Serum biomarkers, including Low-density

lipoprotein, High-density lipoprotein, Total cholesterol,

Triglycerides, Blood glucose, C-reactive protein, Uric acid, White

and Red blood cell counts, Platelet count, Hemoglobin, Neutrophil

count, Serum creatinine, and pH, were assessed during the initial

clinical screening. In addition, Age was measured in years, body

mass index (BMI) was calculated as weight in kilograms divided by
Frontiers in Cellular and Infection Microbiology 03
height in meters squared (kg/m²), and blood pressure was measured

in mmHg for both systolic and diastolic values.
DNA extraction and amplicon sequencing

DNA was extracted from 100 μl of saliva with the TGuide S96

Magnetic Soil/Stool DNA Kit, Biomarker Technologies Co., Ltd.,

Beijing, China, following the manufacturer’s instructions. The DNA

concentration of the samples was measured with the Qubit dsDNA

HS Assay Kit and Qubit 4.0 Fluorometer (Invitrogen, Thermo

Fisher Scientific, Oregon, USA). The extracted DNA was stored at

–80 °C for subsequent analyses (Khan et al., 2022).

The 338F: 5’- ACTCCTACGGGAGGCAGCA-3’ and 806R: 5’-

GGACTACHVGGGTWTCTAAT-3’ universal primer set was used

to amplify the V3-V4 region of the 16S rRNA gene from the

genomic DNA extracted from each sample (Khan et al., 2022).

Sample-specific Illumina index sequences were appended to both

forward and reverse 16S primers for high-throughput sequencing.

PCR was carried out in a 10 ml reaction containing 5–50 ng DNA

template, 0.3 ml each of \*Vn Forward and \*Vn Reverse primers

(10 mM), 5 ml KOD FX Neo Buffer, 2 ml dNTPs (2 mM each), 0.2 ml
KOD FX Neo polymerase, and nuclease-free water to volume. The

Vn forward and reverse primers were selected based on the targeted

amplification region. Thermal cycling conditions included an initial

denaturation at 95°C for 5 min, followed by 25 cycles of 95°C for

30 seconds, 50°C for 30 seconds, and 72°C for 40 seconds, with a

final extension at 72°C for 7 minutes. All the PCR amplicons were

purified using Agencourt AMPure XP beads (Beckman Coulter,

Indianapolis, IN) and quantified with the Qubit dsDNA HS Assay

Kit on a Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher

Scientific, Oregon, USA). Following individual quantification,

amplicons were pooled in equimolar amounts and sequenced on

the Illumina Novaseq 6000 platform (Illumina, San Diego,

CA, USA).
Bioinformatic analysis

The bioinformatics analysis of this study was performed with

the aid of the BMK Cloud (Biomarker Technologies Co., Ltd.,

Beijing, China). Raw reads were quality-filtered using Trimmomatic

(v0.33) (Bolger et al., 2014), with primer removal performed by

Cutadapt (v1.9.1) (Martin, 2011). FLASH (v1.2.11) was used to trim

terminal reads (Magoč and Salzberg, 2011), UCHIME (v8.1) to

remove chimeras (Edgar et al., 2011), and USEARCH (v10.0) to

discard sequences shorter than 100 bp or exceeding a 2% error rate

(Edgar, 2013). Sequences were taxonomically classified using the

Ribosomal Database Project http://www.arb-saliva.de. High-quality

reads were clustered into operational taxonomic units (OTUs) at a

97% similarity threshold (Bokulich et al., 2013). Rarefaction curves

at the OTUs level and Venn diagrams were generated in R (v4.2.1).

Alpha diversity metrics, Chao1 index (Chao, 1984), and Shannon

index (Shannon, 1948), were analyzed using Mothur software

(V1.30) http://www.mothur.org/, and Beta diversity analysis to
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compare the similarity of species diversity between different

samples. Beta diversity assessed via Principal Coordinate analysis

(PCoA) based on Bray–Curtis dissimilarity metrics (Lozupone

et al., 2007). Group differences in relative abundance were tested

using the Wilcoxon rank-sum test. Linear discriminant analysis

Effect Size (LefSe) was applied to identify discriminatory taxa, with

Linear discriminant analysis (LDA) scores supported by pairwise

Wilcoxon tests (Bokulich et al., 2013). Functional prediction of oral

microbiota was performed using PICRUSt2 based on Clusters of

Orthologous Groups (COG) annotations.
Metabolite extraction and LC-MS analysis

The LC/MS system used for metabolomics analysis includes a

Waters Acquity I-Class PLUS UHPLC system and a Waters Xevo

G2-XS QT of high-resolution mass spectrometer, equipped with a

Waters Acquity UPLC HSS T3 column (1.8 μm, 2.1 x 100 mm). For

both positive and negative ion modes, the mobile phases are 0.1%

formic acid in water (A) and 0.1% formic acid in acetonitrile (B),

with an injection volume of 1 μL. TheWaters Xevo G2-XS QT high-

resolution mass spectrometer, controlled by MassLynx (V4.2)

software, operates in MSe mode to acquire primary and

secondary mass spectrometry data. Each acquisition cycle

captures dual-channel data at low 2 volts and elevated 10–40

volts collision energies with a scanning frequency of 0.2 seconds

per spectrum. The ESI ion source parameters are as follows:

capillary voltage is set to 2000 volts for positive ion mode and

-1500 volts for negative ion mode, with a cone voltage of 30 volts.

The ion source temperature is maintained at 150°C, while the

desolvation gas temperature is 500°C. The backflush gas flow rate

is 50 L/h, and the desolvation gas flow rate is 800 L/h.

Raw data acquired from MassLynx is processed through

Progenesis QI software, which performs peak extraction,

alignment, and various analytical tasks. Compound identification

is conducted using the online METLIN database and Biomark’s

custom-built library within Progenesis QI software. Theoretical

fragment identification is carried out with mass deviations

controlled within 100 ppm. Following normalization of the peak

area data by the total peak area, subsequent analyses were

performed. Principal Component Analysis (PCA) and Spearman

correlation analysis were employed to assess the repeatability of

samples within groups and the quality control samples. Using the R

package ropls, Orthogonal partial least squares discriminant

analysis (OPLS-DA) modeling was performed, incorporating 200

permutation tests to validate model reliability. The Variable

Importance in Projection (VIP) value of the model was

determined through extensive cross-validation. Differential

metabolites were identified according to Fold Change (FC > 1),

p-value (p < 0.01), and VIP value (VIP > 1). The Receiver Operating

Curve (ROC) analysis was performed to assess key metabolites’

diagnostic ability for AMI diagnosis using the R package pROC.

Fold changes (FC) were calculated and compared based on group

classifications, with t-tests determining the statistical significance of

differences for each compound. The Kyoto Encyclopedia of Genes
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and Genomes (KEGG) functional prediction pathways of the

salivary metabolomics were inferred using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (PICRUSt2). To reduce false positives, p-values were adjusted

using the Benjamini-Hochberg method for multiple testing,

applying a significance cutoff of False Discovery Rate < 0.05.
Statistical analysis

Descriptive statistics were used to assess baseline characteristics;

quantitative variables are presented as mean and standard deviation

(±), and categorical variables as percentages. Group differences in

clinical indices were assessed using the Student’s t-test for normally

distributed quantitative variables or the nonparametric Mann–

Whitney test for non-normally distributed variables. Spearman’s

correlation coefficient was used to assess relationships of oral

microbiota with salivary metabolites and clinical parameters,

visualized via the R package “pheatmap.” Statistical significance

was defined as a p-value of ≤ 0.05.
Results

Baseline characteristics of the participants

We enrolled forty-eight participants in this study, comprising

twenty-four patients with AMI and twenty-four healthy controls.

Detailed demographic and clinical characteristics are presented in

our previous study (Khan et al., 2025). No statistically significant

differences were observed in sex, smoking status, diabetes, diastolic

blood pressure, total cholesterol, uric acid, platelets, and serum

creatinine between the AMI and control groups. However, AMI

patients exhibited significantly higher levels of triglycerides, Low-

density lipoprotein cholesterol, and C-reactive protein, along with

lower high-density lipoprotein cholesterol levels (p < 0.05),

suggesting a potential role for these covariates in AMI

progression and their possible association with oral microbiome

composition. AMI patients were older than controls, likely

contributing to the observed differences. Future studies should

stratify by age in multivariate models to address its potential

confounding effects on oral microbial composition and

metabolomic profile.
OTUs distribution and microbial diversity
indexes

Sequencing of 48 saliva samples yielded 3,798,626 raw reads.

After quality enhancement through paired-end read splicing,

3,471,942 clean reads were obtained, averaging 72,332 clean reads

per sample. A total of 19,862 OTUs were obtained from both

groups. Of them, 8,615 OTUs were unique to the control and 9,317

to the AMI group, while 1,930 OTUs were common in both groups

(Figure 1A). A rarefaction curve suggested that sequencing depth
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was adequate (Figure 1B). Alpha diversity analysis was conducted to

assess the microbial composition, diversity, and evenness within the

groups. No significant difference was observed in the Chao1 index

between patients and controls (p = 0.88; Figure 1C), whereas the

Shannon index differed significantly between AMI and controls

(p = 0.03; Figure 1D). Beta diversity analysis was then conducted to

assess differences in microbial community composition between the
Frontiers in Cellular and Infection Microbiology 05
two groups. The separation shown in the Bray-Curtis principal

coordinate analysis diagram was apparent (Figure 1E), and

PERMANOVA analysis (R2 = 0.140; p = 0.001) validated the

significant differences between both groups (Figure 1F). Overall,

alpha and beta diversity analyses indicated substantial differences

between AMI and control groups, suggesting a potential role of

microbial dysbiosis in AMI.
FIGURE 1

OTUs distributions and diversity indexes between the two groups. (A) The Venn diagram shows the observed OTUs between healthy and AMI
groups, with overlapping OTUs denoted by the intersection area among corresponding circles. (B) Rarefaction curves depict microbiota diversity
from saliva samples. (C) The Chao1 index between the AMI and control group. (D) Shannon index between the AMI and control groups. (E) Principal
coordinate analysis displays the distance-based similarity/dissimilarity of saliva samples between the AMI and Control groups. (F) PERMANOVA
analysis confirms the significant differences in beta diversity between the AMI and control groups. SH represents the healthy group, and SP
represents the AMI group.
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Relative abundance of oral microbiota
between both groups

We next characterized the microbial abundance between

healthy and patient groups. Firmicutes was the most abundant

phylum (39.04% in AMI vs. 36.44% in controls), followed by

Proteobacteria (17.86% vs. 14.68%) and Actinobacteriota (12.03%

vs. 9.06%), while Bacteroidota (18.85% vs. 21.10%) and

Fusobacteriota (5% vs. 10%) were reduced in AMI patients

(Figure 2A). At the genus level, Streptococcus exhibited the

highest prevalence, with a relative abundance of (18.67% vs.

12.43%), followed by Neisseria (9.10% vs. 6.66%), Rothia (8.97%

vs. 4.54%), and Prevotella_7 (7.40% vs. 5.79%), with depleted levels

of Veillonella_7 observed in the salivary microbiota of the MI group

compared to the control group (Figure 2B). These findings suggest

that AMI patients exhibit a dysbiotic oral microbiota, marked by an
Frontiers in Cellular and Infection Microbiology 06
enrichment of Firmicutes (e.g., Streptococcus), Proteobacteria, and

Rothia, alongside a depletion of Bacteroidota, Fusobacteriota, and

Veillonella_7. This microbial dysbiosis may contribute to the

pathophysiological mechanisms underlying myocardial infarction.
Oral microbiota-based biomarkers for AMI

LEfSe analysis was performed to further investigate oral

microbiome differences between AMI patients and controls.

Seventeen distinct bacterial taxa were identified between groups,

including Bacilli, Lactobacillales, Micrococcales, Streptococcacae,

Micrococcaceae, Streptococcus, and genus Rothia were detected in

the AMI group, and Fusobacteriota, Fusobacteria, Clostridia,

Peptostreptococcales_Tissierellales, and Fusobacteriales,

Lachnospiraceae were distinct in control groups (Figure 3A). The
FIGURE 2

Relative abundance of oral microbiota between both groups. (A) Shows phylum-level microbial abundance in AMI patients and healthy controls.
(B) Shows genus-level abundance in both groups.
FIGURE 3

Distinct microbial taxa between the AMI and control groups. (A) Using an LDA score threshold of 3, LEfSe identified the most significantly
differentially abundant clades across various taxonomic levels between the AMI and control groups. (B) The cladogram illustrates the distribution of
these differentially abundant bacterial taxa, with each layer representing a distinct taxonomic level. SH represents the healthy group, and SP
represents the AMI group.
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cladogram depicts taxa with significant differences between control

and AMI groups, organized hierarchically from phylum to genus

(Figure 3B). These findings underscore the influence of AMI on the

stability and composition of the oral microbiome, potentially

contributing to the underlying pathophysiological mechanisms of

the disease.
Predicted functional pathways of oral
microbiota in AMI

Next, COG annotation was used via PICRUSt2 to analyze the

biological and functional profiles of the oral microbiota. Our

findings revealed that two functional pathways were significantly

dysregulated between AMI and control groups, including

Coenzyme transport and metabolism were downregulated

considerably in AMI patients, and the function-unknown

pathway was significantly upregulated in AMI patients than the

control group (Figure 4). These findings suggest that AMI is

associated with functional alterations in the oral microbiota,

including impaired coenzyme metabolism, potentially affecting

microbial energy processes, and the activation of uncharacterized

pathways, highlighting novel microbial involvement in AMI.
Metabolomic profiling between both
groups

We subsequently performed untargeted metabolomic analysis

on saliva samples to investigate differences in metabolite profiles

between AMI patients and control groups. The volcano plot

provides a visual representation of the metabolomic differences

between the AMI and control groups. A total of 270 metabolites

were identified across both groups, with 232 metabolites

upregulated and 38 downregulated between the AMI and control

groups (Figure 5A). Five metabolites, including 8-Hydroxycavedilol

and 5,6 EET metabolites, were significantly downregulated, and 20-

HETE ethanolamide, 9(R)-HODE, and Ethyl-D-glucuronide were

upregulated in the AMI group.

Principal component analysis (PCA) showed metabolic

differences between the groups, with PC1 and PC2 explaining

10.51% and 8.62% of the variation, respectively (Figure 5B).

Orthogonal partial least squares to latent structure discriminant
Frontiers in Cellular and Infection Microbiology 07
analysis (OPLS-DA) models indicated that the metabolic

composition of AMI patients was differentiated from the control

group (Figure 5C). Model robustness was confirmed through cross-

validation and permutation tests, ensuring the reliability of

metabolite differentiation between AMI and control groups

(Figure 5D). These changes indicate significant metabolic

disruptions in AMI patients, likely driven by oral microbiota and

host-microbe co-metabolism. The distinct metabolomic profiles

suggest potential biomarkers and pathways l inked to

AMI pathophysiology.
Salivary metabolite-based biomarkers

To further assess the potential of the salivary metabolomic

profile as a diagnostic tool for AMI, we performed receiver

operating characteristic (ROC) analysis to evaluate the accuracy

of salivary metabolites in distinguishing AMI patients from healthy

controls. Twenty metabolite biomarkers, including Allyl Formate,

Altretamine, C75, 4-Hydroxy-2-Methyl-3-Oxo-4-[(2E,6E)-

Farnesyl]-3,4-Dihydroquinoline 1-Oxide, Hexylbenzene, 20-HETE

Ethanolamide, Cadalene, 6-[51-Ladderane-1-Hexanol, 9(R)-

HODE, Nopol, Tanacetol B, 3-Methyl-5-Propyl-2-Furannonanoic

Acid, Vetiveryl Acetate, 5-(N-Methyl-4,5-dihydro-1H-pyrrol-2-yl)

Pyridine-2-ol, and Tetrahydrobiopterin metabolites were

upregulated, and 9-Hydroxy Octadecanoic Acid, PA(19:0/20:0),

Hexylamine, Norisodomesticine, and 8-Hydroxycarvedilol were

downregulated with an area under curve (AUC) of 0.82 – 0.88

(Figure 6), providing strong discriminatory power between AMI

and control groups. However, the high diagnostic accuracy requires

validation in larger, independent cohorts to confirm its

generalizability and mitigate overfitting concerns.
Alterations in functional pathways of
salivary metabolites in AMI

PICRUSt2 was used to predict KEGG pathways, facilitating

comparative metabolomic profiling between control and AMI

groups. Our study identified five major metabolic pathways that

were significantly upregulated, including the Citrate cycle (TCA

cycle), Glucagon signaling, Lysine degradation, Pyruvate

metabolism, and Renal cell carcinoma (Figure 7A). These findings
FIGURE 4

Functional prediction pathways analysis between both groups. The functional pathways analysis of oral microbiota reveals significant dysregulation in
two pathways between the AMI and control groups. SH represents the healthy group, and SP represents the AMI group.
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suggest that AMI is associated with significant metabolic

disruptions, including altered energy production (TCA cycle,

pyruvate metabolism), amino acid breakdown (lysine

degradation), and glucose regulation (glucagon signaling),

reflecting systemic metabolic dysregulation. Additionally, the

involvement of the renal carcinoma pathway indicates potential

overlap with broader disease mechanisms.

Figure 7B shows the contribution of distinct metabolites in

these predicted pathways. For instance, in Renal Cell Carcinoma,

malic acid and L-malic acid were found to be downregulated. In the

Pyruvate Metabolism and Citrate Cycle, succinic acid, malic acid,

and L-malic acid were downregulated. In the Glucagon Signaling

Pathway: D-glucose 1-phosphate was upregulated, and Succinic

acid, L-malic acid, and Malic acid were downregulated. Moreover,

in the Lysine degradation pathway, (3S,5S)-3,5-Diaminohexanoate,

5-Aminopentanal, D-Lysopine, Succinic acid, and Pipecolic acid

were significantly downregulated. The OTUs referenced in the

“Figure 7B” network plot and their corresponding metabolites are

detailed in Table 1.
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Correlation between clinical markers,
microbiome composition, and metabolite
profiles

Based on the 14 discriminative taxa found by LEfSe, we next

tested for their correlations with clinical indices andmetabolites using

Spearman’s correlation. Our findings showed that AMI-depleted

Peptostreptococcales_Tissierellales was negatively correlated with

total cholesterol, indicating that this oral taxon could have a

beneficial effect on lipid metabolism, possibly reducing cholesterol

levels. In addition, AMI-depleted Fusobacteriales and Fusobacteriia

were positively correlated with C-reactive protein and LDL-C. The

contrasting presence of Fusobacteriales and Fusobacteriia in AMI

patients and controls suggests that these taxa might serve as potential

biomarkers for cardiovascular health. Furthermore, Lactobacillales,

Streptococcus, and Streptococcaceae were positively correlated with

HDL-C (Figure 8A); a higher presence of these taxa could favorably

influence lipid profiles, potentially reducing cardiovascular risk by

boosting HDL-C levels. Lactobacillales, Streptococcus, and
FIGURE 5

Salivary metabolites signature between the AMI and control group. (A) The volcano plot identifies metabolites that differ between the AMI and
control groups. (B) PCA shows distinct metabolite profiles for both groups. (C) OPLS-DA emphasizes metabolite differences between the AMI and
control groups. (D) A permutation test confirms the validity of the OPLS-DA model, distinguishing AMI and control groups. SH represents the healthy
group, and SP represents the AMI group.
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Streptococcaceae may play a dual function inmyocardial progression.

While they are associated with HDL-C and beneficial effects on lipid

metabolism and inflammation, their roles in microbial dysbiosis may

also contribute to altered metabolic pathways and systemic

inflammation, potentially exacerbating cardiovascular risk factors.

This dual function highlights the complex interplay between oral
Frontiers in Cellular and Infection Microbiology 09
microbiota and myocardial health, necessitating further research to

clarify their exact contributions.

Additionally, the correlation between distinct microbiota and

metabolites found in different pathways was analyzed. We found that

the taxa identified in AMI patients were associated with almost all

metabolites, while the distinct association with metabolites was rare.
FIGURE 6

ROC analysis for discrimination of AMI patients from the control group. Receiver Operating Characteristic (ROC) curves illustrate the diagnostic
accuracy of the salivary metabolites in distinguishing AMI patients from healthy controls. The Area Under the Curve (AUC) values indicate the overall
performance, with higher AUC reflecting better discriminatory ability. Statistical significance is denoted by p < 0.05. SH represents the healthy group,
and SP represents the AMI group.
FIGURE 7

Metabolomics functions, pathways, and their associated metabolites in AMI. (A) Indicates the significant enrichment pathways associated with AMI.
(B) Shows the significant pathways and their corresponding metabolites.
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For example, AMI-enriched Lactobacillales and Bacilli were positively

correlated with Succinic acid, D-Glucose 1-phosphate, 20-HETE

ethanolamide, 9(R)-HODE, Malic acid, Pipecolic acid, (3S,5S)-3,5-

Diaminohexanoate, 5-Aminopentanal, D-Lysopine, and Ethyl-D-

glucuronide. In addition, MI-enriched Streptococcus and

Streptococcaceae were positively correlated with Succinic acid, D-

glucose 1-phosphate, 20-HETE ethanolamide, Pipecolic acid, D-

lysopine, and ethyl-D-glucuronide. Furthermore, AMI-enriched

Rothia, Micrococcaceae, and Micrococcales were positively correlated

with Pipecolic acid, (3S,5S)-3,5-Diaminohexanoate, 5-Aminopentanal,

and D-Lysopine. Meanwhile, AMI-depleted Fusobacteriales and

Fusobacteriia were positively associated with 5,6-EET metabolite,

while Clostridia and Peptostreptococcales_Tissierellales were

negatively correlated with Ethyl-D-glucuronide (Figure 8B). The

findings indicate that AMI-enriched taxa (e.g., Lactobacillales and

Streptococcus) are broadly associated with metabolites linked to

energy, carbohydrate, and amino acid metabolism, potentially

reflecting metabolic shifts in AMI patients. In contrast, AMI-
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depleted Fusobacteriales and Fusobacteriia, associated with anti-

inflammatory metabolites like 5,6-EET, suggest their loss could

exacerbate inflammation and cardiovascular risk. These insights

highlight the microbiome’s significant role in modulating metabolic

and immune pathways in AMI.
Discussion

Recently, the impact of microbiota on CVDs has been receiving

more and more attention (Jin et al., 2021). Studies have reported

that oral and gut microbiota contribute to the development of MI

(Kwun et al., 2020). The association between the oral microbiome

and metabolome in AMI patients and healthy controls remains

largely unexplored. Herein, we investigated the oral microbiome

and metabolome in AMI patients and healthy controls using 16S

rRNA gene sequencing and LC-MS-based metabolomics. We

discovered significant differences in terms of microbial
FIGURE 8

The correlations of distinct oral microbiota with clinical markers and metabolites. (A) Oral bacterial associations with clinical markers. (B) Oral
bacterial correlation with metabolites. In the heatmaps, brown shows positive correlations, blue shows negative, and significance is marked as
*P =< 0.05, **P =< 0.01.
TABLE 1 The metabolites are implicated in distinct pathways closely associated with the pathophysiology of AMI.

Renal cell carcinoma Pyruvate metabolism and
citrate cycle (TCA cycle)

Glucagon signaling pathway Lysine degradation

neg_1494:
Malic acid

neg_1494:
Malic acid

pos_2124:
D-Glucose 1-phosphate

neg_2164:
Succinic acid

pos_1662:
L-Malic acid

pos_1662:
L-Malic acid

pos_1662:
L-Malic acid

pos_2465:
Pipecolic acid

neg_2164:
Succinic acid

neg_1494:
Malic acid

pos_8321:
D-Lysopine

neg_2164:
Succinic acid

pos_2591:
5-Aminopentanal

pos_7201:
(3S,5S)-3,5-Diaminohexanoate
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1607845
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Khan et al. 10.3389/fcimb.2025.1607845
composition, diversity, and specific metabolite biomarkers between

AMI and control subjects. These significant findings not only help

identify disease-related markers but also provide valuable insights

into the underlying mechanisms of AMI.

Our study has strengthened the link between oral microbiome/

metabolome and AMI. We found that the oral genera, particularly

Streptococcus and Rothia, were significantly altered in AMI patients,

consistent with the previous studies (Kwun et al., 2020; Li et al.,

2024). One study found higher levels of Streptococcus and Rothia in

atherosclerotic patients (Kato-Kogoe et al., 2022). Another study

found that the genera Streptococcus, Rothia, and Corynebacterium

were detected in both the oral cavity and the atherosclerotic plaques

of the same patients who underwent carotid endarterectomy for

minor ischemic stroke or transient ischemic attack (Koren et al.,

2011). A previous study demonstrated higher levels of Streptococcus

in the atherosclerotic plaques, and its levels were elevated in the oral

cavities of patients with atherosclerosis (Ji et al., 2021; Kato-Kogoe

et al., 2022). Streptococcus isolated from atherosclerotic plaques

suggests that the microbiota in these plaques may originate from the

oral cavity or gut (Menon et al., 2017, 2020). Long ago, it was

realized that Streptococcus residing in the oral cavity could

eventually gain access to the bloodstream and cause infective

endocarditis (Murray et al., 2024). Streptococcus receptor

polysaccharides may stimulate aortic endothelial cells, and

cytokines (IL-6, IL-8, and monocyte chemoattractant protein-1)

and intercellular adhesion molecule-1 showed increased expression,

thus contributing to cardiovascular disease progression and arterial

thrombosis (de Toledo et al., 2012). Therefore, our study

corroborated the possibility of these bacterial genera being related

to AMI.

Our study also identified 9(R)-HODE, 20-HETE ethanolamide,

8-Hydroxycavedilol, and 5,6 EET as biomarkers for the progression

of AMI. 9-HODE, an oxylipin, is an oxidized metabolite of linoleic

acid, the most abundant polyunsaturated fatty acid in human diets

(Nieman et al., 2014). Several studies have demonstrated the

contribution of oxylipins, in general, to cardiovascular diseases

(Nayeem, 2018). A study suggested that 9-HODE is associated

with pulmonary arterial hypertension (Petriello et al., 2018). 9-

HODE was considered among the most important derivatives after

an early incident of ischemic stroke (Szczuko et al., 2020).

Furthermore, 9-HODE can affect vascular cells, including smooth

muscle cells (Szczuko et al., 2020). Alterations in vascular smooth

muscle cell signaling and function can affect vascular reactivity and

tone, critical determinants of vascular resistance and blood pressure

(Touyz et al., 2018). Evidence showed that HODE can induce pro-

inflammatory effects, including the production of inflammatory

cytokines IL-1b and IL-8 (Ku et al., 1992; Terkeltaub et al., 1994)

and the activation of NF-kB (Ogawa et al., 2011). In addition, 9-

HODE has been considered a biomarker for oxidative stress and is

linked to various pathological conditions such as atherosclerosis,

diabetes, chronic inflammation, obesity, and cancer (Nieman et al.,

2014, 2016). As oxidative stress plays an important role in the

progression of hypertension, there is a strong relationship between

9-HODE and oxidative stress (Rodrigo et al., 2011). The precise role

of 9-HODE in the pathophysiology of AMI remains incompletely
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understood. Advanced investigations are warranted to delineate its

underlying mechanisms and assess the therapeutic potential of

targeting 9(R)-HODE in the management of AMI. In addition,

20-HETE ethanolamide, a derivative of 20-HETE, plays a complex

role in MI by potentially balancing detrimental and protective

effects (Zhang et al., 2020). While 20-HETE is known for its pro-

inflammatory and vasoconstrictive actions that can exacerbate

ischemic injury, the ethanolamide form may modulate these

effects differently (Waldman et al., 2016). In the context of AMI,

20-HETE ethanolamide could contribute to vascular dysfunction

and inflammation, worsening myocardial damage, but it may also

exert cardioprotective effects by attenuating excessive inflammatory

responses or oxidative stress (ElKhatib et al., 2023). Its precise role

remains unclear, highlighting the need for further investigation into

its impact and therapeutic potential in AMI.

Furthermore, 8-Hydroxycarvedilol, a key metabolite of

carvedilol, exhibits potent antioxidant and anti-inflammatory

properties that protect myocardial cells by mitigating oxidative

stress and inflammation critical in post-infarction remodeling

(Beti̧u et al., 2022). Its downregulation in MI patients, likely due

to altered metabolism, may reduce these cardioprotective effects,

underscoring the need to optimize carvedilol therapy or enhance

metabolite activity in such patients. Moreover, 5,6-EET, a

cardioprotective lipid mediator, promotes vasodilation, reduces

inflammation, and prevents cardiomyocyte apoptosis, which is

crucial for myocardial protection (Isse et al., 2022; Zhang et al.,

2022; ElKhatib et al., 2023; Lan et al., 2024). Its downregulation in

AMI may worsen ischemic injury by increasing oxidative stress and

inflammation, suggesting therapeutic potential for strategies that

preserve or enhance 5,6-EET activity. Further mechanistic studies

are needed to elucidate the precise roles of 9(R)-HODE, 20-HETE

ethanolamide, 8-Hydroxycarvedilol, and 5,6-EET metabolites in the

pathophysiology of AMI. This will aid in understanding their

contributions to vascular dysfunction, oxidative stress, and

inflammation, and explore their potential as therapeutic targets

for improving cardiovascular outcomes.

Moreover, our findings demonstrated the dysregulations of

Glucagon signaling, TCA cycle, Pyruvate metabolism, Renal cell

carcinoma, and Lysine degradation pathways in AMI. The

metabolites involved in these pathways were malic acid, L-malic

acid, succinic acid, D-glucose 1-phosphate, Pipecolic acid, D-

Lysopine, 5-Aminopentanal, and 3,5-Diaminohexanoate. The

involvement of metabolites such as malic acid, L-malic acid,

succinic acid, and D-glucose 1-phosphate in pathways like

Glucagon signaling, the TCA cycle, Pyruvate metabolism, and

Renal cell carcinoma pathways in AMI patients suggests

significant metabolic reprogramming during MI (Hoang et al.,

2021). These pathways reflect critical disruptions in energy

production, glucose metabolism, and cellular stress responses (Yu

et al., 2021; Nguyen and Schulze, 2023; Wang et al., 2024). Altered

TCA cycle activity indicates impaired mitochondrial function, while

changes in glucagon signaling and pyruvate metabolism suggest

adaptations in glucose and energy homeostasis (Icard et al., 2021;

Guo et al., 2022). Additionally, the overlap with renal cell carcinoma

pathways may highlight shared mechanisms of metabolic
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dysregulation and oxidative stress (Fan et al., 2024). Collectively,

these findings point to a complex interplay between energy

metabolism and cellular stress in AMI, emphasizing the need for

further studies to explore their diagnostic and therapeutic potential.

Our study also found a significant disruption in the lysine

degradation pathway between the two groups. This pathway was

linked to pipecolic acid, which is also implicated in various diseases,

including diabetic corneal stroma in humans (Priyadarsini et al.,

2016). Dysregulation of lysine degradation pathways may

contribute to the early onset of cardiac hypertrophy, indicating

that related metabolites could serve as predictive markers and

potential targets for intervening in subclinical cardiomyocyte

hypertrophy (Liu et al., 2021). Therefore, it is essential to further

explore the lysine degradation pathway in T2D to identify possible

biomarkers and better understand the underlying biological

mechanisms (Razquin et al., 2019). Furthermore, (3S,5S)-3,5-

Diaminohexanoate, 5-Aminopentanal, and D-Lysopine

metabolites were associated with the lysine degradation pathway.

Taken together, the results suggest that salivary metabolites could

serve as potential risk factors for AMI, with the oral microbiota

playing a significant role in their association.

Moreover, significant correlations were observed among oral

microbiota, clinical indices, and metabolites, highlighting their

interconnected roles in disease pathology. For instance, the

correlation between oral microbiota, specifically AMI-enriched

Streptococcus and Streptococcaceae, and metabolites such as

succinic acid, D-glucose 1-phosphate, 20-HETE ethanolamide,

pipecolic acid, D-lysopine, and ethyl-D-glucuronide suggests a

potential link between oral microbiota dysbiosis and altered

metabolic pathways in AMI. These metabolites are involved in

key pathways such as glucagon signaling, the TCA cycle, pyruvate

metabolism, and renal cell carcinoma pathways, indicating

disruptions in energy metabolism, glucose regulation, and

oxidative stress. The association with these pathways highlights

the role of oral microbiota in influencing systemic metabolic

processes and their potential contribution to the pathophysiology

of AMI. Further research is needed to elucidate the mechanistic

interactions between oral microbiota and metabolic dysregulation

in cardiovascular diseases. Similarly, AMI-enriched Lactobacillales

and Bacilli were positively correlated with metabolites such as

succinic acid, D-glucose 1-phosphate, 20-HETE ethanolamide, 9

(R)-HODE, mal i c ac id , p ipeco l i c ac id , (3S ,5S) -3 ,5-

diaminohexanoate, 5-aminopentanal, D-lysopine, and ethyl-D-

glucuronide. These metabolites are involved in key metabolic

pathways, including glucagon signaling, the TCA cycle, pyruvate

metabolism, and renal cell carcinoma pathways in AMI patients.

The association suggests a potential role of Lactobacillales and

Bacilli in influencing metabolic dysregulation, oxidative stress,

and inflammatory processes, contributing to the pathophysiology

of myocardial infarction. Further studies are needed to clarify their

mechanistic involvement and therapeutic potential in AMI.
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Limitations and future research directions

Although this research provides valuable insights, there is still

room for future exploration in the study: (i) A key limitation of this

study is the small sample size, which may reduce the ability to detect

subtle differences in microbiome and metabolomic profiles,

increasing the likelihood of false negatives. To further validate our

findings, a large-scale randomized controlled trial is necessary. (ii)

The cross-sectional design precludes determining whether the

observed changes in microbial taxa and metabolites are causative

in AMI pathogenesis or a secondary consequence of disease

processes. (iii) Lifestyle factors such as smoking or exercise may

shape microbial composition, and dietary habits could influence

metabolite profiles while introducing potential biases in the

observed associations.

Future studies should focus on the following key areas: (i)

Longitudinal studies tracking microbiome and metabolomic

dynamics from pre-MI to post-MI recovery to identify predictive

and prognostic markers. (ii) Integration of metagenomics,

metabolomics, and transcriptomics to elucidate microbial

functional pathways and their metabolic outputs, with multicenter

collaborations across geographically and ethnically diverse

populations to enhance statistical power and address inter-

individual variability. (iii) Investigation of the roles of key

metabolites (e.g., 9(R)-HODE, 8-Hydroxycavedilol, 5,6 EET, and

20-HETE ethanolamide) in AMI pathophysiology using animal

models or in vitro assays. (iv) Evaluation of the therapeutic

potential of targeting the TCA cycle, Pyruvate metabolism, and

Glucagon signaling pathways in preclinical MI models to mitigate

myocardial infarction pathophysiology effectively. (v) Validation of

identified biomarkers in independent cohorts to assess their

reliability and utility for early AMI detection.
Conclusions

This study represents a pioneering effort in integrating

microbiome and metabolome profiling within the context of

AMI, establishing a microbiological framework for identifying

novel biomarkers and therapeutic targets in cardiovascular

pathology. Specifically, the detection of AMI-enriched genera,

including Streptococcus and Rothia, and 9(R)-HODE, 20-HETE

ethanolamide, 8-Hydroxycavedilol, and 5,6 EET metabolites,

highlights their potential as key indicators of AMI progression.

These microbiome and metabolomic signatures are promising as

non-invasive diagnostic tools, facilitating early detection and risk

stratification in clinical settings. The findings illuminate the critical

role of these microbial taxa in the pathophysiological mechanisms

underlying AMI, thereby emphasizing their relevance in the

development of future therapeutic interventions. Moreover, this

study contributes to the broader understanding of cardiovascular
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research, enriching the emerging field of microbiome-metabolome

interactions, which holds substantial implications for

immunologica l processes , metabol ic regu lat ion , and

microbiological sciences. Future research endeavors should

prioritize longitudinal investigations to elucidate causal

relationships, adopt multiomics strategies to integrate functional

genomics with metabolomics, and conduct validation studies in

larger, more diverse cohorts to enhance generalizability and

clinical applicability.
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