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Vaginal microecology serves as a crucial defense mechanism in women’s

reproductive health. It encompasses vaginal anatomy, microbial flora,

endocrine regulation, and immune responses. Lactobacillus species dominate

this ecosystem, maintaining a dynamic balance essential for vaginal health.

Studies have highlighted a strong association between vaginal microecology,

human papillomavirus (HPV) infection, and cervical lesions. A well-balanced

vaginal microenvironment enhances mucosal barriers and immune function,

aiding in HPV prevention and clearance. Conversely, disruptions in vaginal

microecology compromise these defenses, increasing susceptibility to HPV

infection. Persistent high-risk HPV (HR-HPV) infections are key contributors to

cervical lesions and may further destabilize the vaginal microbiota(VMB).

Additionally, cervical lesion progression is influenced by local immune

responses, with HPV infection potentially accelerating disease development by

suppressing cervical immunity. This review explores the intricate association

between vaginal microecology, HPV infection, and cervical lesions, offering

insights into early diagnosis, prevention, and treatment strategies.
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1 Introduction

Cervical cancer (CC) is a common gynecological malignancy, ranking fourth among female

cancer-related deaths worldwide (Pimple andMishra, 2022). Latest data from theWorld Health

Organization show that in 2022, approximately 660,000 new CC cases and 350,000 related

deaths occurred globally (Organization W. H. Cervical cancer). China remains one of the

countries with the highest CC incidence and mortality (Singh et al., 2023), with data from 2020

indicating approximately 110,000 new cases annually, accounting for 18.2% of global cases. In

addition, approximately 59,000 women die from this disease every year, accounting for 17.3% of

total global deaths (Zou et al., 2020), posing a substantial threat to women’s health. Unlike other

malignancies, CC has a well-established etiology (Bornstein et al., 1995). Persistent infection

with human papillomavirus (HPV), particularly high-risk HPV (HR-HPV), has been identified
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as the primary causative agent of CC and squamous intraepithelial

lesions (SIL) (Rahangdale et al., 2022).

The mucosal immune system of the female genital tract, vaginal

microbiota(VMB), and other host factors influence the persistence or

clearance of HPV, thus concerning the risk of CC (Schellekens et al.,

2025). In a healthy vaginal environment, microbial diversity is relatively

low, with Lactobacillus being the predominant bacteria (Leon-Gomez

and Romero, 2024). Lactobacilli maintain the vaginal microecological

balance and produce lactic acid, hydrogen peroxide (H2O2), and

bacteriocins, which effectively inhibit the overgrowth of pathogenic

bacteria and strengthen the vaginal mucosal barrier. This protective

mechanism reduces the likelihood of viral and bacterial infections and

enhances local antimicrobial and anti-tumor defense capabilities (Xu

et al., 2025). HPV infection disrupts the original acidic environment of

the vagina, potentially triggeringmucosal immune responses and genital

inflammation, which, in turn, alters the VMB (Gardella et al., 2022).

Vaginal microecological imbalance facilitates HPV adhesion, impairs

cervical immune defenses, and promotes the invasion and colonization

of pathogenic bacteria. This vicious cycle elevates vaginal pH and shifts

the microbial community away from Lactobacillus dominance, leading

to chronic inflammation, persistent HPV infection, and disease

progression, finally increasing CC risk (Lin et al., 2022).

Despite the growing evidence of the association among vaginal

microbiota, host immune response, and HPV infection, the

underlying mechanism of their interaction remains elusive.

Further investigation into the roles of immune regulation and

vaginal microecology in HPV infection is essential for elucidating

viral persistence and developing more effective prevention and

therapeutic strategies. This review looks into the role of vaginal

microecology in the development of HPV-related cervical diseases.

It provides theoretical support for early diagnosis, future

interventions, and microbiota-targeted prevention measures.
2 Vaginal microecology

2.1 Definition and composition

The female vagina is a dynamic yet relatively stable ecosystem

encompassing the VMB, host endocrine system, vaginal anatomy,

and local immune defenses (Qing et al., 2024). The vaginal

microbiota constitutes the core of this microecosystem. As an open

cavity, the vagina is colonized by various microorganisms, such as

bacteria, fungi, and viruses (Ye and Qi, 2024). These microorganisms

primarily reside in the vaginal mucosal epithelium and form biofilms

through hierarchical and structured colonization. The microbial

composition within these biofilms undergoes constant succession in

response to physiological and environmental changes (Usyk et al.,

2020). The vaginal flora forms a symbiotic relationship with the host,

supporting normal physiological functions and ensuring

reproductive health.
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2.2 Functions of vaginal microecology

In women of reproductive age, the VMB is both vast and

complex. It is estimated that the total bacterial load usually

ranges from 10¹0 to 10¹¹. Among these, Lactobacillus is the

predominant genus, accounting for over 70% of the total bacteria.

Lactobacillus plays a crucial role in maintaining vaginal microbiota

balance, curbing the reproduction of pathogenic microorganisms,

strengthening local immune defenses, and providing anti-tumor

protection (Shen et al., 2024). The key mechanisms by which these

beneficial bacteria contribute to health include:

① Lactobacilli produce lactic acid to maintain vaginal acidity.

They derive energy from the carbohydrates released by vaginal

mucosal epithelial cells. Lactobacilli metabolize glycogen into lactic

acid, which creates an acidic environment (pH < 4.5) that

significantly inhibits the adhesion, colonization, and proliferation

of pathogenic bacteria (Shen et al., 2024).② Lactobacilli secrete

H2O2, bacteriocins, and other compounds with antibacterial

efficacy. H2O2 increases cell membrane permeability by

generating highly reactive hydroxyl radicals, thereby preventing

the invasion of pathogens into cervical epithelial cells (Fras̨zczak

et al., 2022). Additionally, Lactobacilli secrete bacteriocins and

biological surfactants, which are antimicrobial peptides or proteins

that disrupt epithelial cells and form a frontline defense against

pathogen adhesion (Borgogna et al., 2020; Nieves-Ramıŕez et al.,

2021). ③ Lactobacilli prevents pathogenic microorganisms from

adhering to vaginal epithelium by competitively binding to

mucosal epithel ial receptors. Furthermore, it secretes

peptidoglycans and extracellular polypeptidoglycans (EPS) to

form a biofilm with physical barrier functions to reduce

pathogen colonization (Kalia et al., 2020). Different Lactobacillus

species secrete distinct protective substances (Wang et al., 2019a).

For example, Lactobacillus crispatus (L. crispatus), a predominant

vaginal species, produces adhesion factors that facilitate mucosal

colonization and inhibit Gardnerella vaginalis adhesion. In

contrast, Lactobacillus iners(L. iners) lacks this protective effect

(Łaniewski et al., 2019). Women with L. iners-dominant

microbiota experience a three to five times higher risk of HPV

infection and a two to three times greater likelihood of HR-HPV

progression, cervical dysplasia, or cancer than women with L.

crispatus-dominant microbiota (Palma et al., 2018). This

highlights the superior role of L. crispatus in vaginal defense. ④

Lactobacilli enhance immune function by activating T-cell

proliferation and differentiation, ameliorating the immunological

recognition and proliferation of B cells (Fras̨zczak et al., 2022).

Lactic acid suppresses toll-like receptor agonists, lowering pro-

inflammatory cytokines, such as interleukin-6 (IL-6), tumor

necrosis factor (TNF), RANTES, IL-8, and macrophage

inflammatory protein 3a (MIP3a). This anti-inflammatory effect

helps shield genital tract epithelial cells from infections and

damage (Hearps et al., 2017).
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2.3 Classification of vaginal microbiota

Currently, most domestic and international scholars agree that

the VMB can be classified into five community state types (CSTs),

with dominant bacterial groups identified for each type

(McClymont et al., 2022; Peremykina et al., 2024). L. crispatus,

Lactobacillus gasseri(L. gasseri), L. iners, and Lactobacillus jensenii

(L. jensenii) prevail in CSTs I, II, III, and V, respectively, whereas

CST IV is characterized by increased microbial diversity, marked by

reduced Lactobacillus abundance and a higher prevalence of

anaerobic bacteria. CST IV is further subdivided into: CST IV-A

(comprising the Anaerococcus, Peptoniphilus, Corynebacterium,

Prevotella, Finegoldia, Streptococcus); CST IV-B (including the

Atopobium, Fannyhessea, Gardnerella, Sneathia, Mobiluncus,

Megasphaera); and CST IV-C, which features other diverse

anaerobic species (France et al., 2020). Notably, differences in

vaginal microenvironments across CSTs may directly affect HPV

susceptibility and persistence.
3 Abnormal vaginal flora composition
is associated with cervical HPV
infection and cervical lesions

A balanced VMB plays a critical role in preventing infections of

the female reproductive tract. Disruptions in microbiota

composition are closely related to the development of cervical

lesions (Žukienė et al., 2025). Collectively, vaginal dysbiosis may

act as a cofactor for HPV infection. Investigating the interaction

between VMB and HPV may enhance the understanding of HPV

pathogenesis and facilitate the development of novel approaches for

preventing cervical lesions. Common infections of the female

urogenital tract include bacterial vaginosis (BV), vulvovaginal

candidiasis (VVC), aerobic vaginitis (AV), and sexually

transmitted infections(STIs).

Table 1 summarizes the clinical research on VMB, HPV

infection, and cervical lesions.
3.1 Association of BV with HPV infection
and cervical lesions

Numerous studies have demonstrated a strong correlation between

BV and HPV infection, with BV recognized as an independent risk

factor for HPV acquisition and cervical lesions (Xu et al., 2022; Paul

et al., 2023). CST III-B, IV-A, and IV-B are prevalent in patients with

BV (Dong et al., 2024). BV is commonly caused by pathogens,

including Gardnerella, Prevotella, Campylobacter, Bacteroides,

Atopobium vaginae, and Sneathia. A meta-analysis encompassing six

studies further confirmed the positive association between BV and

cervical HPV infections (Martins et al., 2023). Similarly, another study
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used 16S rRNA gene sequencing to analyze the association between

BV, HPV infections, and cervical lesions (Wei et al., 2020). HR-HPV-

positive individuals exhibited decreased levels of Lactobacillus and

elevated proportions of BV-associated bacteria, such as Gardnerella,

Prevotella, Fusobacterium, Actinomyces, Peptococcus, Anaerococcus,

Peptostreptococcus, Streptococcus, and Ureaplasma urealyticum. These

results underscore a strong association between BV and HR-HPV

infection. Dong et al. conducted a 2-year longitudinal study involving

reproductive-aged women, demonstrating that BV-positive individuals

showed significantly higher rates of persistent HR-HPV infection than

BV-negative individuals (Dong et al., 2022). Through combined 16S

rRNA sequencing and quantitative reverse transcription polymerase

chain reaction analysis of vaginal secretions and cervical cells, vaginal

Prevotella overgrowth was found to activate the NF-kB/C-Myc

signaling pathway, facilitating HR-HPV persistence and cervical

lesion progression. This effect may be further amplified by sialidase

secretion. Microbial infection-induced NF-kB activation stimulates C-

Myc expression, which in turn upregulates hTERT to drive malignant

transformation (Papanikolaou et al., 2011; Ghareghomi et al., 2021).

Lam et al. proposed that intratumoral microbiota may contribute to

cervical carcinogenesis through immune modulation. They specifically

suggested that Prevotella bivia(P. bivia) upregulate the human cancer

driver lysosome-associated membrane protein 3 (LAMP3), which

promotes metastasis and may help eliminate episomal HPV. This

process can lead to overexpression of the E6 and E7 HPV oncogenes,

thereby accelerating cervical disease progression (Lam et al., 2018).

BV may provide a biological rationale for HPV infection and

invasion. However, Mao et al. identified a temporal sequence

between HPV and BV infections, with HPV infection generally

preceding BV. This may be attributed to the imbalance in the

vaginal microenvironment caused by HPV infection, which

increases the likelihood of BV (Mao et al., 2003). Therefore, the

direct association between BV and cervical HPV infection, whether

BV infection disrupts vaginal microecology and increases the

prevalence of HPV infection and cervical lesions, whether HPV

infection induces changes in the vaginal microecology that lead to

BV infection, or whether these conditions are interdependent and

promote simultaneous infections remains unclear. A substantial

number of epidemiological and molecular studies are required to

further explore the association between HPV infection and cervical

lesions. Additionally, further research on the interaction between

HPV infection and BV may facilitate the use of simple vaginal

microecology tests, such as pH measurement, Gram staining for

Nugent scoring, or molecular assays (e.g., quantitative PCR or 16S

rRNA sequencing) targeting key bacteria (e.g., Lactobacillus spp.,

Gardnerella vaginalis, and Atopobium vaginae). These tests may

help assess vaginal dysbiosis and predict HPV susceptibility. For

instance, a low Lactobacillus dominance combined with a high

anaerobic bacterial load may serve as a practical biomarker for

increased HPV risk. Such approaches, if validated, might be

integrated into routine gynecological screening to improve early

detection and prevention strategies.
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3.2 Association of VVC with HPV infection
and cervical lesions

VVC is a common infectious disease of the lower genital tract

caused by Candida albicans, which is a conditionally pathogenic

fungus that causes disease only when the local immune capacity of

the body or vagina declines (Sobel and Vempati, 2024).

The correlation between VVC, HPV infection, and cervical

lesions remains controversial. Some researchers pose that VVC

increases susceptibility to HPV and hinders HPV clearance (Wang

et al., 2020b; Wu and Xue, 2020). This may result from pathogen-

secreted proteolytic enzymes that activate the complement cascade,

generating anaphylatoxins and chemokines. These factors cause

local vasodilation, increased permeability, and an inflammatory

response, finally inhibiting chemotaxis and the activation of

neutrophils and lymphocytes (Ghosh et al., 2016). Additionally,

VVC produces invasive enzymes that can damage genital epithelial

cells, potentially facilitating HPV adhesion and persistence by

creating a favorable microenvironment for viral replication

(Wang et al., 2024). However, VVC does not raise the risk of

HPV infection, and having both VVC and HPV does not lead to

more severe cytological abnormalities (Wang et al., 2020b; Long

et al., 2023). Furthermore, most women with VVC have a vaginal

pH below 4.5; this acidic environment enhances vaginal defense by

suppressing pathogen survival (Kwon and Lee, 2022). The low pH

further bolsters immune responses by promoting the production of

antimicrobial peptides (e.g., defensins) and lactic acid, which inhibit

viral replication and maintain epithelial barrier integrity

(Czechowicz et al., 2022). Consequently, VVC may confer a

protective effect against persistent HPV infection, potentially

reducing the risk of cervical intraepithelial lesions. Smalley et al.

found that VVC may lower the risk of infection from non-16/18

HPV subtypes. Moreover, VVC functions as a possible booster for

HPV vaccines because it may stimulate T-cell activity and improve

immune function (Smalley Rumfield et al., 2020). This presents new

avenues for vaccine and immunotherapy development. While

numerous clinical studies have investigated the association

between VVC and HPV infection/cervical lesions, substantial

heterogeneity exists across study populations, including both

general and high-risk groups. For instance, some studies enrolled

balanced cohorts of premenopausal and postmenopausal women,

whereas others specifically focused on HPV-vaccinated individuals.

These demographic variations (e.g., age, immune status, and

geographic distribution) may account for the inconsistent

conclusions regarding the VVC-HPV association. Future

investigations should utilize stratified analyses controlling for

these covariates to elucidate potential confounding effects.
3.3 Association of AV with HPV infection
and cervical lesions

In 2002, Donders et al. introduced the concept of AV based on

its bacteriological, immunological, and clinical characteristics

(Donders et al., 2002). Similar to BV, AV is characterized by a
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reduction in H2O2-producing Lactobacillus species or a decrease in

Lactobacillus activity within the vaginal microenvironment.

However, unlike BV, AV is associated with an overgrowth of

aerobic bacteria, primarily Streptococcus, Staphylococcus, and

Escherichia coli, which are compositionally aligned with CST IV

(Zeng et al., 2023). Because of the relatively recent clinical

recognition of AV, studies investigating its association with HPV

infection and CC remain limited. Jahic et al. conducted a

prospective study and reported that AV was significantly more

prevalent in women with cervical intraepithelial lesions than in

those with healthy cervical cytology (Jahic et al., 2013).

Furthermore, AV treatment appeared to promote the regression

of cervical precancerous lesions. The proposed mechanism suggests

that AV disrupts vaginal microecology by reducing Lactobacillus

populations, thereby increasing the vaginal pH. The loss of

Lactobacillus, the dominant protective bacterium, weakens the

defense against external pathogens, leading to leukocytosis and

enhanced interstitial invasion of cervical tissue by inflammatory

cells, particularly through leukocyte esterase activity (Donders,

2007; Wang et al., 2020a). Vieira-Baptista et al. reported that

moderate-to-severe AV was independently associated with an

increased risk of cervical cellular abnormalities, despite no direct

correlation with cervical HPV infection (Vieira-Baptista et al.,

2016). Considering the limited national and international research

on AV and HPV, further large-scale studies are required to

elucidate their association.
3.4 STIs

3.4.1 TV
TV is a lower genital tract infection caused by Trichomonas

vaginalis, a prevalent sexually transmitted pathogen. The parasite

secretes proteases, consumes or phagocytoses glycogen from vaginal

epithelial cells, and inhibits lactic acid production, increasing the

vaginal pH. Additionally, it consumes oxygen, creating an anaerobic

environment that favors the proliferation of anaerobic bacteria (Li

et al., 2022).

There are inconsistent findings about the association between

TV and HPV infection and cervical lesions. Belfort et al. reported

that TV is associated with an increased risk of HR-HPV infection,

with TV-positive patients exhibiting a higher risk of HR-HPV

infection than TV-negative patients (Belfort et al., 2021). This

may be attributed to the depletion of Lactobacillus populations

and subsequent reduction in lactic acid secretion in patients with

TV, leading to vaginal microecological imbalances, increased

inflammatory factor secretion, and reduced local cervical

immunity (Mei et al., 2023). Yang et al. concluded that TV is

significantly associated with HPV infection, proposing that

flagellated protozoa attach to epithelial cells and induce toxic

reactions, thereby increasing HPV infection risk. Moreover, TV

induces a sustained inflammatory response in the cervix and vagina,

damaging the cervical epithelium and accelerating the erosive effects

of HPV on the cervix (Yang et al., 2020). However, Li et al.

suggested that HPV infection may prevent TV infection (Li et al.,
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2022). HPV infection activates the immune response, triggering the

release of immune cells and factors that provide localized immunity

against TV. Additionally, Feng et al. examined 25,054 women and

reported that although TV-positive women had a higher risk of HR-

HPV infection, they exhibited a decreased risk of developing

cervical intraepithelial neoplasia grade 2 or higher (CIN2+) (Feng

et al., 2018). However, other studies report no strong association

between TV and HPV. For example, Liang et al. found no

association between these two infections (Liang et al., 2019).

Similarly, Raffone et al. observed that TV infection alone did not

significantly affect HPV rates (Raffone et al., 2020). These

inconsistent findings may stem from differences in study

populations and sample sizes. This necessitates large-scale clinical

studies to clarify the association between trichomoniasis, HPV

infection, and cervical lesions.

3.4.2 CT and UU
Chlamydia trachomatis (CT) and Ureaplasma urealyticum

(UU) infections represent clinically prevalent urogenital diseases

transmitted primarily through sexual contact (Liu et al., 2024). The

association of CT and UU infections with the progression of HPV

infection and cervical lesions remains debatable. A meta-analysis by

Liang et al. suggested that CT infection raises the likelihood of HPV

infection. One possible explanation is that CT attaches to the genital

mucosa, disrupts lysosomal activity in host cells, and causes

microdamage and localized inflammation. This compromises

immune defenses of the cervix and vagina, thus increasing

susceptibility to HPV and potentially accelerating CIN and CC

development (Liang et al., 2019). In contrast, Wang et al. reported

no significant correlation between CT and HR-HPV or cervical

lesions, despite a moderately higher prevalence of CT infection in

HPV-positive cases (Wang et al., 2019b). Similarly, Abreu et al.

suggested that CT positivity does not increase the risk of CC but

may be associated with LSIL and HSIL (de Abreu et al., 2012).

Conversely, other studies found no significant association between

HPV infection and CT (Meng et al., 2016).

Researchers have demonstrated significantly higher UU

prevalence in HPV-positive groups, establishing a significant

association between UU and HPV infections (Lu et al., 2023). UU

may trigger viral persistence and cellular abnormalities, acting as a

cofactor in HPV-induced precancerous cervical lesions and CC

(Plummer et al., 2021). One possible explanation is that

mycoplasma infection induces the release of pro-inflammatory

cytokines from cervical macrophages, disrupting the mucosal

barrier of the cervix. This results in localized congestion,

epithelial cel l degeneration, necrosis , and periungual

inflammatory infiltration of the mucosa, submucosal tissues, and

glands (Lv et al., 2019; Liu et al., 2021). Additionally, UU can adhere

to host cells and produce phospholipases that degrade host cell

membranes, altering cellular functions. UU breaks down urea,

releasing toxic ammonia that damages cells, whereas its

immunoglobulin A (IgA) proteases degrade mucosal IgA,

impairing immune defenses and facilitating HPV invasion and

colonization (Chen et al., 2014; Adebamowo et al., 2017).

However, other studies have reported no significant correlation
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between UU infection and HR-HPV infection (Zhang et al., 2017).

Hence, larger sample sizes and long-term follow-up studies are

necessary to clarify the association and underlying mechanisms.

3.4.3 N. gonorrhoeae and HSV
Neisseria gonorrhoeae (N. gonorrhoeae) and herpes simplex

virus (HSV) are common sexually transmitted pathogens.

Epidemiological studies indicate a high co-infection rate of N.

gonorrhoeae, HSV, and HPV among sexually active populations,

likely associated with high-risk sexual behaviors (e.g., unprotected

intercourse, multiple partners). Moreover, these pathogens may act

synergistically to significantly increase the risk of malignancies,

such as cervical and anal cancers (Klein et al., 2024). Co-infections

involving HR-HPV and non-HPV STIs (e.g., N. gonorrhoeae, HSV-

2) have been related to HPV persistence, cervical dysplasia, and

neoplastic progression (Ma et al., 2022). N. gonorrhoeae-HPV co-

infection may elevate CC risk, necessitating enhanced clinical

surveillance and prevention of STIs like N. gonorrhoeae (Latorre-

Millán et al., 2025). Notably, HSV-2 is significantly more prevalent

among HPV/HR-HPV-positive women (Klein et al., 2024).

However, other research has reported a higher HSV-1

seropositivity rate in HPV-positive women than in HPV-negative

individuals, suggesting a possible synergistic role of HSV-1 with

HPV in increasing the risk of CIN, whereas the impact of HSV-2

remains unclear (Finan et al., 2006). The underlying mechanisms

may involve genital mucosal inflammation and local immune

suppression induced by N. gonorrhoeae and HSV, facilitating

poly-microbial co-infections and prolonged pathogen persistence

(Quillin and Seifert, 2018). Furthermore, treatments for N.

gonorrhoeae or HSV (e.g., antibiotics/antivirals) may alter vaginal/

cervical microbiota, thus indirectly influencing HPV infection

outcomes (Sausen et al., 2023).

3.4.4 HIV
Human Immunodeficiency Virus (HIV) and HPV are both

sexually transmitted pathogens and share a complex epidemiological

association and biological interaction. A meta-analysis of HPV

infection among HIV-infected individuals in China reported an

HPV infection rate of 52.54% (Yuan et al., 2023). A systematic

review indicated that the infection rate of high-risk HPV (HPV16,

HPV18) in HIV-positive individuals was significantly higher than in

HIV-negative individuals, and this co-infection status accelerated the

progression of CIN to CC (Swase et al., 2025). Cambrea et al.

examined HIV-positive women in southeastern Romania and

suggested that HPV types 31 and 56 were more prevalent (Cambrea

et al., 2022). Pavone et al. stated that HIV infection reduces helper T

(CD4+ T) cells, weakening the immune response against HPV. The

impaired function of dendritic cells (DCs) during co-infection further

affects antigen presentation and T-cell activation, thus promoting

persistent HPV infection. HIV-induced immunosuppression

enhances the carcinogenic effects of HPV oncoproteins, such as E5,

E6, and E7, which interfere with cell cycle regulation, promote cell

proliferation, and inhibit apoptosis, thereby accelerating the malignant

transformation of cervical epithelial cells. Additionally, HIV infection

induces epithelial-mesenchymal transition (EMT) in cervical epithelial
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cells through the actions of gp120 and Tat proteins, promoting tumor

cell invasion and metastasis. The EMT process involves the activation

of multiple signaling pathways, such as mitogen-activated protein

kinase and transforming growth factor-beta (TGF-b), which are

closely related to the carcinogenic effects of both HIV and HPV

(Pavone et al., 2024). Additionally, HPV infection may increase the

risk of HIV acquisition through multiple mechanisms. First, HPV-

induced inflammation leads to elevated levels of cytokines (such as IL-

1, IL-6, IL-8, and TNF-a) and chemokines (such asMCP-1 and IP-10)

in the genital tract. These mediators recruit more immune cells to the

genital mucosa and may also disrupt the mucosal barrier, facilitating

HIV entry. Because CD4+ T cells are the primary targets of HIV, their

increased numbers directly elevate the risk of HIV infection. HPV

infection may modulate immune responses by affecting the Toll-like

receptor (TLR) signaling pathway. For example, the HPV E7 protein

can recruit histone-modifying enzymes to suppress TLR9

transcription, weakening antiviral immune responses and facilitating

HIV infection. Furthermore, HPV infectionmay alter the composition

of the genital microbiota, characterized by a reduction in beneficial

bacteria and an increase in harmful bacteria. This microbial imbalance

may further exacerbate inflammation and increase the risk of HIV

acquisition (Zayats et al., 2022; Swase et al., 2025).

Regarding HPV-HIV co-infection, researchers have proposed

targeted prevention and treatment strategies (Arnold et al., 2022;

Yuan et al., 2023). For example, strengthening HPV screening and

preventive vaccination can reduce HPV infection rates, thereby

lowering the risk of HIV acquisition and CC incidence. Meanwhile,

for HIV-infected individuals, the early initiation of antiretroviral

therapy helps restore immune function and reduces the risk and

persistence of HPV infection.
4 Vaginal microecological functions
and the role of HPV infection in
cervix-associated diseases

The interaction between HPV and vaginal microecology is a

prominent research focus in gynecology. An imbalance in vaginal

microecology-particularly a reduction in Lactobacillus populations-

may elevate the risk of HPV infection. An altered VMB may

contribute to the persistence of HPV infection and its progression

to malignancy. Possible mechanisms include changes in the local

immune response, microbial metabolite activity, and disruption of

the epithelial barrier (Figure 1). Therefore, maintaining a balanced

vaginal microenvironment may facilitate preventing HPV infection

and its associated diseases.
4.1 Impact of cervicovaginal
microecological dysregulation on mucosal
barrier disruption

The mucosal barrier serves as the first line of immune defense

against HPV infection, protecting against harmful environmental

factors, including pathogens, while permitting symbiosis with
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mucosal microorganisms. The vaginal mucosal layer consists of a

non-keratinized stratified squamous epithelium with numerous

transverse folds. This physiological and anatomical structure

functions as a natural defense barrier for the female reproductive

system. HPV infection may colonize these vaginal wall folds,

making viral clearance more challenging. Additionally, the

epithelium contains innate immune cells that express Fc

receptors, which bind to the Fc region of immunoglobulins,

facilitating antibody-dependent protective functions. Particularly,

macrophages and neutrophils express Fc receptor common g-chain
and Fc receptor common a-chain, respectively, allowing them to

phagocytose pathogens coated with IgG and IgA (Anderson, 2022).

However, when the vaginal mucosa is ruptured, particularly in the

squamous-columnar junction zone (transformation zone) of the

cervix, which is a preferred site for HPV because of its epithelial

characteristics, the virus is more likely to invade to basal cells and

integrate into their nuclei. This results in host cell genome

alterations and the development of cervical lesions (Boda et al.,

2018). Furthermore, dysbiosis of vaginal microorganisms may

disrupt epithelial cell proteins and increase cell death, thereby

facilitating HPV entry into cervical transformation zone epithelial

cells, where the virus can replicate and progress to CIN (Barros

et al., 2018). Lactobacilli help maintain an acidic environment and

preserve the mucosal barrier by producing metabolites, such as

lactic acid, bacteriocins, and biosurfactants, thereby protecting

vaginal health and preventing pathogenic infections (Shen et al.,
Frontiers in Cellular and Infection Microbiology 09
2024). Secretory leukocyte protease inhibitor (SLPI) is a low-

molecular-weight protein with antimicrobial, anti-inflammatory,

and anti-protease properties. It is secreted by keratinocytes-key

targets of HPV infection-and contributes to cervical mucosal

immunity (Zhang et al., 2023). Patients with BV exhibit decreased

SLPI levels in vaginal secretions, thereby diminishing HPV

inhibition (Miquel et al., 2022). Additionally, alterations in the

vaginal microbial community reduce L. crispatus and D-lactic acid

levels, allowing other bacteria to proliferate rapidly. This raises

microbial diversity, expands anaerobic populations, and increases

L-lactic acid. Consequently, the expression of extracellular matrix

metalloproteinase inducer is enhanced, which activates extracellular

matrix metalloproteinase-8 (MMP-8). MMP-8 breaks down the

extracellular matrix and cytoskeletal proteins, weakening epithelial

structure and accelerating cell death and desquamation. Upon HPV

infection, the virus binds to heparan sulfate proteoglycans on basal

keratinocytes via its L1 protein, entering through endocytosis before

reaching the nucleus in vesicles (Rebolj et al., 2019). In patients with

BV, elevated anaerobes and their metabolites, such as porotoxins

and sialidase, heighten the activity of mucin-degrading enzymes.

This enzymatic activity degrades the protective cervical mucus

layer, thereby compromising vaginal epithelial integrity and

enhancing viral adhesion, invasion, and genome integration.

These effects finally increase cervical susceptibility to HPV

(Muzny et al., 2020; Liu et al., 2023). Moreover, clinical

proteomic and transcriptional studies have demonstrated that
FIGURE 1

A healthy vaginal microecological niche (left) is dominated by Lactobacillus species, which maintain an acidic environment (pH ≤ 4.5) by secreting
lactic acid, inhibiting HPV virus adsorption, and enhancing CD4+ T-cell activity to promote viral clearance. In the imbalanced microecological niche
(right), pathogenic bacteria proliferate, and their metabolites (e.g., salivary acid lyase) disrupt the epithelial barrier and promote HPV invasion. In
addition, DC cell function is inhibited, CD8+ T cell activity is reduced, and macrophage M1 polarization occurs with chronic inflammation leading to
abnormal cell proliferation and promoting cervical lesion progression.
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vaginal microbiome alterations lead to significant proteomic

changes. These include cytoskeletal modifications (elevated actin

histamine, reduced keratin, and keratinized envelope proteins),

increased pro-inflammatory cytokine expression, enhanced

proteolysis, decreased IgG1/2 levels, antimicrobial peptide

imbalances, and altered mucous composition (Borgdorff et al.,

2016). Upregulation of cytokine expression strongly correlates

with reduced levels of neutrophil proteases (MMP-8 and MMP-

9), decreased antiprotease levels, and disruptions in cytoskeletal

organization, epithelial differentiation, and keratinization pathways

(Mohammadi et al., 2022).
4.2 Localized cervicovaginal immunity and
HPV infection

Most women are able to clear HPV infections through immune

surveillance and defense mechanisms, thus preventing persistent

infection. The immune system consists of two major components,

namely innate immunity and adaptive immunity, both of which

coordinate and function together to defend against and clear HPV

(Gu et al., 2024).

4.2.1 Innate immunity
Innate immune cells, including neutrophils, monocytes,

macrophages, eosinophils, mast cells, and DCs, recognize and

respond to invading pathogens through pattern-recognition

receptors, such as TLRs, nucleotide oligomerization domain-like

receptors (NLRs), and retinoic acid-inducible gene-like receptors

(Lo Cigno et al., 2024). BV and its associated pathogens, such as

Prevotella and Gardnerella, have been related to the expression of

TLRs and NLRs, particularly TLR2 (Dong et al., 2022; Gerson et al.,

2022). BV-related bacteria can induce immune responses in cervical

cells through the TLR2-activated signaling pathway (Anton

et al., 2022).

DCs are the most powerful antigen-presenting cells (APCs), and

Langerhans cells (LCs) represent a key subset of DCs. LCs directly

engage with HPV proteins in epithelial cells (Vine et al., 2024). HPV16

infection can reduce E-cadherin expression in infected keratinocytes,

resulting in the depletion of LCs, thereby impairing the initiation of an

effective immune response, which promotes persistent viral infection

(Jackson et al., 2019). Additionally, macrophages play varied roles in

immunity, influenced by their polarization into either M1 or M2

phenotypes (Zhou et al., 2020; Yan and Wan, 2021). The M1

phenotype, associated with classical activation, exerts pro-

inflammatory effects, whereas the M2 phenotype primarily exerts

protumor effects (Zhou et al., 2020). Specifically, M1 macrophages

produce reactive oxygen species (ROS), reactive nitrogenous

substances, and pro-inflammatory cytokines, such as TNF-a, IL-12,
and IL-6. These substances stimulate Th1 immune reactions and

improve the ability of CD8+ T cells to eliminate HPV-infected cells. In

contrast, M2 macrophages inhibit CD8+ T-cell function by secreting

IL-10 and TGF-b, promote regulatory T-cell (Treg) expansion, and

create an immunosuppressive environment (Lin et al., 2019; Huang

et al., 2021). Notably, macrophage polarization is a dynamic and
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complex process. Single-cell sequencing technology has suggested that

the phenotypic landscape of macrophages within the

microenvironment exhibits significant heterogeneity, extending

beyond the simplistic binary classification of M1/M2. The

distinction between M1 and M2 macrophages oversimplifies the

intricate polarization process, which involves dynamic interactions

between multiple cytokines, chemokines, and neighboring cells

(Boutilier and Elsawa, 2021). Nevertheless, there is a paucity of

research investigating the subtypes of macrophages under

physiological or pathological conditions. This review focuses

primarily on studies related to the M1 and M2 macrophage types.

Natural killer (NK) cells defend against HPV infection. When

activated, they produce perforin and granzymes, which induce

apoptosis in infected cells, or secrete substantial amounts of

inflammatory cytokines, such as interferon-g and TNF-a. These
cytokines inhibit viral replication and recruit other immune cells,

including T cells and DCs, thus contributing to the development of

HPV-specific adaptive immunity and improving viral elimination

(Gutiérrez-Hoya and Soto-Cruz, 2021).

HPV uses multiple mechanisms to evade immune response and

allow it to establish a persistent infection. Although the details of

immune evasion are unclear, HPV proteins and certain cytokines are

possibly involved (Westrich et al., 2017). The HPV16 E6 and E7

proteins inhibit immune cell function in the epithelium by decreasing

macrophage-associated cytokines, such as TNF-a and macrophage

inflammatory protein(MIP-3a), which blocks macrophage activation

(Stern et al., 2000; Hacke et al., 2010; Bashaw et al., 2017). HPV

infection impairs the antigen-presenting capacity of DCs by

inhibiting monocyte differentiation into mature DCs (Lo Cigno

et al., 2020). Another key mechanism involves the HPV E5 protein,

which weakens NK cell responses by lowering CD1d expression in

HPV16-infected cells, thus allowing them to evade immune detection

and destruction. HR-HPV genotypes, such as HPV-16 and HPV-18,

further suppress the host immune response by inhibiting type I IFN

responses, which reduce immune cell activation (Doorbar et al., 2015;

Lo Cigno et al., 2020). The E6 and E7 proteins of HPV16 and HPV18

can interfere with interferon regulatory factor function, leading to

decreased IFN production. Additionally, these proteins disrupt the

janus kinase-signal transducer and activator of transcription signaling

pathway, which is crucial for interferon-mediated immune responses.

This mechanism enables high-risk HPV types to evade innate

immune surveillance and clearance (Woodby et al., 2018).

4.2.2 Adaptive immunity
Upon infection, APCs process viral antigens and upregulate the

expression of major histocompatibility complex molecules. These

processed antigens are internalized by DCs via phagocytosis, after

which DCs migrate to lymphoid tissues to activate adaptive

immunity by secreting inflammatory cytokines, such as IL-1a, IL-
1b, IL-6, TNF-a, and IL-12 (Chi et al., 2024). T cells can be further

classified into helper T cells (Th), Tregs, and cytotoxic T cells. Th

cells are subdivided into Th1, Th2, and Th17 subsets (Bordignon

et al., 2017). Th1 cells produce IL-2, a key cytokine involved in

protective immune responses, whereas Th2 cells produce IL-10,

which may contribute to disease progression (Johansson and Lycke,
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2003). The ratio of IL-2 to IL-10 reflects the Th1/Th2 immune

response balance. Typically, a Th1-dominant state supports

effective immunity; however, a shift toward Th2 dominance may

lead to immunosuppression (Zheng et al., 2019). In B cell-mediated

humoral immunity, secretory IgA (SIgA) and IgG are the principal

effector molecules. SIgA is particularly important for mucosal

defense, helping block pathogen entry in the reproductive tract

(Dinesh et al., 2020). Meanwhile, T cell-mediated immunity is

crucial for combating HPV. CD4+ T cells function as helper T

cells, whereas CD8+ T cells function as cytotoxic or suppressor T

cells. Patients with HR-HPV infections and cervical lesions exhibit

reduced CD4+/CD8+ T cell ratios. Notably, CD4+ T cell levels are

significantly higher in patients with CIN I than those with CIN II or

III (Walch-Rückheim et al., 2015). Furthermore, the cervical

microenvironment shows progressive changes with disease

advancement: IL-2 concentrations decrease, whereas IL-10

production rises. This increase in IL-10 correlates with HPV

infection severity, likely because of HPV proteins E2, E6, and E7

enhancing IL-10 gene transcription. Such elevated IL-10 expression

may promote viral persistence and epithelial cell transformation,

establishing a vicious cycle that supports carcinogenesis (Berti et al.,

2017; Min et al., 2018). Furthermore, IL-10 may enhance the

proliferation and cytotoxic function of HPV-specific CD8+ T

lymphocytes induced by IL-2, potentially facilitating HPV

clearance and protecting against cervical neoplasia (Farzaneh

et al., 2006). Additionally, studies have reported increased IL-6

concentrations in HPV-positive individuals, with levels rising

alongside cervical lesion severity. The proposed mechanism

involves HPV E6/E7 proteins activating the IL-6/STAT3 signaling

pathway, which mediates STAT3 phosphorylation in infected cells.

This, in turn, enhances HPV E6/E7 protein expression, thereby

promoting cervical tumor progression (Hao et al., 2020; Bonin-

Jacob et al., 2021). Additionally, specific bacterial species within the

microbiota may influence local immune responses and thereby

potentially affect the progression of HPV-related diseases (Sims

et al., 2021). VMB characterized by Lactobacillus depletion, elevated

pH, and dysbiosis show increased levels of pro-inflammatory

cytokines, such as IL-1b, IL-15, and TNF-a, as well as regulatory
cytokines IL-12 and growth factor FGF2. These markers may

mediate immune responses and chronic inflammation (Łaniewski

et al., 2024). Lactobacillus in the vagina is negatively correlated with

the expression of IL5/IL13 and TNFa but positively correlated with

the expression of IL2 and IL12, which may mediate CC onset and

progression (Yang et al., 2024b). Elevated levels of TLR7 and TLR9

have been detected in the cervical cells of BV-positive women

infected with HPV, leading to the production of IFN and

inflammatory cytokines, thereby causing tissue damage (Fracella

et al., 2022).

Immunoglobulins are synthesized by B lymphocytes after

antigen-stimulated proliferation and differentiation into plasma

cells, which subsequently bind to specific antigens. Among them,

IgA controls humoral immunity, whereas large amounts of IgG

have been detected in the vagina in cases of persistent HPV

infection (Dinesh et al., 2020). SIgA is the key effector molecule

of the mucosal immune system. SIgA-mediated agglutination offers
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improved trapping potency, compared with IgG (Chen et al., 2015).

Furthermore, it is normally expressed at low levels in the vagina.

However, when the vaginal flora is dysbiotic, changes in bacterial

metabolites can reduce SIgA degradation. Contrarily, immune

responses triggered by pathogenic bacteria can increase local SIgA

synthesis (Dinesh et al., 2020). SIgA secretion increases during mild

vaginal infections but decreases in severe infections (Agarwal et al.,

2010). Zheng et al. hypothesized that SIgA prevents pathogens from

adhering to the cell surface in early-stage lesions, binds to

microorganisms on mucosal surfaces, neutralizes viruses, and

inactivates them by altering their conformation or blocking

binding sites. This results in anti-infective effects and a reduction

in SIgA concentration in the early stages of disease. In advanced

stages, characterized by persistent HPV infection alongside severe

vaginal flora imbalance, H2O2-producing Lactobacilli disappear and

IgA protease secretion decreases (Li et al., 2024). This prevents the

dissociation of disulfide bonds in the SIgA hinge region, resulting in

elevated SIgA levels (Zheng et al., 2019).
4.3 Impact of vaginal microecological
dysregulation on gene integration and
transcription

The relationship between vaginal microecology and HPV

infection involves intricate biological processes, particularly viral

gene integration and transcription. Shifts in vaginal microecology

may affect HPV infection development, particularly by playing a

key role in viral gene integration and transcriptional regulation

(Tian et al., 2022a).

Upon HPV entry into the host cell, its gene integration and

transcription processes begin silently. The HPV genome consists of

early (E) and late (L) gene regions. During gene integration, HPV

DNA fragments are randomly inserted into the host genome, and

their location often determines subsequent cellular transformation.

When key oncogenes, such as p53 and Rb, serve as integration sites,

HPV-derived transcripts may impair their normal activities,

disrupting cell cycle regulation and apoptosis (Doorbar et al.,

2012; Templeton and Laimins, 2023). The transcription of the E6

and E7 genes produces the corresponding E6 and E7 proteins,

which bind to p53 and Rb, respectively. This binding leads to

protein degradation, rendering cells more susceptible to

uncontrolled proliferation (Xing et al., 2024). After HPV gene

integration, viral gene transcription is regulated by host cell

transcription factors. An imbalanced vaginal microecology may

cause chronic inflammation, stimulating cytokine production.

These cytokines activate signaling pathways that indirectly

influence HPV promoter regions. This activation upregulates the

transcription of key genes, such as NF-kB and AP-1, increasing viral

protein synthesis and the risk of cellular lesions (Cruz-Gregorio and

Aranda-Rivera, 2021). Furthermore, vaginal microecological

disruption induces high levels of oxidative stress, generating ROS

that cause double-stranded breaks in both the host genome and

viral DNA. This process facilitates viral integration into host cells

for replication and transformation. Through this mechanism, the
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HPV E6 protein suppresses the expression of E1 and E2 proteins,

leading to dysregulated E6 and E7 transcription, unchecked viral

proliferation, and a significant reduction in apoptosis (Adnane

et al., 2018; Szymonowicz and Chen, 2020; Łaniewski and Herbst-

Kralovetz, 2021).

In summary, vaginal microecology and HPV infection are

intricately linked at the levels of gene integration and

transcription. A deeper understanding of these mechanisms may

provide novel avenues for the prevention, diagnosis, and treatment

of HPV-related diseases.
4.4 Impact of cervicovaginal microbial
metabolites

Metabolic dysregulation is an emerging hallmark of cancer, and

metabolomics is increasingly being explored to identify specific

biomarkers. Metabolomic analysis enables the rapid and precise

detection of metabolites, making it highly valuable for studying

cervical lesions and CC pathogenesis (Yang et al., 2024a).

Lactic acid, a metabolite produced by Lactobacillus plays a crucial

role in HPV infection. It enhances cervical mucus’s ability to capture

viral particles and inhibits HPV entry into basal cells (Pawar and

Aranha, 2022). However, the antibacterial and anticancer effects of

lactic acid depend on its type (D-lactic acid vs. L-lactic acid). CST I

and II are typically dominated by D-lactic acid-producing L. crispatus

or L. gasseri, forming a stable acidic environment. In contrast, CST III

is primarily characterized by L-lactic acid-producing L. iners,

resulting in an unstable acidic environment prone to dysbiosis.

Additionally, the lack of other antimicrobial molecules (such as

H202) further diminishes the defensive function of the vaginal

microenvironment. This state is strongly associated with persistent

HPV infection and recurrent BV. During CST IV, the microbiota

becomes dysregulated, with an increase in anaerobic bacteria and a

significant rise in vaginal pH (>4.5). The decrease in D-lactic acid

concentration further weakens antiviral capacity (Borgogna et al.,

2020; Dong et al., 2024). H2O2 impedes the progression of cervical

lesions by selectively inducing apoptosis in malignant cells and

denaturing bacterial proteins (Krüger and Bauer, 2017; Denys et al.,

2019). The vulvovaginal metabolic profiles of HPV-infected women

differ significantly from those of healthy controls in terms of lipid

metabolism and amino acid metabolism, based on calculated

metabolomic scores (Ilhan et al., 2019). Lipid metabolism is

strongly related to genital inflammation and cervical lesions, with

notably higher lipid accumulation in patients with high-grade CIN

and CC because of its role in promoting cell proliferation and

membrane synthesis via oncogene activation (Alvarez-Sieiro et al.,

2016). Patients with HSIL show significantly elevated levels of

acetylated phospholipids, sphingomyelins, phosphatidylcholine, and

long-chain polyunsaturated fats. Similarly, 3-hydroxybutyrate,

eicosapentaenoic acid esters, and oleic acid esters are markedly

increased in patients with CC (Ilhan et al., 2019). Acetylated

phospholipids and long-chain polyunsaturated fatty acids act as

precursors to inflammatory mediators and may induce abnormal
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gene expression in cervical cells (Bokulich et al., 2022). Short-chain

fatty acids (SCFAs), which are key microbial metabolites in the

vaginal environment, regulate local immune responses by

modulating vaginal epithelial cell function. SCFA concentrations

are elevated in the vaginal tract of patients with BV. High SCFA

levels may induce vaginal epithelial cells to secrete pro-inflammatory

cytokines, impairing normal antiviral immune function.

Additionally, they may disrupt the integrity of the vaginal barrier

by affecting tight junction proteins in vaginal epithelial cells, thereby

increasing susceptibility to HPV (Mirzaei et al., 2023). Changes in

VMB and pH are influenced by amino acid metabolism. HPV

infection is associated with reduced levels of key metabolites,

including nicotinamide, succinate, and dipeptides (e.g.,

cysteinylglycine and cysteinyl) (McKenzie et al., 2021) as well as

both oxidized and reduced glutathione (Borgogna et al., 2020). The

total depletion of glutathione may contribute to oxidative stress,

leading to irreversible cervical cell damage and promoting HPV

persistence and carcinogenesis (Lebeau et al., 2022). Furthermore,

ammonia produced by anaerobic bacterial metabolism and

carcinogenic amyl nitrite have been detected in the vaginal

environment of patients with BV. These compounds can stimulate

the release of inflammatory cytokines, such as IL-1b and IL-8, which

may interact with HPV and other factors to induce pathological

changes in cervical epithelial cells. This process weakens immune

defenses against HPV infection, whereas carcinogenic nitrosamines

increase the likelihood of DNA damage (Wang et al., 2020b). Lactic

acid produced by Lactobacillus lactis not only regulates vaginal pH

but also indirectly affects nucleotide metabolism. The acidic

environment can inhibit certain phosphatases involved in

nucleotide phosphorylation and modification, affecting

deoxynucleotide triphosphate (dNTP) production. This limitation

in dNTP availability may restrict HPV replication (Ilhan et al., 2019;

Fan et al., 2024).

Future research should further explore the association between

vaginal microbial metabolites, HPV infection, and cervical

carcinogenesis. Investigating targeted interventions in specific

metabolic pathways may highlight novel approaches for disease

prevention and management.
5 VMB-based diagnosis and treatment
of HPV-related cervical diseases

Currently, effective solutions for HPV infection and low-grade

cervical lesions are lacking. Surgical resection, radiotherapy, and

chemotherapy are commonly utilized for high-grade lesions;

however, these methods have drawbacks, such as fertility

impairment and severe adverse effects (Kusakabe et al., 2023).

Considering the close association between VMB and HPV

infection as well as cervical lesions, VMB modulation has become

a growing focus of research in recent years. In terms of early

diagnosis, dynamic changes in vaginal microbial diversity may

serve as potential biomarkers. High-throughput sequencing-based

dynamic monitoring of vaginal microbiota, combined with HPV
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genotyping or metabolomic analysis (e.g., detection of lactic acid

and SCFA levels), can assess the degree of microbial imbalance and

aid in identifying high-risk populations (Kudela et al., 2021).

The core of prevention and treatment strategies lies in

maintaining or restoring vaginal microecological homeostasis.

The efficacy of L1 protein virus-like particle-based vaccines has

been well-documented (Mlynarczyk-Bonikowska and Rudnicka,

2024); nonetheless, HPV vaccines do not protect against all HPV

types that may develop into CC. Therefore, even vaccinated

individuals must undergo regular cervical screenings (Williamson,

2023). Two key therapeutic strategies modulate the vaginal

microbiota: probiotics and vaginal microbiome transplantation

(VMT) (Zhang et al., 2024). The topical application of probiotics

or prebiotics can enhance the vaginal acidic environment, inhibit

pathogen colonization, and strengthen mucosal immune barrier

function, thereby reducing HPV infection risk. Lactobacillus is the

most commonly used probiotic for microbial modulation, followed

by Bifidobacterium (Huang et al., 2024). Both oral or vaginal

administration of probiotics, including L. paracasei and L.

rhamnosus, can significantly increase HPV clearance rates (Huang

et al., 2022). Chen et al. demonstrated that a multi-strain

Lactobacillus probiotic combination significantly reduced pro-

inflammatory cytokine levels (IL-1b and TNF-a) and immune

infiltration (neutrophils, lymphocytes, and monocytes) in rat

uteri. Hence, the anti-inflammatory properties of probiotics may

partially explain their ability to aid HPV clearance (Chen et al.,

2021). Bifidobacteria may further enhance anti-tumor immunity

and the efficacy of immunotherapy (Kudela et al., 2021). In vitro

experiments showed that co-culturing HPV-16-infected SiHa cells

with Bifidobacteria reduced HPV E6/E7 mRNA levels (Curty et al.,

2019). VMT involves transplanting healthy microbiota from a

donor’s vagina into a patient’s vagina and holds promise for

VMB improvement (Ma et al., 2019). However, current research

on VMT remains limited. Some studies suggest that VMT requires

specific vaginal environmental conditions in recipients as well as

stringent donor microbiota health criteria, such as the absence of

drug-resistant microbes or hidden pathogens in the donor’s

microbiome (Gargiulo Isacco et al., 2023). Thus, further research

is needed to determine its efficacy and potential adverse effects.

Additionally, multiple novel HPV therapies are currently under

investigation. These include inhibitors targeting E1, E5, E6, and E7

proteins, L1 protein-based drugs, plant-derived medications, and

therapeutic vaccines. These approaches aim to provide more

effective treatment options by either directly inhibiting viral

proteins or enhancing the host immune response (Mlynarczyk-

Bonikowska and Rudnicka, 2024).
6 Summary

The vaginal microecosystem is a dynamic and balanced system,

and alterations in this environment are closely associated with HPV

infection. An imbalance in the VMB not only increases HPV

infection risk but also impedes viral clearance, creating a vicious
Frontiers in Cellular and Infection Microbiology 13
cycle. Restoring microbiome balance may improve HPV clearance

rates and reduce the incidence of cervical lesions and cancer.

Advancements in high-throughput sequencing and bioinformatics

are progressively uncovering the mechanisms underlying the

association between VMB and HPV clearance. Additionally, the

development and clinical application of microbiota-based

therapeutics for vaginal infections may provide novel treatment

strategies for gynecological conditions, such as HPV infection. In

conclusion, studying the VMB enhances the understanding of

infections in the female reproductive tract and presents novel

opportunities for CC prevention and management. Future large-

scale prospective studies are essential to elucidate the composition

and role of the vaginal microbiome in cervical lesion progression.

As research continues to evolve in this field, further breakthroughs

are expected.
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Czechowicz, P., Nowicka, J., and Gościniak, G. (2022). Virulence factors of candida
spp. and host immune response important in the pathogenesis of Vulvovaginal
candidiasis. Int. J. Mol. Sci. 23 (11), 5895. doi: 10.3390/ijms23115895

de Abreu, A. L., Nogara, P. R., Souza, R. P., da Silva, M. C., Uchimura, N. S., Zanko,
R. L., et al. (2012). Molecular detection of HPV and Chlamydia trachomatis infections
in Brazilian women with abnormal cervical cytology. Am. J. Trop. Med. Hyg 87, 1149–
1151. doi: 10.4269/ajtmh.2012.12-0287

Denys, G. A., Devoe, N. C., Gudis, P., May, M., Allen, R. C., and Stephens, J. T. Jr.
(2019). Mechanism of microbicidal action of E-101 solution, a myeloperoxidase-
mediated antimicrobial, and its oxidative products. Infect. Immun. 87 (7), e00261-19.
doi: 10.1128/iai.00261-19

Dinesh, D. C., Tamilarasan, S., Rajaram, K., and Bourǎ, E. (2020). Antiviral drug
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