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Phage therapy is emerging as a promising strategy against the growing threat of

antimicrobial resistance, yet phage and bacteria are incredibly diverse and

idiosyncratic in their interactions with one another. Clinical applications

of phage therapy often rely on a process of manually screening collections of

naturally occurring phages for activity against a specific clinical isolate of

bacteria, a labor-intensive task that is not guaranteed to yield a phage with

optimal activity against a particular isolate. Herein, we review recent advances in

artificial intelligence (AI) approaches that are advancing the study of phage-host

interactions in ways that might enable the design of more effective phage

therapeutics. In light of concurrent advances in synthetic biology enabling

rapid genetic manipulation of phages, we envision how these AI-derived

insights could inform the genetic optimization of the next generation of

synthetic phages.
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Introduction

The nascent fields of phage therapy, synthetic biology and artificial intelligence (AI) are

coalescing at a time in history when antimicrobial resistance (AMR) is increasingly an

urgent global health threat (Strathdee et al., 2023). Recent estimates indicate that over the

next twenty-five years, 39 million people will die from a multi-drug resistant bacterial

infection (Naghavi et al., 2024). Bacteriophage (phage) therapy is emerging as a promising

tactic to confront this crisis. Despite the fact that phage were discovered over one hundred

years ago and played prominent roles in launching the fields of molecular biology and

genetic engineering, clinical applications of phage to treat acute bacterial infections were

largely limited to parts of the former Soviet Union and Poland until the past decade, when a

series of high-profile case reports ushered in a new era of phage therapy in the West

(Strathdee et al., 2023).
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In his 2020 commentary published in Frontiers in Microbiology,

Belgian phage researcher Jean-Paul Pirnay re-imagined phage

therapy in the year 2035 (Pirnay, 2020). His vision leverages

advances in synthetic biology whereby phage could be generated

de novo based on genetic sequences of bacterial host isolates without

the need to ship bacterial cultures to laboratories for phage

matching. In cases where bacterial isolates could not be obtained

from patients (e.g., due to antibiotic suppressive therapy), he

posited that AI algorithms could be applied to metagenomic data

to predict the most likely bacterial sequence to facilitate phage

matching. Further, he envisioned a global phage governance

platform that would create an efficient, standardized, sustainable

and ethical phage supply chain.

How close are we to achieving these realities? In this

perspective, we review available literature on emerging advances

in AI and synthetic biology that could be used to understand and

engineer host specificity and other phage functions, considering the

entire phage life cycle (i.e., binding and entry, replication, and lysis).

We also consider how AI could be used to mine large datasets for

accessory gene discovery and phage genome annotation. Finally,

given the need to take phage therapy to scale, we discuss future

avenues for research that could further advance the field.
Understanding phage-host specificity
determinants using AI

Identifying infectious phage strains for a given host is essential

for phage therapy. However, it is logistically challenging to screen a

panel of phage on each clinical isolate, especially when time is of the

essence in the treatment of patients with multi-drug resistant

bacterial infections. With rapid and inexpensive sequencing

increasingly available, matching a potential phage to a target host

based on bacterial whole genome or metagenomic data has the

potential to accelerate these earliest stages of preparing a

therapeutic phage. Recently, several groups have made promising

use of AI to achieve strain-level prediction of phage infection from

host genome sequences (Boeckaerts et al., 2024; Gaborieau

et al., 2024).

Strain-level prediction of infectious phages for a given host

genome has been reported for Klebsiella spp. (Boeckaerts et al.,

2024) and Escherichia spp (Gaborieau et al., 2024), whereby shared

aspects of these studies reflect the current state of the art. In both

cases, machine learning algorithms were constructed using

genotypic information as features and large phenotypic datasets

(i.e., phage-bacteria infection networks, or PBINs) as outcomes in

training data. Both studies made use of pre-existing tools to

construct relevant features from genotypic information [e.g.,

Kaptive (Lam et al., 2022), ECtyper (Bessonov et al., 2021)]. The

features predictive of infection were the attachment factors that

phages of these genera tend to utilize: surface polysaccharide traits

such as capsular K-serotype, lipopolysaccharide (LPS) outer core

variations, or O-antigen serotypes. Impressively, both studies

encompass genus-level diversity, yet can predict strain-level

phage-host specificity.
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Interestingly, outer membrane proteins are also frequent

attachment factors for phages of Escherichia and other spp

(Nobrega et al., 2018), yet they were not significantly associated

with infection in the dataset analyzed by Gaborieau et al. (2024).

Strain-specific amino-acid variation in phage receptor proteins has

been shown to modulate phage infectivity (Suga et al., 2021),

suggesting that future work may be necessary to develop AI-

guided phage matching algorithms for outer membrane protein-

targeting phages. One potential way to approach this problem is to

use protein structural modeling to predict infection based on

interactions between phage receptor variants and phage receptor-

binding proteins (RBPs). However, this approach has not yet been

evaluated to our knowledge and may be susceptible to false-positive

results that accurately predict receptor-RBP binding for phage-host

pairs that, for other reasons, do not result in productive phage

infection. For instance, in an in vitro receptor binding experiment,

the phage T4 RBP bound to 85% of the 72 strains in an E. coli

reference collection, yet T4 phage only formed plaques on 11% of

the collection (Farquharson et al., 2021). This indicates that,

although receptor-RBD binding may be necessary for infection, it

is not sufficient, suggesting that deeper understanding of phage-host

interactions downstream from phage attachment may need to be

incorporated to improve the accuracy of predictive algorithms.

Even with these recent advances in matching potential phages

to target hosts, major gaps remain for strain-level matching in the

context of phage therapy. The current AI models for phage

matching from host genome sequences are highly specific to host

genus, and no classifiers of this type are yet available for highly

prevalent ESKAPE pathogens like Staphylococcus aureus or

Pseudomonas aeruginosa . S . aureus exhib i t s sur face

polysaccharide diversity, with phage predominantly targeting wall

teichoic acid (Krusche et al., 2025), so a machine learning approach

using teichoic acid variations as features, analogous to using

capsular types for Klebsiella (Boeckaerts et al., 2024), might be a

promising approach. However, for P. aeruginosa, phage interactions

may involve a larger diversity of receptor types, with resistance

mutations in flagella, type IV pili, and LPS evolving against a single

phage strain (Kortright et al., 2022). Moreover, some strains of P.

aeruginosa harbor extensive defense systems (Costa et al., 2024),

suggesting these may play a greater role in predicting phage

effectiveness from host genomes than that observed in E. coli or

Klebsiella. The degree to which the presence of defense systems is

predictive of infection by Pseudomonas phages is an area of ongoing

work (Müller et al., 2024). With these differences in mind, a holistic

approach evaluating the importance of different P. aeruginosa

genomic features across many phage host pairs (akin to what was

undertaken for E. coli (Gaborieau et al., 2024) may be required to

build a reliable model for this species. Nonetheless, there appears to

be great potential for researchers to extend recent examples by

leveraging AI to achieve effective strain-level phage matching

models in other pathogenic bacteria (Figure 1).

Since the above models for phage selection are largely based on

host-phage genotype matching, these models would likely struggle

to predict the effects of novel resistance mutations outside the

training data. Training data are often comprised of a variety of
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1611857
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Doud et al. 10.3389/fcimb.2025.1611857
strains of bacteria and phages representing a coarse sampling of

genetic variation, but fine genetic variation (such as point

mutations) arising during phage-bacteria coevolution can

modulate infection outcome. Bacterial evolution of resistance to

phage is frequently observed in clinical phage therapy settings

(Schooley et al., 2017; Pirnay et al., 2024) and in the laboratory

(Luria and Delbrück, 1943; Meyer et al., 2012). Experimental

coevolution of bacteria and phages has revealed not only phages’

ability to evolve counter-resistance, but the potential for long-term

evolutionary and ecological conflict between phage and bacteria

(Borin et al., 2021, 2023; Shaer Tamar and Kishony, 2022; Chen

et al., 2024). By experimentally identifying how to position phage

with an early evolutionary advantage in the microbial arms race,

coevolutionary phage training has the potential to improve the

effectiveness of phage therapy (Borin et al., 2021). Recent advances

have used machine learning (e.g., L1-penalized logistic regression)

to predict the outcome of fine genetic variation in mutation profiles

within coevolutionary PBINs assembled through experimental

coevolution (Shaer Tamar and Kishony, 2022; Lucia-Sanz et al.,

2024). A future challenge will be to combine insights gained

through these analyses of fine-scaled genetic variation in

laboratory coevolution with predictive models trained on more

coarse genetic variation at the strain level observed across natural

isolates. Furthermore, while most of the effort in this space has

focused on understanding phage-bacteria interactions at the
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attachment step, which appears to provide the strongest

predictive power for infectivity (Boeckaerts et al., 2024; Gaborieau

et al., 2024), future work should identify how phage-bacteria

interactions downstream of attachment modulate phage activity

in ways that could improve efficacy of phage therapy.
Recent AI advances in the discovery of
phage genes with specific functions

There has been an explosion in the number and variety of phage

sequences available in public databases in recent years. This has

been fueled by both the increase in the number of sequencing

studies (often metagenome sequencing) as well as AI-driven

improvements in identifying phage sequences in the “dark

matter” of metagenome data (Hatfull, 2015). The applications of

AI in discriminating phage from non-phage sequences in

metagenomic datasets have been extensively reviewed (Nami

et al., 2021; Flamholz et al., 2024). There is a wide collection of

AI-driven tools for identifying phage genetic sequences (McNair

et al., 2012; Auslander et al., 2020; Wu et al., 2021; Johansen et al.,

2022; Shang et al., 2023) and classifying phage virion proteins

(Thung et al., 2021; Ahmad et al., 2022; Fang et al., 2022). These

tools are accelerating the annotation of predicted phage sequences,
FIGURE 1

Overview of recent advances and future vision for AI methods to optimize phage therapy. Top: Phage matching based on genetic features in phage
and bacterial genome sequences using AI-based algorithms can help identify candidate phages within phage banks for a provided patient isolate
bacterium. Bottom: AI algorithms can predict functional phage genes from large sequence databases. Desired phage functions can be genetically
grafted onto synthetic phages and evaluated for enhanced phage activity. Created in BioRender.
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allowing for a greater diversity of phage sequences to be used for

comparative studies.

Ultimately, phage therapy requires cultivated phages, but the

discovery of novel functional phage genes in sequence databases can

be leveraged to program naturally occurring phages with specific

biological functions. A key impediment to harnessing the huge and

growing amount of phage sequencing data is that the number of

potential genes of interest is vast, making it experimentally intractable

to functionally screen sequences for biological function. Several

recent studies (Concha-Eloko et al., 2024; Zhang et al., 2024;

Yirmiya et al., 2025) exemplify recent advances in leveraging AI to

sift through large sequencing datasets to predict putative phage genes

with specific functions, triaging labor-intensive experimental

validation for predicted candidate genes. Once validated, these

novel gene sequences can be tested for their ability enhance the

efficacy of engineered therapeutic phages (Figure 1).

Anti-phage defense systems are diverse and heterogeneously

distributed throughout bacteria (Doron et al., 2018; Bernheim and

Sorek, 2020; Georjon and Bernheim, 2023), and there is a growing

collection of phage genes that have been identified as counter-

defenses against these bacterial immune systems (Vassallo et al.,

2022; Mayo-Muñoz et al., 2024; Murtazalieva et al., 2024; Yirmiya

et al., 2024). It is likely that many phage counter-defenses are yet to

be discovered. Yirmiya et al. (Yirmiya et al., 2025) used protein

structure and interaction prediction using AlphaFold2-Multimer

(Evans et al., 2022) to screen approximately two million phage

genomes containing over 30 million phage genes, and identify

phage proteins predicted to fold and interact with pre-chosen

bacterial phage defense proteins. By carefully and iteratively

designing a computational workflow, they were able to attain a

~50% success rate in identifying experimentally validated novel

phage inhibitors of several well-characterized bacterial defense

systems. Although there are limitations to this approach –

including the need to select appropriate protein-binding partners

such as a bacterial defense system of interest a priori, and a

substantial false-positive rate – this approach more generally

establishes a paradigm that leverages AI to predict novel phage

genes that interact with specific proteins of interest. As additional

bacterial anti-phage defense systems are functionally and

structurally characterized, this approach will likely uncover

additional novel phage counter-defense genes that may find utility

in synthetic phages armed to match the capabilities of the target

bacteria they are deployed against.

Bacterial capsules and biofilms are virulence factors that pose

challenges in the treatment of bacterial infections (Chang et al.,

2022). Some phages rely upon recognition and digestion of

polysaccharide components in bacterial capsules and biofilms as

their first step in the infection process (Knecht et al., 2020). The use

of phage as a strategy for overcoming biofilms in difficult-to-treat

infections has long been proposed and is recognized to require very

specific interactions between phage and host (Hughes et al., 1998;

Mayorga-Ramos et al., 2024). Some phage genes necessary for

biofilm and capsule degradation have been identified as
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depolymerases that can attach to the distal tips of phage tails

where they simultaneously act as enzymes that degrade

polysaccharide components and as specific receptor-binding

proteins for which presence of the cognate capsule is required for

infection (Dunstan et al., 2021). Mirroring the genetic and antigenic

diversity of capsular polysaccharide serotypes in pathogenic

bacteria (Shu et al., 2009), phage depolymerase sequences are also

quite diverse in amino-acid sequences (Knecht et al., 2020) and this

high degree of sequence variability complicates the process of

identifying novel depolymerases in sequence databases. To

overcome these difficulties, Concha-Eloko et al. (2024)

demonstrate how a protein language model fine-tuned for

depolymerases and trained on carefully curated data has

advanced the annotation of depolymerase genes and their

respective enzymatic domains, beyond currently available

computational tools. The improved AI-guided annotation of

depolymerase genes enables further study of the use of diverse

depolymerase genes in recombinant phages to reprogram specificity

and enzymatic capabilities for targeted therapeutic applications

against specific capsule types.

Phage lysins are enzymes that degrade peptidoglycans, playing

an essential role in the phage life cycle by promoting host cell lysis

and cell death. There has long been interest in developing

recombinant lysins as treatments for bacterial infections since

they can also lyse the cell from the outside (Fischetti, 2018). A

recent Phase 3 clinical trial of a lysin targeting Staphylococcus

aureus added to standard of care antibiotics was ended for futility

after an interim efficacy analysis (ClinicalTrials.gov ID

NCT04160468). However, there is potential to advance their use,

using engineered lysins selected from combinatorial libraries

recombining portions of known lysin sequences (Gerstmans et al.,

2020), with the potential to develop novel synthetic lysins with fine-

tuned specificity and activity. Further advances in lysin engineering

–whether for use as therapeutic protein products or as genetic cargo

in engineered therapeutic phages – has been limited by the lack of

computational methods to comprehensively screen metagenomic or

uncharacterized phage genome sequence data to identify new lysin

genes. Recent work by Zhang et al. provides a machine learning

based software package that identifies putative lysin genes from

assembled contigs (Zhang et al., 2024). Among 17 predicted novel

lysin sequences selected for experimental validation, seven exhibited

appropriate activity. Similar to the approach used by Yirmiya et al.

(2025), there is a substantial false positive rate requiring rigorous

experimental validation of AI-produced screening candidates,

however, these are substantial advances in that they allow

researchers to triage valuable time and resources validating

candidate genes selected from otherwise intractably large datasets.

A key theme emerging from each of these studies is that an

enormous amount of careful human planning, intuition of

biological plausibility, and iterative human-driven improvement

to AI algorithms is necessary to realize the potential of these

approaches. By facilitating a computational screening process for

specific biological functions, these emerging AI models are enabling
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researchers to exploit vast troves of data to discover a diversity of

new phage genes that can antagonize bacterial defense systems,

degrade biofilm and lyse infected cells, each of which may be useful

in the future design of therapeutic phages with desired functions.
Future outlook: AI-guided development
of synthetic phages as enhanced
therapeutics

The AI-driven advances described above are beginning to

generate tools that can predict which naturally occurring phages

are most likely to infect a target bacterium. A deeper level of

understanding of which genetic determinants drive these

predictions, and the underlying mechanisms behind productive

infection, are beginning to emerge to enable phage specificity

programming (Dunne et al., 2021). Synthetic biology methods are

already available to modify many phage genomes (Jaschke et al.,

2012; Ando et al., 2015; Kilcher et al., 2018; Pires et al., 2021; Adler

et al., 2022; Assad-Garcia et al., 2022; Kamata et al., 2024) and have

begun to be applied to study granular determinants of phage

specificity through high-throughput mutational studies of phage

receptor binding proteins (Dunne et al., 2019; Yehl et al., 2019;

Andrews and Fields, 2021; Huss et al., 2021, 2023). Huss et al. have

recently developed a method of analyzing deep mutational scanning

data of a phage receptor binding protein to develop a motif-

searching algorithm that identifies novel phage receptor-binding

sequences frommetagenomic data (Huss et al., 2024). Collections of

new receptor-binding protein sequences from these and other

studies can be used as the substrate for future AI-guided protein

design, leveraging generative models of protein sequences (Hsu

et al., 2024). In a manner analogous to using protein language

models to accelerate directed evolution of antibody sequences

targeting specific antigens (Hie et al., 2023), phage receptor-

binding protein engineering may also be amenable to machine-

learning-guided directed evolution to modulate receptor specificity.

While such fine-tuning of phage receptor binding through protein

design has the potential to generate phages with defined bacterial

receptor targets, it is important to note that binding affinity alone is

not always sufficient to confer productive infection (Farquharson

et al., 2021), and more work is needed to understand the

mechanisms of infection immediately downstream of receptor

binding, which are incompletely understood for even some of the

most heavily studied model phages (Hu et al., 2015; Ge and Wang,

2024). More broadly, generative models of entire genomes,

including phage genomes, have recently been described (Nguyen

et al., 2024; Shao and Yan, 2024), and although these models are in

their infancy and do not yet produce biologically functional whole

genomes, they are already able to recapitulate coarse genomic

architectures similar to natural phage genomes and can even

produce gene sequences for functionally active multicomponent

systems (Nguyen et al., 2024).
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The recent AI-guided advances outlined above identifying novel

phage lysins, depolymerases, and counter-defenses to bacterial

immune systems similarly lay the groundwork for incorporating

these functions into designed, synthetic phages (Lenneman et al.,

2021) or other therapeutics, expanding the armamentarium of

engineered phages that can deliver heterologous effector proteins

(Du et al., 2023; Gencay et al., 2023) or augment natural phage

function in other ways favorable for therapy. Phages engineered to

avoid lysogeny have already been used clinically (Dedrick et al., 2019).

Future work will be necessary to identify whether the rational design

of synthetic phages with other various functions can increase

treatment efficacy. Additionally, the bioethical and environmental

implications of treating patients with genetically engineered phages

requires continued careful contemplation from a One Health

perspective, since engineered phages have the potential to impact

human-, animal-, and environment-associated microbial

communities (Hernando-Amado et al., 2019; Nair and Khairnar,

2019; Banerjee and van der Heijden, 2023). Although the dream of

instant AI-designed therapeutic phage synthesis for a provided target

bacterium is unlikely to be achieved in the next 10 years (Pirnay,

2020), advances in AI are both accelerating the identification of

naturally occurring phages for therapy, as well as enabling the

distillation of useful knowledge from otherwise untenably large

sequencing databases abundant with uncharacterized phage genes

that could find utility in synthetic phages. In the meantime,

coordinated efforts are needed to make the growing number of

phage libraries across the world compatible with one another, and

accessible for compassionate use cases, clinical trials, and

translational research experiments.
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