
TYPE Review 
PUBLISHED 03 July 2025 
DOI 10.3389/fcimb.2025.1612223 

OPEN ACCESS 

EDITED BY 

Soumyadev Sarkar,
 
Arizona State University, United States
 

REVIEWED BY 

Xie Sijing, 
Nanjing University, China 
Sohail Sheikh, 
Dr. Bhanuben Nanavati 
College of Pharmacy, India 
Giacomo Antonello, 
CUNY Graduate School of Public Health and 
Health Policy, United States 

*CORRESPONDENCE 

Liang Hu 

huliang@mail.ccmu.edu.cn 

RECEIVED 15 April 2025 
ACCEPTED 17 June 2025 
PUBLISHED 03 July 2025 

CITATION 

Yang Z, Du C, Chang Z, Yang Y and Hu L 
(2025) Role of oral and gut microbiomes in 
enterosalivary nitrate metabolism and their 
effects on systemic disease. 
Front. Cell. Infect. Microbiol. 15:1612223. 
doi: 10.3389/fcimb.2025.1612223 

COPYRIGHT 

© 2025 Yang,  Du, Chang, Yang and  Hu. This is  
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms. 

Frontiers in Cellular and Infection Microbiology 
Role of oral and gut 
microbiomes in enterosalivary 
nitrate metabolism and their 
effects on systemic disease 
Zi Yang1, Conglin Du2, Zhichao Chang2, Yang Yang2 

and Liang Hu3* 

1Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China, 
2Department of Oral and Maxillofacial & Head and Neck Oncology, School of Stomatology, Capital 
Medical University, Beijing, China, 3Outpatient Department of Oral and Maxillofacial Surgery, School 
of Stomatology, Capital Medical University, Beijing, China 
Nitrate, which maintains hemostasis in systemic circulation, is obtained from 
nitrate-rich vegetables, concentrated, reabsorbed by the salivary glands, and 
reduced to nitrite and nitric oxide (NO•). The bioavailability of nitrate and nitrite 
depends on unique nitrate reductases present in specific bacterial communities 
in the mouth and gut of mammals. The dominant bacteria in the oral cavity, 
stomach, and gut differ among internal environments. Nitrate can modulate 
microbiota metabolism and has important pathophysiological functions in 
diseases such as cardiovascular diseases, gastrointestinal diseases, diabetes, 
metabolic diseases, and brain diseases via nitrate-reducing bacteria. Thus, in 
this review, we summarized the beneficial role of enterosalivary nitrate 
metabolism, focusing on the role of oral and gut bacterial communities in the 
enzymatic reduction of nitrate to nitrite. We have also discussed different nitrate
reduction pathways; influencing factors of nitrate-reducing bacteria; and the 
relationship among systemic health, nitrate intake, and bacteria. This review of 
enterosalivary nitrate and related microbiomes could provide a new perspective 
for the application of nitrate. 
KEYWORDS 

nitric oxide, nitrate, nitrate reductase, oral microbiome, gut microbiome 
1 Introduction 

Nitric oxide (NO•) is a gaseous and lipophilic free radical that acts as a signaling 
molecule and has numerous physiological functions in mammals (Doel et al., 2005). The 
production and/or bioavailability of NO• is associated with systemic diseases (Lundberg 
et al., 2015; Stojanovic et al., 2015; Briskey et al., 2016). NO• can be produced from L
arginine by three different nitric oxide synthases (NOSs): neuronal NOS (nNOS), 
endothelial NOS (eNOS), and inducible NOS (iNOS), via NADPH and oxygen 
consumption (Knowles and Moncada, 1994; Alderton et al., 2001; Forstermann and 
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Sessa, 2012). Nitrate and nitrite anions are physiologically recycled 
into NO• and other bioactive nitrogen oxides in vivo, serving as an 
important additional source of NO• independent of NO synthases, 
especially under hypoxic conditions (Lundberg et al., 2008; 
Oliveira-Paula et al., 2019). Nitrate supplementation activates the 
NO3 

– NO2
- -NO• pathway, which promotes endothelial function, 

modulates inflammation, protects against ischemia reperfusion 
injury, supports gastric and mucus formation, enhances exercise 
capacity, and regulates blood pressure (Petersson et al., 2007; Bailey 
et al., 2009; Vanhatalo et al., 2010; Bahra et al., 2012; Hobbs et al., 
2013; Coggan et al., 2015; Wightman et al., 2015; Briskey et al., 2016; 
D’El-Rei et al., 2016; Gee and Ahluwalia, 2016; Velmurugan et al., 
2016; Munzel and Daiber, 2018; Raubenheimer et al., 2019; Srihirun 
et al., 2020; Jones et al., 2021). 

In mammals, nitrate is directly reduced to nitrite by native 
xanthine oxidase (XO) in muscles (Piknova et al., 2015, Piknova 
et al., 2016). However, germ-free animals have negligible levels of 
gastric NO• even after dietary nitrate loading (Petersson et al., 
2015). The use of chlorhexidine (CHX) mouthwash eliminates 
commensal oral bacteria, resulting in decreased nitrite levels in 
the saliva, plasma, and urine and increased blood pressure in 
healthy individuals, suggesting an important role of nitrate
reducing bacteria in the oral cavity of humans (Petersson et al., 
2009; Kapil et al., 2013; Hyde et al., 2014b). Thus, a major reduction 
in nitrate requires enzymes possessed by specific bacteria in the 
mammalian mouth and gut and some contribution from tissue XO 
enzyme systems (Doel et al., 2005; Hyde et al., 2014a, Hyde et al., 
2014b; Koch et al., 2017; DeMartino et al., 2019). 

The oral cavity and gut harbor over 1000 different bacterial 
species (Nicholson et al., 2005). In the gut, bacterial nitrate reduction 
and related NO• formation may be an essential aspect of 
enterosalivary nitrate metabolism (Tiso and Schechter, 2015; Rocha 
et al., 2016). Despite their important role, nitrate-reducing oral and 
gastrointestinal bacteria remain uncharacterized, and little is known 
about the nitrate reduction pathways that are expressed in bacterial 
species in diverse local environments. Systemic health is associated 
with the enzymatic reduction of dietary nitrate by nitrate-reducing 
bacteria. Similarly, there is limited information about the roles of oral 
and enteric nitrate-reducing bacteria in the control of systemic 
diseases and the influencing factors in different individuals. 

In this review, we discussed and summarized studies that 
highlight the beneficial role of dietary nitrate intake and the 
conversion of nitrate and nitrite, which are essential for systemic 
health, with a particular focus on the role of oral and intestinal 
microbiota in the reduction of nitrate to nitrite. Different nitrate
reduction pathways in different bacterial species and factors 
influencing nitrate-reducing microbiomes have also been 
discussed. In addition, we summarized the relationship between 
systemic health, nitrate intake, and nitrate-reducing bacteria. 
2 Enterosalivary nitrate circulation 

Enterosalivary nitrate circulation is shown in Figure 1. Systemic  
circulating nitrate is mainly obtained from the diet (Archer, 2002; 
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Weitzberg and Lundberg, 2013; Babateen et al., 2018; Ma et al., 2018). 
Green leafy vegetables, such as spinach and beetroot, are the main 
nitrate sources (approximately 80%) in the majority of human diets 
(Babateen et al., 2018). Other sources of nitrate intake include 
drinking water (15%) and other foods (5%) (Sindelar and 
Milkowski, 2012).Dietary nitrate enters the stomach and is 
absorbed through the small intestinal tract into the bloodstream. 
Approximately 70%–75% of plasma nitrate is excreted in urine. The 
remaining 20-25% of circulating nitrate is actively concentrated by 
the salivary glands via sialin, an electrogenic NO3

-/H+ transporter in 
the plasma membrane of salivary acinar cells (Qin et al., 2012), and 
then secreted in the oral cavity via saliva. Subsequently, some of the 
salivary nitrate (5%~ 36%) is reduced to nitrite by specific oral

commensal bacteria in the mouth, ensuring continuous substrate 
delivery for oral nitrite generation (Lundberg and Govoni, 2004; 
Lundberg et al., 2018). Once nitrate and nitrite enter the stomach, an 
acid-dependent, non-enzymatic reaction converts them into bioactive 
nitrogen oxides and NO•, respectively  (Lundberg et al., 2011). 

Nitrate and nitrite have also been used as food additives in cured 
meats (Shakil et al., 2022).Under acidic conditions, nitrite could react 
with biogenic amines such as secondary or tertiary amines to form N
nitrosamines, which are potent carcinogens (Sindelar and Milkowski, 
2012). Importantly, nitrate is highly stable in the body, with only a 
small fraction converted to nitrite, and N-nitrosamine formation 
requires stringent conditions. Increasing of evidence suggests no 
significant correlation between dietary nitrate intake and 
gastrointestinal tumors (van Loon et al., 1997, van Loon et al., 
1998; Buller et al., 2021), while high intake of nitrates and nitrites 
from animal sources is associated with an increased risk of gastric 
cancer. In contrast, nitrate or nitrite derived from fruits and 
vegetables is linked to reduced gastric cancer risk (Hernández

Ramırez et al., 2009́ ), likely due to the high antioxidant content 
(e.g., Ascorbic acid), which inhibit N-nitrosamine formation. The 
World Health Organization (WHO) recommends an upper limit of 
daily nitrite intake of 0.06-0.07 mg/kg (JEFCA, 1995) and a nitrate 
intake limit of 3.7 mg/kg for adults (Mensinga et al., 2003). 
3 Nitrate reducase, nitrite reducase, 
and nitrate reduction pathways 

Numerous bacterial species possess nitrate reductase genes, 
which encode proteins that reduce nitrate to nitrite via 
molybdenum-dependent nitrate reductases. Molybdenum

dependent nitrate reductases can be classified into three major 
groups: periplasmic dissimilatory reductases (Nap), membrane

bound respiratory reductases (Nar), and cytoplasmic assimilatory 
reductases (Nas) (Koopman et al., 2016; Koch et al., 2017). Nitrate 
reduction can be achieved through two main pathways: assimilatory 
nitrate reduction (ANR) and dissimilatory nitrate reduction (DNR) 
(Figure 2) (Koch et al., 2017; Goh et al., 2022; Morou-Bermúdez 
et al., 2022; Rosier et al., 2022). During assimilation, nitrate is 
assimilated as a nitrogen source for biomass synthesis. Nitrate is 
reduced to nitrite via Nas in the cytoplasm and nitrite is further 
reduced to ammonia, which is then assimilated into the amino acid 
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glutamine. No nitrite accumulation or ammonium release occurs 
during ANR. Nitrate assimilation occurs widely in bacteria, 
including Methanotrophs (e.g. Methylobacter, Methylococcus) (Ren 
et al., 2000), antotrophic bacteria (e.g. Nitrosomonas, Nitrobacterm), 
heterotrophic bacteria (e.g. Enterobacteriaceae, Bacillus, 
Pseudomonas) (Seenivasagan et al., 2014) which are not prevalent 
and abundant in oral cavity. 

DNR involves respiratory pathways in which microorganisms use 
NO3

- or NO2
- to replace O2 as an electron acceptor in respiratory 

metabolism under oxygen-limiting conditions (Goh et al., 2022). 
Respiratory denitrification comprises a four-step reductive process in 
which nitrate is reduced to nitrite catalyzed by Nar, nitrite is further 
reduced to NO• by nitrite reductase, and NO• is converted to nitrous 
oxide (N2O) and nitrogen gas(N2). Gaseous nitrogen can be excreted 
or reduced to ammonia by nitrogenase and then excreted (Figure 3). 
Dissimilatory nitrate reduction to ammonia (DNRA) is a two-step 
process in which nitrate is reduced by Nap in the periplasm, 
converted to ammonia via an ammonia-producing nitrite reductase 
(Nrf), and excreted (Figure 4). 

The main bacteria responsible for DNR could use oxygen as the 
electron acceptor in oxygen-rich environments and nitrate as the 
electron acceptor in oxygen-limiting environments. Oral bacterial 
nitrate reduction capacity transcends traditional aerobic/anaerobic 
classification, as both facultative anaerobes (e.g., Haemophilus 
parainfluenzae, Aggregatibacter actinomycetemcomitans) and obligate 
Frontiers in Cellular and Infection Microbiology 03 
aerobes (e.g., Neisseria sicca, N. subflava) harbor functional nitrate 
reductase systems (Rosier et al., 2022). Species of Neisseria (including 
N.elongata, N.favescens, N.subflava, N.sicca) possess the nitrate/nitrite 
reduction related genes (e.g., narG, napA, nirK, norB) (Rosier et al., 
2022). Prevotella and Veillonella dominate DNRA pathways, while 
denitrification genes persist in aerobic-classified Haemophilus, and

Aggregatibacter species. Among these bacteria, H. parainfluenzae and 
Aggregatibacter actinomycetemcomitans possess genes associated with 
denitrification and DNRA (Morou-Bermúdez et al., 2022). In summary, 
oral nitrate-reducing bacteria, including facultative anaerobes and 
obligate aerobes dynamically utilize oxygen or nitrate as electron 
acceptors, harboring denitrification and DNRA genetic pathways. 
4 Oral nitrate-reducing bacteria and 
influencing factors 

4.1 Oral nitrate-reducing microbiota 

Nitrate conversion is mainly carried out in the oral cavity 
(Duncan et al., 1995; Lundberg and Govoni, 2004; Bryan et al., 
2017). Nitrate reductase activity is the highest in the posterior one
third of the dorsum of the tongue but also occurs in the front 
tongue, dental plaque, and saliva under aerobic conditions (Duncan 
et al., 1995; Doel et al., 2005). Known oral bacteria are shown in 
FIGURE 1 

Entero-salivary nitrate circulation (Created with BioRender.com). ① Exogenous nitrate is obtained via dietary intake. ② Dietary nitrate enters the stomach 
and gut. ③ Dietary nitrate is absorbed through the small intestinal tract to blood. ④ The plasma nitrate (70%–75%) is excreted in the urine. ⑤ Circulating 
nitrate is actively taken up by the salivary glands via sialin. ⑥ Nitrates flow into the mouth through saliva. ⑦ Salivary nitrate is reduced to nitrite by special 
commensal bacteria in the mouth. ⑧ Salivary nitrate and nitrite enter the stomach. ⑨ Salivary nitrate and nitrite enter the gut and nitrate is reduced to 
nitrite by gut bacteria. ⑩ Nitrite is absorbed into blood and nitrite is reduced to NO in the blood. Methemoglobin (metHb) reacts with nitrite to form a 
radical NO2-bound ferrohaem, which reacts rapidly with NO• to generate N2O3, responsible for S-nitrosothiol (RSNO) formation. 
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Figure 5. Veillonella, Neisseria, Haemophilus, Actinomyces, Rothia, 
Prevotella, Granulicatella, Fusobacterium, Staphylococcus, and

Propionibacterium are representative oral nitrate-reducing 
bacteria, identified from tongue-scraping samples (Doel et al., 
2005; Huttenhower et al., 2012; Hyde et al., 2014a; Liddle et al., 
2019). The most variable nitrate-reducing species are Rothia 
dentocariosa and Haemophilus parainfluenzae, whereas Prevotella 
melaninogenica, Neisseria subflava, Rothia mucilaginosa, Veillonella 
dispa, and Veillonella parvula are the most consistently abundant 
nitrate-reducing species (Goh et al., 2019; Liddle et al., 2019). 
Staphylococcus sciuri dominates the posterior tongue, which is the 
primary site of nitrite production (Li et al., 1997). Additionally, 
Hyde et al. identified nine other species with nitrate-reducing 
activity: Granulicatella adiacens, Actinomyces odontolyticus, 
Actinomyces viscosus, Actinomyces oris, Neisseria flavescens, 
Neisseria mucosa, Neisseria sicca, Prevotella salivae, and

Veillonella atypica (Figure 3) (Hyde et al., 2014a). 
4.2 Influencing factors of oral nitrate
reducing microbiota and capacity 

4.2.1 Sex and age 
Salivary nitrate-reduction capacity exhibits age-dependent 

dynamics and sex differences in adults. Salivary nitrite production 
is undetectable or minimal in newborns, with infants exhibiting 
Frontiers in Cellular and Infection Microbiology 04
significantly lower nitrite concentrations and oral nitrate-reductase 
capacity compared to adults (Timby et al., 2020). Nitrate-reduction 
activity peaks during middle age before declining in older adults 
(Ahmed et al., 2021). No sex-based differences in salivary nitrate/ 
nitrite levels have been observed at 4–12 months of age (Timby 
et al., 2020). In contrast, despite comparable oral microbiome 
structures between sexes, female adults demonstrate higher post
nitrate-supplementation nitrite levels in saliva, plasma, and urine 
than males (Kapil et al., 2018). This divergence may be influenced 
by body mass index, lifestyle factors (e.g., diet and smoking), or sex 
hormones—factors previously linked to NOS activity regulation 
(Weiner et al., 1994). 

4.2.2 Exogenous nitrate supplementation 
Increased dietary nitrate intake, as a selective pressure for 

nitrate-reducing bacteria, may alter the oral microbiome, 
especially leading to the abundance of nitrate-reducing bacteria 
(Moran et al., 2024). Tongue samples of rats exhibited increased 
relative abundances of Streptococcus and Haemophilus (especially 
H. parainfluenzae) after nitrate supplementation (Hyde et al., 
2014b). In healthy participants, dietary nitrate supplementation 
selectively regulated the composition of oral microbiota, 
characterized by a significant increase in the relative abundance 
of nitrate-reducing genera Neisseria (including N. flavescens, N. 
subflava) and Rothia (e.g., R. mucilaginosa), alongside a marked 
decrease in that of Prevotella (e.g., P. melaninogenica), Actinomyces 
FIGURE 2 

Three major bacterial nitrate reduction pathways (Adapted from Koch et al (Koch et al., 2017). and Goh et al (Goh et al., 2022), and created with 
BioRender.com). Bacterial nitrate reduction pathways, including assimilatory nitrate reduction, dissimilatory nitrate reduction to ammonium (DNRA), 
and respiratory denitrification pathways. Nas, cytoplasmic assimilatory reductases; Nar, cytoplasmic nitrate reductase; Nap, periplasmic nitrate 
reductase; NNP, nitrate/nitrite transporter; Nir, nitrite reductase; Nor, nitric oxide reductase; Nrf, ammonia-producing nitrite reductase, Nos, nitrous 
oxide reductase; Nif, nitrogenase; glu, glutamine; N2O, nitrous oxide; N2, dinitrogen; NH3, ammonia; NH4 

+, ammonium; NO2, nitrite; NO3, nitrate; NO, 
nitric oxide. 
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(e.g., A. hyovaginalis), and Veillonella (Velmurugan et al., 2016; 
Vanhatalo et al., 2018; Burleigh et al., 2019; Rosier et al., 2020a; 
Moran et al., 2024; Zhang et al., 2025). The detailed study protocols 
are summarized in Table 1. Denitrifying species, such as Neisseria 
and Rothia, are associated with increased systemic NO• levels, 
whereas DNRA organisms such as Prevotella and Veillonella are 
associated with low NO• levels (Morou-Bermúdez et al., 2022). 
Veillonella, which is the most abundant nitrate-reducing genus 
detected in tongue scrapings (Doel et al., 2005; Bryan et al., 
2017), possesses the capacity for powerful nitrate reduction. After 
nitrate intake, the population of Veillonella has been reported to 
decreased (Table 1). This discrepancy may be due to a change in 
oral pH (Rocha and Laranjinha, 2020). 

4.2.3 Mouthwash usage 
Nitrite production on the  tongue  of  adult humans  is

greatly reduced after administration of broad-spectrum 
antibacterial agents (Li et al., 1997). CHX and other antibacterial
containing mouthwashes abolish the effect of sodium nitrate 
supplementation (Govoni et al., 2008; Kapil et al., 2013; Pinheiro 
et al., 2016). CHX suppressed bacterial growth by binding and 
perforating cell membranes and inhibiting bacterial chemotaxis, 
fiagellar assembly, and lipopolysaccharide (LPS) biosynthesis and 
has been reported to preferentially target gram-negative bacteria 
Frontiers in Cellular and Infection Microbiology 05 
because LPS is their major cell membrane component (Liu et al., 
2023b). Short-term treatment with CHX decreased the relative 
abundance of Prevotella, Fusobacterium, and  Selenomonas in 
hospitalized patients (Liu et al., 2023b). Haemophilus and 
Aggregatibacter were almost eliminated from the tongues of 
CHX-treated animals (Hyde et al., 2014b). CHX, as a potent 
antimicrobial, does not eradicate viable bacteria on the tongue or 
cause large-scale changes in the microbiome community structure, 
which would result in a significant reduction in bacterial viability 
(Tribble et al., 2019). The viability of nitrate-reducing bacteria and 
other conditional pathogenic bacteria decreased simultaneously 
after the usage of CHX or similar mouthwash products that do 
not target specific bacteria. Thus, it is necessary to produce a 
personalized antibacterial mouthwash that can effectively 
distinguish different functional bacteria according to different 
needs of patients and considering various factors. 

4.2.4 pH 
Nitrate supplementation can increase the oral pH from 7.0 to 

7.5 (Hohensinn et al., 2016), and pH 8 is optimal for nitrate 
reductase activity (vanMaanen et al., 1996). Nitrite can be 
reduced to ammonium (NH4+) and protons, which are consumed 
in the ANR and DNR pathways, resulting in an increase in the local 
pH. Additionally, lactic acid can act as an electron donor and 
FIGURE 3 

The respiratory denitrification pathway (Created with BioRender.com). Respiratory denitrification comprises a four-step reductive process in which 
nitrate is reduced to nitrite catalyzed by Nar, nitrite is further reduced to NO• by nitrite reductase, and then NO• is converted to N2O and N2. Nar, 
cytoplasmic nitrate reductase (including narG, narH, and narI); Nir, nitrite reductase (including nirC, nirF, nirK, nirM, nirN, nirS); Nor, nitric oxide reductase 
(including norB and norC); Nos, nitrous oxide reductase (including nosL, nosR, nosZ); Cyto C, cytochrome c; UQ, ubiquinone; UQH2, ubiquinol; MQ, 
menaquinone; MQH2, menaquinol; N2O, nitrous oxide; N2, dinitrogen; NH3, ammonia; NO2, nitrite; NO3, nitrate; NO, nitric oxide. 
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carbon source in these pathways, which further modifies the pH 
(Rosier et al., 2022). In addition, NO• production from nitrite is 
pH-dependent and is increased at pH values below 5 (Rosier et al., 
2022). Generally, an alkaline pH promotes DNRA over 
denitrification (Morou-Bermúdez et al., 2022). An acidic pH of 6 
stimulates the reduction of nitrite more than that under pH 7 or pH 
7.5 by the denitrification-related species Rothia in vitro (Rosier 
et al., 2020b). Furthermore, under acidic conditions, the levels of 
N2O (production of NO reduction in the respiratory denitrification 
pathway) are two-fold higher than those of NO•, suggesting that the 
reduction of NO• is also pH-dependent (Schreiber et al., 2010). 
Under low pH, due to the high levels of nitrate or nitrite, certain 
bacteria and microbial communities capable of nitrate reduction 
may preferentially survive or expand (Koopman et al., 2016). 

4.2.5 Oxygen content 
Areas with high nitrate reductase activity, such as the tongue 

dorsum and subgingival plaque, have a low oxygen partial pressure 
(pO2, 8–13 mmHg, ~1%–2%) (Koch et al., 2017). The average 
oxygen concentration detected in the anterior aspect of the tongue 
is higher than that detected in the posterior portion (Figure 5) 
(Eskow and Loesche, 1971). The majority of oral nitrate-reducing 
bacteria are facultative anaerobes that prefer aerobic respiration, but 
they can grow under anoxic or oxygen-limiting conditions by 
Frontiers in Cellular and Infection Microbiology 06
utilizing the respiratory nitrate reductive pathway. In DNRA, a 
strictly anaerobic process, Nap expression is highest under low 
oxygen and nitrate conditions (Stewart, 1994). Respiratory 
denitrification in dental biofilms occurs under aerobic conditions 
(Schreiber et al., 2010); however, in an oxygen-limiting 
environment, Nar expression is only upregulated under high 
nitrate concentrations (Sparacino-Watkins et al., 2014). The 
important determining factors of bacterial respiration at specific 
locations are oxygen tension and nitrate concentration (Koch 
et al., 2017). 

4.2.6 Smoking 
Smoking  compromises  oral  nitrate  metabolism,  as  

demonstrated in the study of Bailey et al. (2016), who found that 
nitrate supplementation could not reduce blood pressure in 
smokers. These findings can be explained by the cyanide in 
cigarette smoke, which is enzymatically converted to thiocyanate, 
leading to elevations in circulating thiocyanate levels (serum/saliva) 
proportional to smoking intensity (Degiampietro et al., 1987; Bailey 
et al., 2016). Compared with non-smokers, the concentrations of 
nitrate are increased and decreased, respectively, in the plasma and 
saliva of smokers, while higher levels of thiocyanate exist in both 
plasma and saliva (Bailey et al., 2016). Thiocyanate has the potential 
to impede the reduction of nitrate to nitrite, or to catalyze nitrite 
FIGURE 4 

The DNRA pathway (Created with BioRender.com). Dissimilatory nitrate reduction to ammonia (DNRA) is a two-step process in which nitrate is reduced 
by Nap in the periplasm, converted to ammonia via an Nrf, and excreted. Nap, periplasmic nitrate reductase (including napA, napB, napC, napG and 
napH); Nrf, ammonia-producing nitrite reductase (including nrfA, nrfB, nrfC, nrfD), UQ, ubiquinone; UQH2, ubiquinol; MQ, menaquinone; MQH2, 
menaquinol; NH4

+, ammonium; NO2, nitrite; NO3, nitrate; NO, nitric oxide. 
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degradation, rather than interfering with salivary nitrate re
concentration (Dewhurst-Trigg et al., 2018). Concurrently, nitrate 
reductase activity is suppressed by >80% in smokers, directly 
impairing enzymatic conversion (Ahmed et al., 2017). In 
addition, unstimulated salivary pH is more acidic in cigarette 
smokers than in non-smokers, which may have effect on nitrate 
reduction. Smoking reduces the overall nitrate-reducing capacity 
(denitrification) and aerobic taxa abundance (Antonello et al., 
2023). Jia et al. collected saliva samples from 316 healthy subjects 
(150 subjects who had never smoked, and 166 smokers), and found 
that smoking significantly altered the oral microbial composition, 
characterized by the increased relative abundance of Actinomyces 
and Veillonella alongside the decreased abundance of Neisseria and 
Haemophilus (Jia et al., 2021). Thus, the collective impairment 
arises from thiocyanate, enzymatic suppression, pH alteration, and 
microbiota imbalance induced by smoking; however, their 
mechanism remains incompletely resolved. 
4.2.7 Periodontitis 
The subgingival plaque is associated with aerobic or facultative 

anaerobic bacteria capable of nitrate reduction, including 
Streptococcus, Rothia, Neisseria, Actinomyces, and  Veillonella 
(Rosier et al., 2022; Kunath et al., 2024). In dental plaque, nitrate 
Frontiers in Cellular and Infection Microbiology 07 
can be converted to N2 via respiratory denitrification under aerobic 
conditions in a pH-dependent manner (Schreiber et al., 2010), and 
the DNRA pathway is active in anaerobic environments. Nitrite 
concentration is increased in the saliva and gingival crevicular fluid 
of patients with periodontal disease (Reher et al., 2007; Parwani 
et al., 2012; Sanchez et al., 2014; Topcu Ali et al., 2014). The 
potential mechanism underlying this phenomenon may involve 
iNOS activity (Batista et al., 2002; Oner et al., 2024), which is related 
to disease severity, and increased levels of NO• in gingival tissues 
and its subsequent oxidation to nitrate and nitrite. 

The abundance of Rothia and Neisseria, two representative 
nitrate-reducing bacteria, is decreased in the subgingival plaque of 
patients with periodontitis (Wang et al., 2013; Kirst et al., 2015; 
Feres et al., 2021; Chen et al., 2022) and is negatively correlated with 
gingival inflammation (Huang et al., 2021; Rosier et al., 2022). 
Clinical studies have shown that nitrate supplementation attenuates 
chronic gingivitis by inhibiting gingival inflammation, resulting in 
an increase in the relative abundances of Rothia and Neisseria in 
subgingival plaque (Jockel-Schneider et al., 2016; Rosier et al., 
2020a; Jockel-Schneider et al., 2021). The abundance of Prevotella, 
a major pathogen involved in periodontitis, decreases after 
increased nitrate intake (Vanhatalo et al., 2018; Burleigh et al., 
2019). However, the relationship between nitrate-reducing bacterial 
abundance and periodontitis development remains unclear. 
FIGURE 5 

Site-specific core bacterial genera composition in oral cavity (Created with BioRender.com). Representative genera across different locations in oral 
cavity. Genera with nitrate-reducing ability (brown). pO2, oxygen partial pressure. 
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TABLE 1 Alteration of oral bacterial communities after nitrate supplementation. 

Clinical 
Main findings 

 
Taxa that decreased in nitrate-supplemented rats include 
Micrococcaceae, Enterobacteriaceae, Granulicatella, and 
Aggregatibacter. The mean relative abundance of Haemophilus spp. 
and Streptococcus spp. increased in nitrate-supplemented rats. 

h 
 

Abundance of Rothia mucilaginosa and Neisseria flavescens increased 
after nitrate treatment. 

 

 

After nitrate supplementation the relative abundances of Rothia 
(+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) 
and Veillonella (-65%) were lower than in the placebo condition; 

 
1) Dietary nitrate intake reduced the relative abundance of Prevotella, 
Streptococcus, and Actinomyces. 
2) The abundance of Neisseria increased in both groups, with a 
greater magnitude observed in the nitrate supplementation arm 
versus placebo. 
3) Abundance of N. subflava increased, A. hyovaginalis and P. 
melaninogenica decreased after nitrate supplementation. 

 
 

Significantly higher levels of Neisseria (3.1 ×) and Rothia (2.9 ×) 
were detected in the nitrate condition already after 5 h, while 
Streptococcus, Veillonella, Oribacterium Porphyromonas, 
Fusobacterium, Leptotrichia, Prevotella, and Alloprevotella were 
significantly reduced (p< 0.05 at 5 h and/or 9 h). 

 At phylum and genus levels, diminished Proteobacteria and Neisseria 
in LOW compared to CON; however, these P-values did not survive 
FDR correction. 

 
f 

1) The difference in communities based on juice consumption should 
be visible just after 2 weeks. 
2) Nitrate consumption increased the abundances of Neisseria and 
Abiotrophia but decreased Actinomyces and Stomatobaculum. 

1) The abundance of nitrate-reducing bacteria increased following 
nitrate supplementation. 
2) Neisseria flavescens abundance increased 1.16-fold 
compared to pre-supplemental levels. 
3) The most abundant species observed after supplementation were 
N. flavescens, R. mucilaginosa 1, and S.mitis, accounting for 30% of 
the overall composition 
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Year 
study design 

Sample type Participants Dietary nitrate intake 

2014 (Hyde et al., 2014a) 

Animal study Tongue swab 8 Wistar rats (7-week old) 

Animals were supplemented with 
sodium nitrate in their drinking water
(1 g/L) for 5 days. 

2016 (Velmurugan et al., 2016) A randomized, double
blind, placebo-controlled 
parallel trial 

Saliva 67 nonsmoking, nondiabetic, 
otherwise healthy 
hypercholesterolemic patients 

6-week period of supplementation wit
250 mL beetroot juice daily or 250 mL
nitrate-depleted beetroot juice. 

2018 (Vanhatalo et al., 2018) A randomized, double
blind, cross-over design 

Tongue swab 9 old and 9 young adults 
healthy volunteer 

2-weeks with nitrate-rich concentrated
beetroot juice (2 × 70 mL/d, each 70 
mL containing ~ 6.2 mmol nitrate); 
nitrate-depleted concentrated beetroot
juice as placebo. 

2019 (Burleigh et al., 2019) 

A placebo-controlled, single 
blind randomized 
crossover study 

Tongue swab 11 healthy males 

2 separate 7-day phases; participants 
ingested 70 ml of nitrate-rich beetroot
juice (∼6.2 mmol nitrate) and nitrate
depleted beetroot juice twice per day. 

2020 (Rosier et al., 2020a) 

In vitro study Saliva 12 healthy volunteers 

Saliva was collected to grow in vitro 
bioflms with and without 6.5 mM 
nitrate. Samples were taken at 5 h and
9 h of bioflm formation for 16S rRNA
gene Illumina sequencing. 

2024 (Black et al., 2024) A double-blind, 
crossover design. 

Saliva 11 healthy volunteers (10 
males, 1 female) 

1) A 7-day standard nitrate-diet (~180
mg nitrate/d; STD), followed by a 3
day high nitrate diet (~1000 mg 
nitrate/d; HIGH). 
2) A 7-day low nitrate diet (~30 mg 
nitrate/d; LOW), followed by HIGH. 

2025 (Reichardt et al., 2025) A double-blind, 
crossover design. 

Saliva, tongue, and 
subgingival plaque 

22 patients undergoing 
orthodontic treatment 
with buccal fixed appliances 

Eleven subjects received daily 120 mL
nitrate-containing juice for a period o
2 weeks. 

2025 (Zhang et al., 2025) Nitrate supplements orally 
(concentrate from beetroot juice, 400 
mg, equivalent to 6.45 mM) each 

A single-site 
Saliva 

13 healthy subjects (8 female 
morning for 5-days. 

experimental trial and 5 male, aged 18–65) 
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4.2.8 Caries 
The salivary nitrate concentration is significantly lower in 

patients with caries, and it is negatively correlated with the 
severity of caries (Zhang et al., 2021b). Typically, caries occurs at 
pH < 5.5, and the reduction of nitrite to NO• typically occurs under 
similar acidic conditions. Ammonium production during DNRA, 
along with lactic acid and hydrogen sulfide (as electron donors) 
consumption, contributes to acid prevention (Wicaksono et al., 
2020; Rosier et al., 2022; Feng et al., 2023).The abundances of 
nitrate-reducing bacterial genera, such as Neisseria, Actinomyces, 
Rothia, Propionibacterium, Haemophilus, Selenomonas, and

Granulicatella, and representative nitrate-reducing species such as 
R. dentocariosa, Selenomonas noxia, Kingella oralis, V. dispar, and 
other Selenomonas sp. were decreased in patients with caries (Aas 
et al., 2008; Tanner et al., 2011; Luo et al., 2012; Jiang et al., 2018; Xu 
et al., 2018; Celik et al., 2021; Yang et al., 2021). Interestingly, 
Veillonella plays an essential role in the development of caries and 
closely interacts with caries-associated bacteria in bacterial 
adhesion, co-aggregation, and biofilm formation (Feng et al., 
2023). The relative abundance and prevalence of Veillonella are 
similar or higher in the oral cavity of patients with caries compared 
with those in the oral cavity of caries-free individuals (Tanner et al., 
2011; Jiang et al., 2018; Qudeimat et al., 2021). Thus, nitrate and 
nitrate-reducing bacteria can prevent the development of caries by 
regulating the pH, reducing the accumulation of lactic acid, and 
increasing denitrification (Li et al., 2007; Rosier et al., 2021). Further 
studies are required to explore the distribution, prevalence, 
abundance, interactions, and effects of nitrate-reducing bacteria 
on caries progression. 
 

4.2.9 Salivary gland disorders 

Salivary gland disorders, such as Sjogren’s syndrome  (SS) or

xerostomia, induce a decrease in salivary flow and acidification of the 
oral cavity’s pH, which affects microorganism colonization (Bustos-
Lobato et al., 2023). The oral microbiome of patients with SS 
significantly differs from that of healthy individuals (Kim et al., 
2022; Bustos-Lobato et al., 2023). Salivary gland dysfunction leads 
to a significant decrease in salivary nitrate concentration and an 
increase in urinary excretion, leading to changes in enterosalivary 
circulation (Xia et al., 2003a, Xia et al., 2003b). Changes in salivary 
nitrate levels may cause an increase in the conversion of nitrite and 
NO• by nitrate-inducing bacteria. Higher abundances of Veillonella, 
Neisseria, and  Streptococcus have been observed in patients with SS 
compared with those in patients without SS (Kim et al., 2022), 
particularly V. parvula in subgingival biofilms (Singh et al., 2021). 
Interestingly, the abundances of other representative nitrate-reducing 
species, such as H. parainfluenzae, were  significantly lower in SS than 
those in the controls (Tseng et al., 2021). While there has been no 
conclusive evidence of a link, the correlations between the nitrate
reducing microbiome composition and salivary gland dysfunction 
offer a potentially novel avenue for future investigations. 
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5 Nitrate-reducing microbiota in the 
gut 

In the gut, NO• can be generated through the oxidation of L
arginine by NO synthase, and nitrate/nitrite can act as an N source 
for NO•. Nitrate is usually absorbed in the upper intestinal tract; 
approximately one third of nitrate reaches the lower intestine, and 
1% is present in feces (Bartholomew and Hill, 1984). A study 
conducted on germ-free and normal rats showed that NO• can be 
produced by bacteria residing in the small intestine of normal rats 
but not in germ-free rats (Sobko et al., 2004). After nitrate 
supplementation, NO• generation in human feces is significantly 
increased by commensal bacteria (Sobko et al., 2005). 

The gut harbors one of the largest microbial ecosystems, 
containing over 1 kg of bacterial biomass and up to 1,000 
different species (Nicholson et al., 2005; Kunath et al., 2024). The 
gut microbiome mainly consists of anaerobes belonging to the phyla 
Bacteroides, Firmicutes, and  Lactobacilli, including the genera 
Bacteroides, Prevotella, and Ruminococcus and some noticeable 
variations, including Desulfovibrio and Akkermansia (Cresci and 
Bawden, 2015; de Vos et al., 2022; Kunath et al., 2024). The major 
gut microbiota inhabiting differ among intestinal locations. 
Different healthy individuals may possess different microbiomes. 
Diet, stress, lifestyle, medications, local or systemic diseases, and 
many other factors can influence the composition of the 
gut microbiome. 

Complex local factors in the intestinal lumen play an important 
role in the interaction between nitrate/nitrite and bacteria. The 
intestinal lumen has an estimated pO2 of less than 0.1 mmHg, 
whereas in the adjacent mucus layer, the pO2 is 0.1–10 mmHg 
(Koch et al., 2017; Rocha and Laranjinha, 2020). pO2 is highest in 
the proximal gut, including the gastric fundus and small bowel, and 
is lower in the sigmoid colon and rectum. In addition, the oxygen 
gradient decreases to 80–100 mmHg (~10–13%) in the submucosa 
and bottom of the villi to the covered mucous layer and the center of 
the lumen is essentially oxygen-free (Koch et al., 2017). 
Furthermore, the pH differs between different locations in the gut, 
with pH 6.37 in the ascending colon, pH 6.61 in the colon 
transversum, and pH 7.04 in the descending colon (Koch et al., 
2017). Reducing the oxygen content and pH may influence nitrate 
production by gut bacteria, but limited studies have examined this. 

Knowledge of the interaction between nitrate and gut 
microbiota remains limited. In vitro, nitrate is mainly reduced to 
ammonium via the DNRA pathway by gut microorganisms (Allison 
and Macfarlane, 1988; Vermeiren et al., 2009). DNRA is preferred 
over denitrification by gut bacteria when electron levels are limited 
(Vermeiren et al., 2009). The predominant nitrate reduction 
pathway utilized by gastrointestinal bacteria, such as Escherichia 
coli, Lactobacillus spp., and Bifidobacterium spp., or in clinical stool 
samples, is DNRA (Vermeiren et al., 2009; Tiso and Schechter, 
2015). Therefore, nitrate is predominantly reduced to ammonium 
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in the gut and then converted to urea in the liver (Morou-Bermúdez 
et al., 2022). Escherichia coli, Bacteroides thetaiotaomicron, and 
Clostridium difficile do not generate NO• via the NO3 

– NO2
- -NO• 

pathway in vitro, whereas  Lactobacilli and Bifidobacteria spp. 
generate NO from nitrite; among these species, only a few strains 
can generate NO from nitrate (Sobko et al., 2005). In summary, 
nitrate and nitrate-reducing bacteria are interconnected in the gut 
and play an important role in gastrointestinal and systemic health, 
and additional studies could further elaborate on the underlying 
ecological mechanisms. 
6 Role of nitrate-reducing bacteria in 
systemic health 

6.1 Cardiovascular disease 

Enterosalivary nitrate plays an important role in NO• 
production  and  acts  as  an  important  mediator  of  the  
development of CVD, endothelial dysfunction, and peripheral 
artery diseases (Kleinbongard et al., 2006; Lundberg et al., 2015; 
Lundberg and Weitzberg, 2022). Oral supplementation with nitrate 
(such as from beetroot juice) increases circulating nitrate, nitrite 
and NO• levels, and blood pressure (Webb et al., 2008; Hobbs et al., 
2013; Siervo et al., 2013; Liddle et al., 2019). Table 2 presents a 
detailed summary of clinical studies that explored the effect of 
dietary nitrate intake on the CVD. 

The effects of nitrate supplementation vary across disease states. 
In healthy young volunteers, acute nitrate ingestion induced a 
transient reduction in systolic blood pressure (SBP) and an 
enhanced flow-mediated dilation (FMD) response at 2.5 h post
ingestion (Burleigh et al., 2018). After 3 days of supplementation, 
diastolic blood pressure (DBP) was observed to decrease (Larsen 
et al., 2006). Chronic and low dietary nitrate intake (1–2 weeks) did 
not have significant effects on blood pressure (BP) in young adults, 
whereas a reduction in BP was observed in older adults following 2 
weeks of supplementation (Vanhatalo et al., 2018; Black et al., 
2024). In hypertensive patients, both acute (2.5 h) and chronic (4 
weeks) nitrate intake improved BP, specifically by reducing SBP, 
whereas no significant changes were observed in hypertensive 
pregnant women (Kapil et al., 2015; Willmott et al., 2023). In 
patients  with  hypertension,  hypercholesterolemia ,  or  
postmenopausal women, vascular function, including pulse wave 
velocity (PWV), augmentation index (AIx), b stiffness and elastic 
modulus, demonstrated improvement following nitrate intake 
(Kapil et al., 2015; Velmurugan et al., 2016; Hayes et al., 2025). 
Similarly, dietary nitrate has been reported to prevent endothelial 
dysfunction, such as peripheral arterial disease (Bock et al., 2018; 
Hughes et al., 2022) and ischemia-reperfusion (Li et al., 2021; Zhang 
et al., 2021a; Yassaghi et al., 2023). Notably, individuals with type 2 
diabetes mellitus (T2DM) exhibited no significant changes in BP or 
macro-/microvascular endothelial function following 2 weeks of 
nitrate supplementation (Gilchrist et al., 2013). However, extending 
nitrate supplementation to 8 weeks significantly reduced both 
peripheral and central SBP in T2DM patients, with no observed 
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changes in DBP. Collectively, the vascular stiffening and reduced 
NO responsiveness in T2DM may require prolonged nitrate 
intervention (≥8 weeks) to achieve therapeutic effects. 

The potential correlation between decreased abundance or 
absence of nitrate-reducing microbial communities and 
subsequent CVD risk remains unresolved. Epidemiological 
evidence suggests that oral microbial dysbiosis is linked to 
impaired cardiovascular health (Briskey et al., 2016). Notably, 
hypertensive women have significantly lower salivary nitrite 
concentrations and diminished relative abundance of Veillonella 
compared with those of their normotensive counterparts (Willmott 
et al., 2023). Furthermore, decreased oral nitrate-reducing bacterial 
abundance precedes the onset of preeclampsia, highlighting its 
potential as a predictive biomarker (Altemani et al., 2022). 
Collectively, these observations emphasize the essential role of 
oral nitrate-reducing microbiota in cardiovascular homeostasis, 
further supported by interventional studies demonstrating that 
mouthwash-induced depletion of these bacteria directly worsens 
cardiovascular parameters (Table 3). Frequent mouthwash use 
(≥twice daily) was associated with a higher incidence of 
hypertension (Joshipura et al., 2020). In healthy participants, 
utilization of antibacterial mouthwash resulted in elevated salivary 
nitrate levels and reduced nitrite levels, accompanied by transient 
increases in SBP and DBP within 1–4 h post-administration. There 
were no significant changes in BP or marginal elevations after 3 
days or 1 week of use (Kapil et al., 2013; Sundqvist et al., 2016; 
Woessner et al., 2016; Cutler et al., 2019). For hypersensitive 
individuals, 3-day usage of antibacterial mouthwash resulted in a 
significant increase in home SBP (2.3mm Hg) (Bondonno et al., 
2015). Overall, nitrate-reducing bacteria, as a critical component of 
the NO• generation pathway, play a pivotal role in cardiovascular 
regulation, and these observed associations have driven mechanistic 
investigations into how targeted modulation of oral nitrate

reducing microbiota alters cardiovascular outcomes. 
6.2 Digestive system diseases 

6.2.1 Stomach diseases 
Nitrite and intragastric nitrogen oxides can affect physiological 

processes in the gastrointestinal tract, such as gastric mucosal blood 
flow and mucus formation (Bjorne et al., 2004; Petersson et al., 
2007; Lundberg et al., 2008; Petersson et al., 2009). A small increase 
in intragastric NO• can be attributed to gastric or intestinal bacteria 
that may reduce nitrate to nitrite and NO• (Brittain et al., 1992). 
The acidic environment of the stomach, which has a pH between 1.5 
and 3.5, is a natural barrier for most oral bacteria. Thus, only acid
resistant oral bacteria, such as Streptococcus spp., Veillonella spp., 
and Prevotella spp., are commonly found in the stomach, but their 
relative abundances differ (Kunath et al., 2024). Helicobacter, 
Stenotrophomonas, Haemophilus, Streptococcus, Veillonella, 
Rothia, Actinomyces, and Prevotella are the major genera in the 
stomach, as determined by pyrosequencing (Jo et al., 2016). 
Importantly, the pathogen Helicobacter pylori can neutralize 
gastric acidity by generating ammonium from urea using urease, 
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TABLE 2 Summary of clinical studies exploring the effect of dietary nitrate intake on CVD. 

Year Clinical study design Participants Dietary nitrate intake Clinical parameters Main findings 

d DBP 1) SBP and pulse rate did not change 
ate significantly after nitrate intake. 
 nitrate/nitrite levels 2) Nitrate supplementation lowered DBP 

(-3.7 mmHg) and mean arterial pressure 
(-3.2 mmHg); versus placebo. 
3) Plasma nitrate/nitrite levels were 
significantly higher after nitrate ingestion. 

 nitrate and nitrite 
tions 
mbulatory BP 
-/microvascular 
al function 

1) Median plasma nitrate/nitrite 
concentrations increased from 31.0 mmol/L/ 
232 nmol/L (placebo) to 150 mmol/L/390 
nmol/L (nitrate). 
2) Dietary nitrate supplementation had no 
effect on BP or macro-/microvascular 
endothelial function in patients with T2DM. 

 and clinic BP 
ar function, including 
 augmentation index 

utaneous arterial 
oglobin concentrations 

1) Clinic SBP and DBP decreased compared 
to baseline by 7.7 and 2.4 mmHg after 
nitrate intake. 
2) Home SBP and DBP reduced within 1 
week of consumption of dietary nitrate and 
reduced over the entire 4-week intervention 
period. 
3) Compared to placebo, dietary nitrate 
reduced PWV by 0.58 m/s and AIx by 6.1%. 

 aPWV 1) Dietary nitrate resulted in increase in the 
FMD response of 1.1% (an w24% 
improvement from baseline), and a small 
improvement in the aPWV (i.e., a decrease 
of 0.22 m/s). 

 FMD 
y and plasma nitrate 

etagenomic sequencing 
 swab samples 

1) A transient reduction in SBP and increase 
in the FMD response at 2.5-hour post
nitrate supplementation. 
2) Nitrate supplementation increased 
salivary pH (7.13 ± 0.54 to 7.39 ± 0.68). 
3) Nitrate intake altered the abundance of 
bacteria: Neisseria (from 2% to–9%), 
Prevotella (from 34% to 23%) and 
Actinomyces (from 1% to 0.5%). 

 nitrate and nitrite Nitrate supplementation increased plasma 
 pulse wave concentration of nitrite, and reduced BP in 
PWV) elderly but not young subjects. 

(Continued) 
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2006 (Larsen et al., 2006) A randomized, double-blind, crossover 17 healthy volunteers (15 men and 2 1) 3-day sodium nitrate (0.1 mmol/ 1) SBP a
design with two different periods women; mean age, 24 years) none of kg/BW/d); 2) Pulse 
during which the subjects received 
either nitrate or placebo. 

whom smoked 2) 3-day placebo (sodium chloride, 
0.1 mmol/kg/BW/d). 

3) Plasm

2013 (Gilchrist et al., 2013) A randomized double-blind, placebo
controlled crossover 
trial with two different 2-week 
treatment periods during which the 
subjects received either nitrate 
or placebo. 

27 participants (9 women and 18 
men) with T2DM 

2-week period of supplementation 
with 250 ml beetroot juice daily 
or 250 ml nitrate-depleted 
beetroot juice. 

1) Plasm
concentr
2) 24-h a
3) Macro
endothel

2015 (Kapil et al., 2015) A prospective single-centre, double
blind, randomized, placebo
controlled trial 

68 hypertensive patients, 
randomization of drug-naive (n=34) 
and treated (n=34) 
hypertensive patients 

4-weeks with either dietary nitrate 
(250 mL daily, as beetroot juice) or 
a placebo (250 mL daily, as nitrate
free beetroot juice). 

1) Home
2) Vascu
PWV an
(AIx) 
3) Trans
methaem

2016 (Velmurugan et al., 2016) A randomized, double-blind, placebo
controlled parallel trial 

67 nonsmoking, nondiabetic, 
otherwise healthy 
hypercholesterolemic patients 

6-week period of supplementation 
with 250 mL beetroot juice daily or 
250 mL nitrate-depleted 
beetroot juice. 

FMD an

2018 (Burleigh et al., 2019) A placebo-controlled, single blind 
randomized crossover study 

11 healthy, normotensive males (age 
30 ± 7 years) 

Two 7-day dietary supplementation 
phases 
1) 70 mL beetroot juice (∼6.2 
mmol nitrate) in the morning and 
70 mL in the evening. 
2) Same volume of nitrate-depleted 
beetroot juice. 

1) BP an
2) Saliva
levels 
3) 16S m
of tongu

2018 (Vanhatalo et al., 2018) Two 10-day dietary supplementation 9 elderly adults (mean age 75 years; 6 2-weeks with nitrate-rich 1) Plasm
periods with nitrate and placebo in a females, 3 males); concentrated beetroot juice (2 × 70 2) BP an
randomized, double-blind, cross 9 young adults (mean age 20 years; 5 mL/d, each 70 mL containing ~ 6.2 velocity 
over design females, 4 males) healthy volunteer mmol nitrate); nitrate-depleted 

concentrated beetroot juice 
as placebo. 
n
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TABLE 2 Continued 

Year Clinical study design Participants Dietary nitrate intake C l parameters Main findings 

 

 
te. 

1 eral and central BP 
2 AIx 

1) Nitrate/nitrite supplementation reduced 
peripheral SBP (148 to 142 mm Hg) but not 
placebo. 
2) Central SBP (131 to 127 mm Hg) and 
augmented 
pressure (13.3 to 11.6 mm Hg) were reduced 
after 
nitrate/nitrite, but not placebo. 
3) Peripheral and central DBP was 
unchanged 
by the interventions. 
4) Nitrate/nitrite also reduced AIx (24.3% to 
21.0%) whereas no changes were observed 
following placebo. 

 

1 smolality 
2  pulse wave variables 
3 se performance 
d ed at baseline and 2.5 h 
a ate supplement 

1) Brachial SBP was unchanged following 
nitrate supplementation in all conditions. 
2) Central SBP was reduced in every 
timepoint after nitrate ingestion. 
3) Cycling time to exhaustion was not 
different between nitrate and placebo at 
any timepoint. 

0 
 

N ductase (NaR) activity 
a livary and plasma 
n trite concentrations, 
a etermined at baseline 
a  after 
n pplement 

1) Salivary and plasma nitrate and nitrite 
increased after dietary nitrate intake. 
2) Nonpregnant participants had a greater 
decrease in SBP compared with pregnant 
participants and this decrease was notably 
greater in the NPT women. 

; 
g 

 

1 nary gas exchange 
2
3  and nitrite of saliva, 
p nd skeletal muscle 

1) Following HIGH, saliva and plasma 
nitrate and nitrite and muscle nitrate were 
significantly elevated above CON, LOW and 
STD, but there was no difference between 
CON-LOW-HIGH and CON-STD-HIGH. 
2) BP and exercise performance were not 
altered following LOW. 
3) HIGH significantly reduced SBP and DBP 
compared to CON when preceded by STD 
but not when preceded by LOW. 
4) Peak (+4%) and mean (+3%) power 
output during sprint cycling was 
significantly improved following HIGH. 

(Continued) 
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) Periph
) PWV, 

) urine o
) BP and
) Exerci
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fter nitr

itrate re
ssays, sa
itrate/ni
nd BP d
nd 2.5 h
itrate su

) Pulmo
) BP 
) Nitrate
lasma, a
2022 (Bock et al., 2022) Patients with T2DM completed two 
study visits separated by an 8-week 
supplementation period. A 
randomized, doubled-blinded, 
placebo-controlled parallel study. 

37 patients with T2DM 1) Beetroot drink containing 250
mg nitrate (~ 4.03 mmol) and 20
mg of initrite (~0.29 mmol) 2) 
Placebo containing trace amount
of nitrate (5–10 mg) and no nitr

2023 (Rowland et al., 2024) A repeated-measures, crossover design 12 young healthy males 1) 2 × 70 mL of concentrated 
nitrate-rich (13 mmol) beetroot 
juice; 
2) nitrate-depleted (~0.04 mmol)
beetroot juice. 

2023 (Willmott et al., 2023) A single-site experimental trial 17 Non-pregnant normotensive 
(NPNT) women; 15 pregnant 
normotensive (PNT) women; 7 non
pregnant hypertensive (NPT) 
women; 12 pregnant hypertensive 
(PHT) women 

A single dose of dietary nitrate (
mL beetroot juice shot containin
400 mg inorganic nitrate). 

2024 (Black et al., 2024) A double-blind, crossover design. 11 healthy volunteers (10 males, 
1 female) 

1) a 7-day standard nitrate-diet 
(~180 mg nitrate/d; STD), 
followed by a 3-day high nitrate 
diet (~1000 mg nitrate/d; HIGH
2) a 7-day low nitrate diet (~30 
nitrate/d; LOW), followed by 
HIGH. 
Both interventions were precede
by 3-day STD/control diets and 
separated by ≥10-day washout. 
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TABLE 2 Continued 

Year Clinic dy design Participants Dietary nitrate intake C l parameters Main findings 

oss
om
rol

1  nitrate and nitrite 
le
2 d artery 
st nalysis 

1) Nitrate supplementation significantly 
reduced PWVb, b stiffness, elastic modulus, 
and AIx at weeks 4, 8, and 12, whereas 
arterial compliance increased by week 12. 
2) Serum nitrate and nitrite concentrations 
were elevated 5- to 6 and 1.5- to 2-fold, 
respectively, after nitrate intake, with peak 
concentrations occurring at week 8. 
3) Blood pressure remained unchanged in 
both groups. 

-r cal

rat f 
tic rv n Main findings 

sh eriod) 

eal ek 1) Antiseptic mouthwash reduced oral nitrite production 
s; 
 18

by 90% and plasma nitrite levels by 25% vs. control 
period. 

-sm 2) SBP and DBP increased by 2–3.5 mmHg, correlated to 
a decrease in circulating nitrite concentrations. 
3) The BP effect appeared within 1 day and was 
sustained during the 7-day mouthwash intervention. 

eat ys ( ays) 1) 3-day use of antibacterial mouthwash resulted in a 
 50 significant increase in home SBP (2.3 mm Hg) but did 
-sm not increase DBP (0.7 mm Hg). 
diab 2) Antibacterial mouthwash significantly attenuated oral 
 m nitrate reduction capacity (nitrate reduction ratio [NR 

ratio]: −4.2), reduced salivary nitrite (41 vs. 111 µmol/L), 
120 and increased salivary nitrate (686 vs. 252 µmol/L), while 
 <1 plasma nitrate and nitrite levels remained unaffected. 

eal  3-d tment 1) Mouthwash elevated salivary nitrate (1118 vs. 401 
23 ds s) mM) and reduced nitrite (23 vs. 248 mM) compared to 
 22 placebo, with no significant alterations in plasma nitrate/ 

nitrite levels. 
2) 3-day use of antiseptic mouthwash did not 
significantly change 24 h ambulatory BP, neither during 
day-time or the night-time dip 

(Continued) 
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–40 kg/m
okers; 

ed hyper
–70 year
okers; 
etic; 
ass index

-159mm
00 mm H

thy fema
± 4; 
 ± 3 
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) Serum
vels 
) Caroti
iffness a

 trials. 

ion o
entio
out p

10–12 d

ay trea
(28 day
2025 (Hayes et al., 2025) A cr
rand
cont

TABLE 3 Suppression of oral nitrate

Year Par

2013 (Kapil et al., 2013) 19 h
year
BMI
non

2015 (Bondonno et al., 2015) 15 tr
aged
non
not 
body
m 2; 
SBP
DBP

2016 (Sundqvist et al., 2016) 17 h
age 
BMI
l followed by a 
ble-blind, placebo
el study 

20 postmenopausal females (60–85 
yr), 10 young females 

12-week period of supplementation 
with nitrate (8.8 mmol/day), or the 
same amount of placebo 

 microbia by antiseptic mouthwash alters cardiovascular homeostasis: Evidence from clin

Du
 Clinical study design Type of intervention int

(w

iduals, aged 18–45 A crossover study. An initial 7-day Volunteers rinsed with 10 ml 1 w

2; 
control period followed by a 7-day 
treatment period with 

0.2% CHX mouthwash twice daily 

CHX mouthwash 

tensive individuals; A randomized controlled cross- Participants rinsed their mouths 3 d
s; over study. Two treatment period for 30 s with 20 ml of either the 

including mouthwash and 1.28 mg/mol chlorhexidine 
tap water gluconate antibacterial mouthwash 

 (BMI) 20–35kg/ or tap water after brushing teeth, 
morning and evening. 

Hg; 
g. 

les; A randomized, double-blind, 0.2% CHX mouthwash or placebo Tw
crossover design using an to rinse 3 times a day, 1 min each per
antibacterial mouthwash or lacebo time after meals. 
i

e
a

e

a

o
io
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TABLE 3 Continued 

Duration of 
e of intervention intervention Main findings 

(washout period) 

uthwash treatments consisted 
 water (control); 2) Listerine® 

eptic mouthwash (active 
dients: Eucalyptol 0.092%, 
hol 0.042%, Methyl salicylate 
%, Thymol 0.064%); 3) 
col® antibacterial mouthwash 
e ingredients: 
pyridinium chloride 0.05%); 
lorhexidine mouthwash 
e ingredient: chlorhexidine 
nate 0.12%) 

Participants consumed a 
total of 8.4 mmol nitrate. 
15 min after intake, rinsed 
with 5 mL mouthwash 
solution or control for 
60 s 

Testing of BP at baseline and each hour for 4 h. The 
main effect of mouthwash treatment was significant on 
SBP, but not for time or mouthwash treatment time 
during 4 h post application of mouthwash. 

cipants rinsed with 
acterial mouthwash or 
bo for 1 min at 1, 30, 60, and 
in after exercise 

– Blood pressure was measured before and 1 h and 2 h 
after exercise. The SBP-lowering effect of exercise was 
attenuated by 61% at 1 h in the recovery period, and it 
was fully attenuated 2 h after exercise with 
antibacterial mouthwash. 

ine and follow-up – 1) 12% (66/540) developed hypertension over follow-up. 
ionnaires assessed frequency 
al hygiene aids including 

2) Frequent mouthwash use (≥twice daily) was associated 
with a higher incidence of hypertension than both 

hwash use infrequent use (Incidence Rate Ratio [IRR] = 1.85) and 
non-use (IRR = 2.17). 

cipants rinsed twice a day 
0.2% CHX or 

1 week 1) A significant reduction in nitrite-producing activity 
(NPA) and abundance of nitrite-producing species (NPS) 

olis mouthwash was observed in the CHX group compared to baseline 
and the propolis group. 
2) At baseline, systolic and mean BP were similar, SBP 
and DBP were lower after CHX application without 
significant difference. 
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Year Participants Clinical study design Typ

2016 (Woessner et al., 2016) 12 healthy adult males A randomized clinical trial, cross
over study. 

4 mo
of: 1)
antis
ingre
Ment
0.060
Cepa
(activ
Cetyl
4) Ch
(activ
gluco

2019 (Cutler et al., 2019) 23 healthy and 
normotensive participants 

A single-site experimental trial Parti
antib
place
90 m

2020 (Joshipura et al., 2020) 540 individuals; age 40–65 years; A 3-year follow-up longitudinal Basel
overweight/obese (BMI ≥ 25.0 kg/ 
m 2); not diabetic 

cohort study quest
of or
mout

2025 (Bescos et al., 2025) 45 healthy individuals; aged 18–50 
years; BMI < 30 kg/m2 

A randomized clinical trial, cross
over study 

Parti
with 
prop
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enabling its survival and growth in acidic environments. H. pylori 
infection causes inflammation and alters stomach pH, ultimately 
reducing acidity, blocking NOS2 expression, and decreasing NO• 
production (Gobert and Wilson, 2016; Koch et al., 2017; Stewart 
et al., 2020). After co-culturing with H. pylori, nitrate-reducing 
bacteria increase the inflammation and atrophy of monocytic cells 
by modulating cytokine levels (Ojima et al., 2022). 

Nitrate supplementation results in a 20% increase in the thickness 
of the firmly adherent mucus layer; this increase was absent in rats 
treated with antiseptic mouth spray (Petersson et al., 2009). Another 
study found that bilateral parotid and submandibular gland duct 
ligature (BPSDL) completely blocked the enterosalivary circulation of 
nitrate and significantly decreased the levels of gastric nitrate, nitrite, 
and luminal NO• in the stomach of rats. The animals in the BPSDL 
group displayed more severe gastric ulcers than normal rats, and nitrate 
administration successfully reduced the percentage of deep ulcers (Jin 
et al., 2013). However, the association between oral/gastrointestinal 
nitrate-reducing bacteria and gastric homeostasis remains unclear; 
therefore, the role of oral nitrate-reducing microbiota in gastric 
disorders warrants further investigation. 

6.2.2 Intestinal tract diseases 
Compared with that of healthy individuals, the concentration of 

nitrate in the plasma of patients with gastroenteritis is high and 
similar to that in patients with inflammatory bowel disease (IBD) 
(Dykhuizen et al., 1996). Similarly, rectal NO• concentrations are 
significantly higher in patients with active IBD (Reinders et al., 
2007) compared with that in normal controls. In a previous study, 
nitrite and nitrate concentrations exhibited variations that were not 
always in line with the disease activity index (DAI) of a dextran 
sodium sulfate (DSS)-induced colitis model, ranging from systemic 
drops to marked increases, indicating the complexity of NO• 
metabolism in the process of IBD (Saijo et al., 2010). Veillonella 
(including V. parvula and V. dispar), an important nitrate-reducing 
bacterium, is commonly enriched in the intestines of patients with 
IBD (Schirmer et al., 2018; Rojas-Tapias et al., 2022). Nitrate 
supplementation significantly alleviated epithelial cell necrosis, 
intestinal permeability, and disruption of tight junctions to 
prevent hypoxia-induced small intestinal injury (Xu et al., 2024). 
In aged mice, nitrate supplementation for 6 months via drinking 
water enhanced the integrity of the colon epithelial barrier and 
increased the relative abundance of some intestinal probiotics, such 
as Blautia, Alloprevotella, Butyricicoccus, and Ruminococcaceae 
(Wang et al., 2024). Gastrointestinal diseases are closely related to 
abnormal nitrate and NO metabolism, in which nitrate-reducing 
bacteria play an important role. 

Nitrate can alter bacterial communities in the gut; however, the 
specific interactions between nitrate and gut bacteria remain 
unknown. Inorganic nitrate supplementation for 1 week or 3 weeks 
does not affect the gut microbial communities (Conley et al., 2017; 
Rocha et al., 2019). Previously, our group reported that inorganic 
dietary nitrate increases the abundance of Lactobacillus and prevents 
colon epithelial injury induced by total body irradiation (Wang et al., 
2020). Oral nitrite supplementation prevents inflammation in DSS
induced colitis by supplying NO• (Ohtake et al., 2010). Similarly, our 
Frontiers in Cellular and Infection Microbiology 15 
group previously reported that oral administration of nitrate 
alleviates DSS-induced colitis by regulating the microbiome in the 
colon by increasing the abundance of Lactobacillus (regulate 
intestinal immune response), Ruminococcaceae_UCG-014 (related 
to short chain fatty acids production), and Prevotellaceae_UCG-001 
(Hu et al., 2020), suggesting that nitrate may modulate inflammatory 
and immune responses in IBD by reshaping the gut bacterial 
phenotype. Overall, these results show that the beneficial biological 
effects of nitrate are partially due to its ability to regulate the gut 
microbiome and that complex nitrate reduction in the gut 
microbiome needs further exploration. 
6.3 Diabetes and other metabolic 
syndromes 

6.3.1 Diabetes 
Type 2 diabetes mellitus (T2DM) results in impaired NO• 

bioavailability (Bahadoran et al., 2021a). Dietary nitrate 
supplementation reverses metabolic syndrome features (including 
hypertension, dyslipidemia, insulin resistance, and visceral adiposity) 
in aged eNOS-deficient mice (Carlström et al., 2010). Nitrate 
supplementation in diabetic rats/mice ameliorated glycemic 
parameters, including gluconeogenesis, fasting glucose, insulin, lipid 
profiles, and insulin resistance (Li et al., 2016; Gheibi et al., 2018; 
Khorasani et al., 2019). Previous animal studies have demonstrated 
that nitrate/nitrite reduce oxidative stress, promote adipose tissue 
browning, and enhance insulin secretion, thus nitrate has been used 
in drugs to manage diabetes (Ghasemi and Jeddi, 2017). A 12-month 
study of high-fat/sucrose-fed mice revealed that nitrate does not 
improve metabolic dysfunction and exacerbates cholesterol 
dysregulation, cardiac fibrosis, steatotic liver disease, and 
hepatocellular carcinoma progression (Sowton et al., 2025). Clinical 
studies have reported conflicting outcomes regarding the therapeutic 
efficacy of dietary nitrate in T2DM, attributed to variations in 
intervention duration, dosage protocols, and patient-specific 
vascular dysfunction, as mentioned in Table 4. In human clinical 
trials, nitrate supplementation for 4 days to 24 weeks did not improve 
insulin sensitivity or glycemic and lipid parameters in patients with 
T2DM (Gilchrist et al., 2013; Shepherd et al., 2015; Bahadoran et al., 
2021b). Plasma glucose levels decreased following acute nitrate intake 
(Cermak et al., 2015), while exercise performance improved after 
chronic supplementation (Bock et al., 2022). Furthermore, a high 
intake of green leafy vegetables was associated with a 14% reduction 
in the risk of T2DM development (Carter et al., 2010). The effect and 
mechanism of action of nitrate in T2DM remain unknown, and the 
interaction of nitrate with the host microbiota may be central to the 
underlying mechanism (Liu et al., 2023a). 

The beneficial effects of nitrate are absent in germ-free mice, 
resulting in abnormal glucose tolerance and increased fat content 
(Cordero-Herrera et al., 2019), indicating that nitrate-reducing 
bacteria play important roles in the development of diabetes. In 
the oral cavity, nitrate-reducing bacteria are negatively associated 
with blood glucose levels and insulin resistance (Goh et al., 2019). 
DNRA activity is inversely associated with insulin resistance, fasting 
frontiersin.org 
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TABLE 4 Summary of clinical studies exploring the effect of dietary nitrate intake on diabetes. 

Year Clinical study design Participants Dietary nitrate intake Clinical parameters Main findings 

ntation 
daily or 

Insulin sensitivity Dietary nitrate supplementation did not 
improve insulin sensitivity in patients with 
T2DM. Insulin sensitivity was 5.83 ± 2.80 mg/ 
kg/min in the placebo arm and 6.03 ± 2.56 mg/ 
kg/min in the nitrate supplementation arm. 

0.15 
olar 

Plasma glucose and insulin 
concentrations assessed every 30 
mins thereafter during a 2
h period 

1) Ingestion of nitrate did not attenuate the 
postprandial rise in plasma glucose and insulin 
concentrations. 
2) Plasma glucose concentrations measured 2.5 
h post-nitrate ingestion were significantly lower 
than those in the placebo group (7.5 ± 0.4 vs. 
8.3 ± 0.4 mmol/L). 

ice 1) Treadmill walking, V&O2 Nitrate supplementation did not alter the 
itrate) kinetics, and heart rate oxygen cost of moderate-paced walking or 
t juice 2) Six-min walk test (6MWT) 6MWT performance compared to placebo. 
itrate) 

1) Glycemic parameters including 1) No significant differences in glycemic and 
te, n = blood HbA1c, fasting serum lipid parameters were observed between the 

glucose, insulin, C-peptide and groups over time. 
g < 25 lipid profiles, assessed at baseline 2) Liver and renal function tests, as safety 
weeks and again at weeks 4, 12, and 24 

2) Serum, urine, and saliva 
NO metabolites 

outcome measures, showed no undesirable 
changes during the study follow-up. 

g 250 
 20 mg 
eks 

ol) or 
o) daily 

1) Plasma NO metabolites, 
VO2max and work rate capacity; 
2) Skeletal muscle fiber types and 
oxidative capacity 

1) At baseline, T2DM showed higher plasma 
nitrate and lower plasma nitrite levels than 
controls. 
2) VO2max was lower in T2DM, as was 
maximal carbohydrate and fatty acid-supported 
oxygen consumption in permeabilized muscle 
fibers. 
3) Nitrate/nitrite supplementation increased 
VO2max. 
4) Within the nitrate/nitrite group, 42% of 
subjects presented improvements in both 
carbohydrate- and fatty acid-supported oxygen 
consumption in skeletal muscle. 
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2013 (Gilchrist et al., 2013) A randomized double-blind, 
placebo-controlled crossover trial 
with two different 2-week treatment 
periods during which the subjects 
received either nitrate or placebo 

27 participants (9 women and 18 
men) with T2DM 

2-week period of suppleme
with 250 ml beetroot juice 
250 ml nitrate-depleted 
beetroot juice 

2015 (Cermak et al., 2015) A double-blind crossover study, 
consisting of 2 test periods 
separated by a >14-day 
washout period 

18 male patients with T2DM using 
oral glucose-lowering medication 

A single bolus of NaNO3 (
mmol/kg/bw) or an equim
amount of sodium 
chloride (placebo) 

2015 (Shepherd et al., 2015) A randomized, double-blind, 48 patients (35 males) with 1) 70 ml/day of beetroot ju
placebo-controlled crossover trial T2DM volunteers (containing 6.43 mmol of n

2) Nitrate-depleted beetroo
(containing 0.07 mmol of n
for 4 days. 

2021 (Bahadoran et al., 2021b) A randomized, placebo-controlled, 64 patients with clinically 1) 5 g/d beetroot powder 
double-blind clinical trial diagnosed T2DM (containing ~250 mg nitra

35) for 24 weeks; 
2) 5 g/d placebo (containin
mg nitrate, n = 29) for 24 

2022 (Bock et al., 2022) A randomized, double-blind, 
placebo-controlled, 8-week trial 

36 patients diagnosed with T2DM 
and 15 control subjects 

T2DM patients consumed 
1) beetroot juice containin
mg nitrate (4.0 mmol) and
nitrite (0.3 mmol) for 8 we
(n=18); 
2) 20 mg nitrate (~0.08 mm
without any nitrate (placeb
for 8 weeks (n = 18) 
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blood glucose, and 2-h glucose (Morou-Bermúdez et al., 2025). 
Specifically, a high relative abundance of H. parainfluenzae (nitrate
reducing bacteria) and low abundance of N. flavescens (nitrite
reducing bacteria) are correlated with improved insulin resistance 
(Bahadoran et al., 2021a). Nitrate supplementation reduces the 
abundance of glucose metabolism-linked genera like Prevotella 
and Veillonella, with  Prevotella copri strongly associated with 
insulin resistance and impaired glucose tolerance (Pedersen et al., 
2016; Wei et al., 2020). In a previous study of 945 overweight/obese 
individuals (22% of participants used mouthwash ≥ twice daily), 
researchers evaluated the association between mouthwash use and 
the development of pre-diabetes/diabetes over 3 years. Using 
mouthwash ≥ twice daily was associated with a significantly 
increased risk of pre-diabetes/diabetes (Joshipura et al., 2017). 
Collectively, diminished oral nitrate-reducing capacity in T2DM 
may  exacerbate  metabol ic  dysfunct ion,  while  nitrate  
supplementation may partially improve glucose homeostasis by 
modulating nitrate-associated microbial dysbiosis. 

6.3.2 Other metabolic syndromes 
Nitrate has emerged as a potential therapeutic dietary 

supplement for obesity and related conditions, including 
metabolic syndrome and metabolic dysfunction-associated 
steatotic liver disease (MASLD). Dietary nitrate can prevent 
metabolic syndrome and liver steatosis induced by a high-fat diet 
(HFD) (Liu et al., 2021). An HFD-induces hyperlipidemia and 
insulin resistance in mice, but these are alleviated by dietary nitrate 
supplementation (Li et al., 2016). Dietary nitrate attenuated HFD

induced pathological features, including developed increased 
myocardial  fibrosis ,  glucose  intolerance,  and  adipose  
inflammation, in HFD-fed mice (Petrick et al., 2023). Moreover, 
an HFD can alter intestinal microbial community composition 
(Petrick et al., 2023) and the bioavailability of oxygen and nitrate 
to gut bacteria (Yoo et al., 2021). Our group found that nitrate, 
nitrite, and cGMP levels increased after nitrate loading, and the 
abundances of Bacteroidales S24–7 and Alistipes were increased in 
an obesity model (Ma et al., 2020). These findings demonstrate the 
central role of the microbiome in the bioactivation of nitrate in 
metabolic syndromes; however, the specific influence of nitrate
reducing bacteria on metabolic activity requires further study. 
 

6.4 Brain diseases 

The function of the NO3 
– NO2

- -NO• pathway is associated 
with cognitive function, cerebral blood flow, and improvements in 
Alzheimer’s disease (AD) and Parkinson’s Disease (PD) (Alharbi 
et al., 2023; Boulares et al., 2025; Tripodi et al., 2025). Dietary nitrate 
has been reported to improve neurobehavioral function in mice 
after traumatic brain injury (Liu et al., 2025) and ameliorates myelin 
loss in mice with AD (Chen et al., 2025). In 63 individuals with 
alcohol use disorder exhibiting varying levels of cognitive 
impairment, reductions in the relative abundance of nitrate
reducing bacteria were correlated with more severe cognitive

deficits. In mice with chronic alcohol exposure, nitrate 
Frontiers in Cellular and Infection Microbiology 17 
supplementation ameliorated cognitive dysfunction and 
attenuated oral microbiota dysbiosis (Li et al., 2025). Nitrate/ 
nitrite supplementation improves cognitive performance 
outcomes in healthy middle-aged and older humans (Justice et al., 
2015; Vanhatalo et al., 2021), improves regional brain perfusion 
(Presley et al., 2011) and modulates the cerebral blood-flow (CBF) 
response to task performance (Wightman et al., 2015), as shown in 
Table 5. Furthermore, given that hypertension is a modifiable risk 
factor for AD, any agent that results in elevated BP could potentially 
increase the risk of developing this neurodegenerative disease. 

Oral microbiome alterations are associated with AD severity, 
and gut bacterial communities are closely related to the progress of 
AD, although the role of nitrate, NO• and nitrate-reducing bacteria 
in the development of AD remains unknown (Boulares et al., 2025). 
The abundances of salivary Neisseria and Haemophilus, which have 
recently been found to be associated with improved cognitive 
function in older adults, increase following dietary nitrate intake 
(Vanhatalo et al., 2021). The bioavailability of NO• has been 
recognized as a risk factor for AD, and depletion of NO• is 
related to cardiovascular and central nervous system degenerative 
processes in patients with AD (Venturelli et al., 2018). However, in 
a recent study, Pedrinolla et al. found that patients with AD were 
able to reduce nitrate to nitrite and increase NO-mediated vascular 
responsiveness to the levels observed in healthy volunteers 
(Pedrinolla et al., 2025). The effect of bioavailability of NO• on 
AD requires further research, and targeting nitrate-reducing 
bacteria in patients with AD is a promising future clinical 
research direction. 

In addition, nitrate-containing compounds have been identified 
as common headache triggers (Sun-Edelstein and Mauskop, 2009). 
In oral samples, nitrate, nitrite, and nitric oxide reductase gene 
expression is significantly higher in patients with migraine. In 
addition, there are small but significant increases in nitrate, 
nitrite, and nitric oxide reductase gene expression in stool 
samples have been collected from migraineurs. The significantly 
different dominant oral bacterial species between patients with and 
without migraines belong to the genera Streptococcus and 
Pseudomonas, both of which have the potential to reduce nitrate 
concentrations (Gonzalez et al., 2016). 
7 Futures research directions 

Nitrate reduction-related bacteria are widely distributed in the 
oral cavity and gut and play vital roles in the systemic circulation 
and bioactivation of NO. Specific bacterial strains that possess 
nitrate and nitrite reductases have been shown to be involved in 
the reduction of nitrate and nitrite. Existing research has extensively 
characterized oral nitrate-reducing bacteria, identifying key genera 
such as Rothia, Neisseria, Veillonella, and Prevotella. However, 
exogenous nitrate supplementation elicits divergent shifts. The 
relative abundance of Rothia and Neisseria significantly increased, 
whereas that of Veillonella and Prevotella decreased. The 
mechanisms underlying these compositional changes remain 
unclear and warrant further investigation. In addition, oral 
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https://doi.org/10.3389/fcimb.2025.1612223
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Y
an

g
 e
t al. 

10
.3
3
8
9
/fcim

b
.2
0
2
5
.16

12
2
2
3

TABLE 5 Summary of clinical studies exploring the effect of dietary nitrate intake on brain diseases. 

Year Clinical study design Participants Dietary nitrate intake Clinical parameters Main findings 

ood flow (CBF) was 
om MR images; 
maging preprocessing 

1) There was no significant difference in the 
average global CBF between low nitrate diet (43 
± 10 ml/100 g/min) and high nitrate die (44 ± 
10 ml/100 g/min). 
2) Nitrate increased regional cerebral perfusion 
in frontal lobe white matter, especially between 
the dorsolateral prefrontal cortex and anterior 
cingulate cortex. 

near-infrared 
(NIRS) 
ite levels 
asks after 90 min 
ate ingestion 

1) Dietary nitrate modulated the hemodynamic 
response, with an initial increase in CBF at the 
start of the task period, followed by consistent 
reductions. 
2) Cognitive performance was improved after 
nitrate ingestion. 

iratory parameters: 
sure (PP), 
 index (AI), and 
 transit time 

cular parameter: 
al artery blood 
v), total (THb)-, oxy 
 deoxyhemoglobin 
rebral cortical tissue 
ScO2) 
cular CO2 Reactivity 

sure variabilit (BPV) 
ral 
 (CA) 

1) High- and low-frequency BP-MCAv gain and 
MCAv-CO2 slope increased 7 days following 
TIA onset, while low-frequency BPV decreased 
compared with baseline. 
2) Dietary nitrate elevated plasma nitrate 
concentration by ~547% and significantly 
lowered BPV (d=0.6), MCAv variability (d = 
0.7), and BP-MCAv coherence (d = 0.7) in the 
very-low-frequency range (0.02– 0.07 Hz) 
3) MCAv-CO2 slope and arterial stiffness were 
unaffected after nitrate supplementation 

unction 
e NIRS 

Cognitive function and CBF were not affected by 
supplementation with nitrate for 13 weeks. 

(Continued) 
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2011 (Presley et al., 2011) A double-blind, placebo
controlled, crossover study 

16 individuals with an age 
cutoff of ≥ 70 years old 

High nitrate diet and low nitrate diet 
three times daily with a wash-out period 
of 24 h 

1) Cerebral b
determined fr
2) Perfusion i

2015 (Wightman et al., 2015) A double-blind, placebo
controlled, crossover study 

40 healthy adults 1) 450 ml organic beetroot juice 
(containing 5.5 mmol nitrate) 
b) A placebo drink with negligible nitrate 

1) Functional
spectroscopy 
2) Plasma nit
3) Cognitive t
following nitr

2020 (Fan et al., 2020) A single-center, placebo
controlled, single-blinded, 
randomized, parallel group 
clinical trial 

30 patients diagnosed with an 
acute transient ischemic 
attack (TIA) 

1) Sodium nitrate (10 mg/kg/day) 
2) Placebo for 7 days 

1) Cardioresp
BP, pulse pre
augmentation
reflected wave
(RWTT) 
2) Cerebrovas
middle cerebr
velocity (MCA
(O2 Hb)-, and
(HHb) and ce
O2saturation 
3) Cerebrovas
Test 
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2022 (Fan et al., 2020) A randomized, single-blind, 
placebo-controlled, four-arm 
parallel feasibility trial. 

62 subjects with a BMI range 
between 25 and 40 kg/m2 

1) High nitrate: two 70 mL shots of 
beetroot juice/d (approximately 
~400 mg/shot), one every morning 
(~08:00) and one every evening (21:00) (n 
= 16) 
2) Medium nitrate: one shot of beetroot 
juice every evening (21:00) (n=17). 
3. Low nitrate: one shot of concentrated 
beetroot juice every other evening 
(~21:00) (n = 14). 
4. Placebo: one shot of nitrate-depleted 
beetroot juice (~0.001 mg) every other 
evening (21:00) (n = 15) 
for 13 weeks 

1) Cognitive 
2) Quantitativ
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pathologies, including periodontitis and dental caries, alter the 
abundance of nitrate-reducing bacteria. Notably, periodontitis is 
closely linked to systemic diseases (Genco and Sanz, 2020), yet the 
role of nitrate-reducing microbiota in this oral-systemic axis 
remains underexplored. 

Simultaneously, nitrate regulates the oral and gut microbiomes, 
which synergistically enhances the biofunction of nitrate. Multiple 
systemic or local diseases are partially caused by bacterial 
imbalances, and nitrate has been reported to effectively regulate 
bacterial abundances. Studies on intestinal nitrate-reducing bacteria 
are limited. For instance, Veillonella contributes to IBD (Rojas-
Tapias et al., 2022), but the functional roles of other nitrate reducers 
in the gut remain poorly defined. The use of high-throughput 
sequencing techniques and bioinformatics technology has been 
increasingly used to understand the roles of bacteria with nitrate 
reductase activity, especially in gut. With synergistic enhancement 
of our understanding of the microbiome, the clinical application 
value of nitrates could be significantly improved. 

Nitrate-derived nitrite and NO, which are reduced by these 
bacteria, benefit the cardiovascular system, as evidenced by clinical 
studies. Targeting nitrate metabolism and nitrate-reducing 
microbiota represents a promising therapeutic strategy for CVD. 
While animal models highlight the significance of nitrate and 
nitrate-reducing  bacteria  in  metabolic  syndrome  and  
neurocognitive disorders, clinical evidence remains inconsistent 
or limited, necessitating further human clinical trials. 

Notably, CHX mouthwash indiscriminately eliminates oral 
bacteria (including nitrate reducing bacteria) and increases BP. Thus, 
designing selective antimicrobial agents that target pathogenic bacteria 
while preserving nitrate-reducing taxa could optimize oral and 
systemic health. In addition, targeted mouthwashes containing 
nitrate-reducing agents or NO donors may offer a novel approach to 
personalize oral health management, showing their efficacy in 
modulating blood pressure and systemic NO levels. 
8 Summary 

This review systematically investigated enterosalivary nitrate 
metabolism, delineated nitrate reduction pathways in the oral and 
gut microbiomes, and analyzed the influencing factors of nitrate
reducing bacteria. We evaluated evidence linking these microbial 
communities to systemic diseases, particularly CVD, gastrointestinal 
diseases, metabolic syndromes, and brain disorders. While the causal 
relationships are incompletely characterized, emerging clinical data 
suggest that depletion of oral nitrate-reducing microbiota exacerbates 
cardiovascular pathogenesis and may elevate risks for developing other 
systemic diseases. 

This review highlights that dietary nitrate alleviates systemic 
dysfunction through the enterosalivary nitrate circulation. 
Dysbiosis of nitrate-reducing bacteria is correlated with CVD, 
obesity, T2DM, IBD, AD, and other systemic disorders. Thus, 
elucidating mechanisms underlying oral-gut nitrate-reducing 
microbiota dysbiosis may provide foundational insights for 
improving human health. Targeted modulation of nitrate 
T
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metabolism and nitrate-reducing communities across the oral-gut 
axis could serve as protective strategies against systemic diseases, 
emphasizing the importance of oral health maintenance. Probiotics 
and dietary interventions targeting these microbial consortia may 
be promising therapeutic avenues. 
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Morou-Bermúdez, E., Guo, K., Morales Morales, J., Ricart, K., Patel, R. P., Clemente, 
J. C., et al. (2025). Nitrate reduction by salivary bacteria, glucose metabolism, and 
lifestyle. J. Oral. Microbiol. 17, 2489612. doi: 10.1080/20002297.2025.2489612 
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