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of Endodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City,
IA, United States, 8Federal Institute of Santa Catarina, Lages, SC, Brazil
Introduction: Dental caries is a multifactorial disease with high prevalence,

particularly in vulnerable populations, where Streptococcus mutans contributes

to lesion progression via acid production and biofilm formation. Minimally

invasive strategies, such as photodynamic therapy (PDT) combined with

advanced delivery systems, offer promising alternatives for caries management.

Methods: Zein-based nanocapsules loaded with curcumin (Nano-curcumin)

were synthesized via nanoprecipitation and characterized for encapsulation

efficiency, particle size, polydispersity, zeta potential, morphology, and

curcumin release. Biocompatibility was assessed using rabbit oral mucosal

cells via MTT and trypan blue assays. Antimicrobial efficacy was tested in vitro

on primary dentin slices contaminated with S. mutans across four groups: Nano-

curcumin, Nano-curcumin + PDT, diode laser, and untreated control. Colony-

forming units (CFU) were quantified after treatment. Statistical analysis was

performed using ANOVA and Tukey’s test (p < 0.05).

Results: Nano-curcumin demonstrated high encapsulation efficiency (~100%),

spherical morphology, low polydispersity (0.108), and favorable colloidal stability,

with sustained curcumin release over 24 hours. Cytotoxicity assays showed >50%

cell viability at 100 mg·mL⁻¹ and ~80% at intermediate concentrations (50–75

μg·mL-¹). Both curcumin nanocapsules and their photosensitized versions

significantly reduced S. mutans CFU compared to controls (p < 0.05), with

PDT-enhanced nanocapsules showing the greatest reduction, though not

statistically different from non-photosensitized nanocapsules.

Discussion: Curcumin-loaded zein nanocapsules are biocompatible and

effective against S. mutans, with controlled release properties. Photodynamic
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activation further enhances antimicrobial activity, supporting their potential as a

minimally invasive approach for managing carious lesions, particularly in pediatric

dentistry. This strategy integrates a natural photosensitizer with a biodegradable

polymeric matrix, providing a safe and innovative alternative for caries control.
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1 Introduction

Dental caries continues to be a major public health issue,

particularly among vulnerable populations. This is largely due to

frequent carbohydrate consumption, increased acidity, and

disruption of the oral microbiota (Takahashi and Nyvad, 2016).

This acidic environment promotes pathogenic biofilm formation

and enamel demineralization, with Streptococcus. mutans playing a

central role. This bacterium efficiently metabolizes sugars,

producing acid while thriving in low-pH conditions. It also

contributes, to biofilm stability by synthesizing an extracellular

polysaccharide matrix which enhances resistance to antimicrobial

agents (de Oliveira et al., 2019; Pourhajibagher et al., 2019).

Although conventional treatments focus on removing caries

and restoring teeth they often fall short in achieving long-term

disease control. Primary teeth are especially susceptible to rapid

caries progression due to their thinner dentin, larger pulp chambers,

and increased permeability (Nehete et al., 2014). To address these

challenges, minimally invasive techniques such as selective caries

removal (SCR), stepwise caries removal (SWR), and the Hall

Technique have been developed. These methods aim to preserve

tooth vitality while minimizing patient discomfort (Aïem et al.,

2020; Innes et al., 2011; Machiulskiene et al., 2020).

In addition to preserving tooth structure, controlling residual

bacteria is essential to prevent pulp inflammation and recurrent

lesion (Diniz et al., 2015). Photodynamic therapy (PDT) has

emerged as a promising antimicrobial strategy, utilizing light-

activated photosensitizers to selectively eliminate cariogenic

bacteria (Wilson and Patterson, 2008). Among these, curcumin

stands out as a photosensitizer due to its antibacterial (Carolina

Alves et al., 2019), antifungal (Zorofchian Moghadamtousi et al.,

2014), antineoplastic (Ghaffari et al., 2020), anti-inflammatory (Zhi

et al., 2021) and antioxidant properties (Kamwilaisak et al., 2022).

When used in PDT, curcumin exhibits high cytotoxicity against

pathogenic microorganisms, particularly against Gram-positive

bacteria (Adamczak et al., 2020). These properties make it a

promising candidate for the development of new antimicrobial

therapies (Hosseinpour-Nader et al., 2022). Nanotechnology

further enhances curcumin’s therapeutic potential by improving

its stability, bioavailability, and antimicrobial efficacy

(Hosseinpour-Nader et al., 2022). Incorporating nanoparticles
02
into dental materials has also been shown to enhance their

mechanical and biological properties (Andreatta et al., 2023;

Batista et al., 2024; da Rosa et al., 2022; Masiero et al., 2024;

Narciso et al., 2019; Parizzi et al., 2025).

In this context, targeted strategies against S. mutans including

the use of nanoparticles to modulate the cariogenic microbiome

have shown encouraging results (Sayed et al., 2020). However,

despite growing interest in PDT and the the known antimicrobial

potential of curcumin, few studies have explored the combined use

of curcumin-loaded nanostructures and PDT in primary dentin,

which differs morphological and histological characteristics

compared to permanent teeth. Moreover, limited research has

assessed the biocompatibility of such systems in healthy oral

tissues, particularly in pediatric settings.

To address these gaps, the present study aimed to synthesize

and characterize zein-based nanocapsules loaded with curcumin,

evaluate their biocompatibility with oral mucosal cells, and

investigate their their in vitro antimicrobial efficacy on primary

dentin contaminated with S. mutans, both with and without

photodynamic activation. This innovative approach combines a

natural photosensitizers with a biodegradable polymeric matrix,

offering a minimally invasive and potentially safer alternative for

the treatment of carious lesions in children.
2 Material and methods

This study was approved by the Research Ethics Committee

(CAAE No. 6.246.02).
2.1 Materials

The materials used in this study included curcumin, zein,

poloxamer 407, and Dulbecco’s Modified Eagle Medium

(DMEM), all from Sigma-Aldrich (Saint Louis, MO, USA). The

culture media used comprised Mueller-Hinton agar and Tryptic Soy

agar (Himedia, Thane, India), along with Brain and Heart Infusion

Agar (BHI) (Merck, Darmstadt, Germany). The bacterial strain

employed was S. mutans ATCC 25175. All other reagents were also

obtained from Sigma-Aldrich.
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2.2 Methods

2.2.1 Synthesis and physicochemical
characterization of zein nanocapsules loaded
with curcumin

Curcumin-loaded zein nanocapsules (Nano-curcumin) were

synthesized using the nanoprecipitation method in triplicate

(n=3), following the methodology described by (Gonçalves da

Rosa et al., 2020; Suzuki et al., 2016). To prepare the organic

phase zein (20 mg mL-1) in 6.67 mL of 85% ethanol. Once fully

solubilized, 134 mL of an alcoholic curcumin solution (1.5 mg mL-1)

was added. The organic phase was then poured into 20 mL of an

aqueous phase containing the surfactant Pluronic (0.8% v/v) under

constant agitation at 10,000 rpm using a homogenizer IKA T25

homogenizer (IKA, Wilmington, NC,USA) for 3 minutes.

Nanocapsule formation occurred via nanoprecipitation upon

contact between the two phases. The resulting suspension was

stirred under a fume hood with magnetic agitation to ensure

complete evaporation of the organic solvent. A control

formulation without curcumin (Nano-curcumin-free) was

prepared using the same procedure.

To confirm nanoencapsulation, the encapsulation efficiency

(EE) of the curcumin-loaded zein nanocapsules was evaluated in

triplicate (n=3) following to the methodology described by

(Gonçalves da Rosa et al., 2020). EE was determined using a

centrifugal ultrafiltration method, as outlined by Parizzi et al.

(2025). Samples were centrifuged using Amicon Ultra centrifugal

filters with a 30 kDa Ultracel membrane at 6,000 rpm for 30

minutes, allowing non-encapsulated curcumin to pass through

the membrane.

The free curcumin in the supernatant was quantified using UV-

Vis spectroscopy (Spectrostar Nano, BMG Labtech, Weston

Parkway Suite, NC, USA) at a wavelength of approximately 430

nm. The molar concentration of curcumin was calculated based on

a calibration curve prepared with an alcoholic curcumin solution.

Encapsulation efficiency (EE) was calculated using Equation 1:

EE% =
½(initial   curcumin  −   free   curcumin)

(initial   curcumin)�   x   100 (1)

To confirm curcumin encapsulation, UV-Vis spectrophotometry

was performed using a Spectrostar Nano scanning spectrophotometer

(BMG Labtech, Weston Parkway Suite, NC, USA). Measurements

were taken across a wavelength range of 200 to 600 nm, with a

resolution of 1 nm. The absorbance peak (lmax) of free curcumin was

determined after dilution in absolute ethanol, while nanocapsule

suspensions were diluted in ultrapure water prior to analysis.

Physicochemical characterization included the assessment of

particle size (nm), polydispersity index (PDI), and zeta potential

(mV), using dynamic light scattering (DLS) with a Zetasizer

Advance (Malvern Panalytical, Worcestershire, UK). Samples of

Nano-curcumin and control formulations were diluted in Milli-Q®

water and analyzed at 25 °C, with a scattering angle of 173°, in

triplicate (n = 3), using electrophoretic cells.
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Nanocapsule morphology was examined using transmission

electron microscopy (TEM) JEOL JEM 2100 (Tokyo, Japan)

operating at 70 kV. Solutions containing curcumin-loaded zein

nanocapsules and control samples were diluted in ultrapure Milli-Q

water. Approximately 5 μL of each sample was deposited onto

carbon-coated copper grids (200 mesh). After air drying at room

temperature, the grids were observed under the microscope.

The curcumin release assay was conducted using a citrate–

phosphate buffer at pH 7.0, as described by Parizzi et al. (2025). For

each experiment, 1 mL of the nanoparticle dispersion was placed

into a dialysis membrane (pore size: 25 Å; molecular weight cut-off:

12,000–16,000 Da) and immersed in 100 mL of buffer under

continuous stirring. Samples of the external medium were

collected at regular intervals from 1 to 8 hours, with additional

aliquots taken at 12 and 24 hours. The amount of curcumin released

was quantified by UV-Vis spectrophotometry using the Spectrostar

Nano (BMG Labtech, Weston Parkway Suite, NC, USA) at 425 nm.

Concentrations were determined using a calibration curve

constructed with curcumin standards.
2.2.2 Cytotoxicity and cell viability assay
The cytotoxicity and cell viability of curcumin-loaded zein

nanocapsules (Nano-curcumin) were evaluated using surface

mucosal cells derived from rabbits. The cells were cultured in

high-glucose Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% fetal bovine serum, 100 U/mL penicillin,

and 100 mg/mL streptomycin. Cultures were maintained in a

humidified atmosphere at 37 °C with 5% CO2 and 95% air until

confluence was reached.

Once confluent,the cells were seeded at a density of 10,000 cells

per well in 96-well plates. A single dose of nanocapsules was added

at concentrations of 25, 50, 75, and 100 mg·mL-1.

Following treatment, the samples were irradiated using a low-

power diode laser InGaAlP (DMC-Therapy, Sao Carlos, SP, Brazil)

at a wavelength of 660 nm, continuous emission, a power output of

100 mW, and a total energy of 9 joules over 90 seconds (Knorst

et al., 2019).The laser tip was positioned 10 mm above the wells, and

irradiation was applied alternately to sets of four wells to ensure

proper spacing between the light source and avoid overlapping

light exposure.

Cell viability was assessed using the MTT assay (0.5 mg·mL-1)

and trypan blue exclusion (TBE). For the MTT assay, 20 mL of a

stock MTT solution (5 mg·mL-1) was added to each well and

incubated for 4 hours. After incubation, cells were dissolved in

DMSO, and optical density was measured at 490 nm in equipment

Spectrostar Nano (BMG Labtech, Weston Parkway Suite NC, USA)

The percentage of viable cells relative to the control was calculated

based on the absorbance values, considering the ratiobetween

treated cells (Abs. sample) and the absorbance of the cell-free

culture medium (Abs blank), as indicated in Equation 2.

Cell   viability   ( % ) =   (Abs :   sample)=(Abs : blank)   x   100 (2)
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2.2.3 In vitro antimicrobial evaluation of zein
nanocapsules loaded with curcumin on primary
tooth dentin contaminated with Streptococcus
mutans
2.2.3.1 Sample preparation

Forty mandibular and maxillary primary molars free of caries,

restoration and with no visible cracks or fractures were collected for

this study. The teeth were donated by patients prior consent from

their legal guardians. After collection, the specimens were washed to

remove impurities, sterilized in an autoclave, and stored in distilled

water until sectioning. For the cutting procedure, each tooth was

mounted on an acrylic plate using low-melting-point plasticized wax

and sectioned using a precision cutting machine (Isomet 1000,

Buehler, Coventry, UK). Sections of approximately 1 mm thick

were obtained using a 0.4 mm diamond disc (Buehler, Lake Bluff,

IL, USA) operating at 300 rpm. Based on the inclusion criteria a final

sample of 28 slices was selected. These slices were then sterilized again

by autoclaving before being used in the contamination procedure.

2.2.3.2 Bacterial culture and contamination procedure

To evaluate the antimicrobial activity of the nanoparticles,

lyophilized S. mutans (ATCC 25175) strains were rehydrated

according to the manufacturer’s instructions and incubated

anaerobically in Tryptone Soy Broth (TSB) at 37°C for 48 hours.

Following incubation, the samples were plated on solid Blood Agar

using the streak plate method to obtain isolated colonies. From

these colonies, a bacterial suspension equivalent to 1.5 × 108

cells·mL-¹ was prepared using the 0.5 McFarland scale. The 1 mm

dentin slices were then incubated in 990 mL of TSB medium

supplemented with 10 mL of the S. mutans bacterial suspension

and maintained under anaerobic conditions at 37°C for 48 hours.

2.2.3.3 Experimental groups and treatments

After the incubation period, the dentin slices were removed from

the bacterial suspension, transferred to 1 mL of saline solution, and

immediately divided into the following experimental groups (n = 7):
Fron
• Group 1: Contaminated Dentin + NanoCurcumin

(Dent-NanoCurcumin)

• Group 2: Contaminated Dentin + NanoCurcumin +

Photodynamic Therapy (Dent-NanoCurc-PDT)

• Group 3: Contaminated Dentin + Diode Laser

• Group 4: Contaminated Dentin (Dent) – Control
Groups 1 and 2 were incubated with 1 mL of their respective

nanocapsule dispersion (containing 7.5 μg/mL of curcumin) for 4

hours at room temperature, while Groups 3 and 4 were incubated with

saline solution under the same conditions. Subsequently, Groups 2 and

3 were treated with a low-power InGaAlP diode laser (DMC-Therapy,

São Carlos, SP, Brazil) at a wavelength of 660 nm, in continuous

emissionmode, with a power output of 100mW and a total energy of 9

joules applied over 90 seconds (Parizzi et al., 2025; Knorst et al., 2019).
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2.2.3.4 Microbiological Analysis

Following the treatments, the dentin slices were transferred to 1

mL of saline solution and immediately incubated in TSB broth for

30 minutes. To assess antimicrobial activity, 10 mL of the broth was

placed at the center of a sterile Petri dish, over which Mueller-

Hinton agar was poured. After solidification, the plates were

incubated anaerobically at 37°C for 48 hours. Colony-forming

units (CFU) were then counted, and the results were expressed as

CFU·mL-¹ (Fernandes et al., 2022).
2.2.3.5 Data analysis

Results were expressed as means and standard deviations from

triplicate measurements. Statistical analysis was performed using

analysis of variance (ANOVA), followed by Tukey’s test for

multiple comparisons, with a significance level of 5%. Data were

analyzed using STATISTICA 7 software.
3 Results

3.1 Physicochemical characterization of
nanocapsules

The encapsulation efficiency of curcumin in zein matrices was

close to 100%. Figure 1 shows the absorbance spectra of free

curcumin and nanocurcumin, obtained by UV-Vis spectroscopy.

Free curcumin exhibited a well-defined absorbance peak at

approximately 425 nm. In contrast, the nanocurcumin spectrum

displayed an altered profile, with the absence of this characteristic

peak and increased absorbance in the UV region.

Table 1 presents the measurements of average particle size,

polydispersity index (PDI), and zeta potential for nano-curcumin

and nano-curcumin-free samples. Nano-curcumin particles

exhibited a larger average size (139.4 ± 1.0 nm) compared to the

nano-curcumin-free particles (128.5 ± 0.7 nm), with a statistically

significant difference (Figure 2). The PDI values indicate that nano-

curcumin had a lower polydispersity index (0.108 ± 0.07) whereas

nano-curcumin-free showed a significantly higher PDI (0.271 ±

0.03). Regarding zeta potential, nano-curcumin exhibited a lower

value (10.9 ± 0.5 mV) compared to nano-curcumin-free (40.0 ± 2.8

mV), also with a significant difference.

The transmission electron microscopy (TEM) analysis of zein

nanocapsules loaded with curcumin revealed key morphological

characteristics. TEM micrographs indicated that the nanocapsules

exhibited a spherical shape (Figure 3).

Spectrophotometric analysis showed that nano-curcumin

exhibited a sustained release in buffered aqueous medium over a

24-hour period. The release profile indicates a gradual increase in

curcumin concentration in the external medium, with a more

pronounced release during the first 8 hours and a tendency

toward stabilization after 12 hours, as shown in Figure 4.
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3.2 Cytotoxicity and cell viability assay

At a 100 mg·mL-1 nanocapsule concentration, the cell survival

rate exceeded 50mg·mL-1 while concentrations of 50 mg·mL-1 and

75mg·mL-1 resulted in cell survival rates approaching 80%

(Figure 5).

Zein nanocapsules loaded with curcumin at a 100 mg·mL-1

concentration (7.5 μg·mL-¹ of curcumin), indicating that half of the

healthy oral mucosal cells exposed to this concentration did not

survive (Figure 6).
3.3 Microbiological analysis

The results of the microbiological analysis of dentin

contaminated with S. mutans are presented in Figure 7. Both

curcumin nanocapsules and their photosensitized versions

significantly reduced S. mutans CFU/mL compared to untreated

controls (p<0.05). However, the group treated with photosensitized
Frontiers in Cellular and Infection Microbiology 05
curcumin nanocapsules exhibited the lowest CFU/mL count, this

reduction was not statistically different from that observed in the

non-photosensitized curcumin nanocapsules group.
4 Discussion

The high encapsulation efficiency (~100%) of curcumin in zein

matrices observed in this study aligns with previous reports

highlighting the effectiveness of this biopolymer as a carrier for

bioactive compounds (Da Rosa et al., 2020). Given curcumin’s

poor solubility and susceptibility to degradation (Hu et al., 2024),

encapsulation within a zein matrix offers significant advantages

including enhanced stability, protection against oxidation, and

shielding from adverse interactions that could compromise its

biological activity in the oral environment (Choi et al., 2016). This

high retention capacity is particularly advantageous for controlled-

release systems, where sustained bioavailability at the target site—

such as infected dentin—is essential for therapeutic efficacy.
TABLE 1 Average particle size, polydispersity index (PDI), and zeta potential.

Sample Average size (nm) Polydispersity index (PDI) Zeta potential (mV)

Nano-curcumin 139.4 ± 1.0a 0.108 ± 0.07b 10.9 ± 0.5b

Nano-curcumin-free 128.5 ± 0.7b 0.271 ± 0.03a 40.0 ± 2.8a
Results are expressed as mean ± standard deviation (n=3). Different letters indicate significant differences (p<0.05) when analyzed by Tukey’s test within the column.
FIGURE 1

UV-Vis scan spectra: (a) free curcumin; (b) nanocurcumin.
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UV-Vis spectroscopy revealed notable changes in the

absorbance profile of curcumin following encapsulation. Free

curcumin exhibited a distinct peak at approximately 425 nm,

corresponding to p→p* electronic transitions of the b-diketone
conjugated system in its enolic form, typically observed in organic

solvents (Urosěvić et al., 2022). In the nanoencapsulated form, this

peak was significantly diminished or absent, with a relative increase

in absorbance at wavelengths below 400 nm (Wu et al., 2023). These

spectral changes suggest that curcumin was incorporated into the

hydrophobic regions of the polymeric matrix, resulting in

conformational restriction and reduced interaction with the

dispersion medium.

These modifications are likely due to non-covalent interactions

between curcumin and zein. Zein contains hydrophobic segments

that facilitate molecular entrapment and enable additional

intermolecular interactions, such as hydrogen bonding and Van
Frontiers in Cellular and Infection Microbiology 06
der Waals forces (Chen et al., 2015). Furthermore, p–p stacking

between the aromatic rings of curcumin and zein contributes to the

structural stabilization of the nanoparticles (Ding et al., 2023; Liu

et al., 2023).

In addition to confirming encapsulation, comparative studies

have shown that encapsulated curcumin undergoes significantly less

degradation under UV radiation. Literature indicates that free

curcumin degrades by more than 60% after 30 minutes of

exposure, whereas the encapsulated form shows less than 10%

degradation under the same conditions (Wu et al., 2023).

Encapsulation also promotes the dispersion of curcumin in an

amorphous state, enhancing its solubility in aqueous media and

absorption in the gastrointestinal tract, potentially improving oral

bioavailability (Liu et al., 2023).

Thus, the attenuation of the 425 nm peak and the altered

absorbance pattern observed in nano-curcumin reflect structural
FIGURE 3

TEM micrographs of the nanocapsules: (a) Nano-curcumin-free (b) Nano-curcumin.
FIGURE 2

Particle size distribution of the Nano-curcumin sample.
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constraints imposed by the zein matrix, resulting in increased

protection against degradation and greater potential for use in

nutraceutical and pharmaceutical formulations.

The observed increase in nanoparticle size following curcumin

incorporation suggests strong physicochemical interactions

between zein and curcumin during nanoprecipitation process.

This contributes to greater structural stability and reduced

aggregation, attributed to the hydrophobic nature of curcumin

(Da Rosa et al., 2015). Additionally, the lower polydispersity

index (PDI) observed in curcumin-loaded formulations compared

to those without the compound indicates a more uniform size

distribution - an important factor for optimizing bioavailability

and ensuring effective dentin penetrationthereby enhancing

antimicrobial action against cariogenic microorganisms (Danaei

et al., 2018).

Zeta potential results further support these findings. The lower

surface charge observed in nano-curcumin formulations suggests

potential alterations in colloidal stability due to interactions with
Frontiers in Cellular and Infection Microbiology 07
zein. While higher zeta potential values typically indicate greater

electrostatic stability (Nunes et al., 2022), the reduction observed

here may increase the likelihood of aggregation over time,

emphasizing the need for appropriate stabilization or storage

strategies to preserve therapeutic efficacy (Danaei et al., 2018).

These findings underscore the potential of nano-curcumin

formulations for targeted antimicrobial therapy in dentistry,

particularly in minimally invasive approaches for caries

management. By ensuring high encapsulation efficiency, enhanced

stability, and controlled release, this formulation presents a

promising alternative for dental applications. Future studies

should explore its long-term stability and in vivo performance to

validate clinical applicability and optimize formulation parameters.

The sustained release observed is consistent with the release

mechanisms commonly associated with zein-based polymeric

systems. Due to its hydrophobic and compact structure, zein acts

as a physical barrier to drug diffusion, promoting a passive and

controlled release profile (Oh and Flanagan, 2010; Gonzalez-

Valdivieso et al., 2021). Hydrophobic interactions and potential

hydrogen bonding between curcumin and the zein matrix further

contribute to compound retention, limiting its rapid diffusion into

the external medium (Lenzuni et al., 2023; Zhang et al., 2023).

Curcumin’s inherently low aqueous solubility (<0.001 mg/mL)

further restricts its release in buffered aqueous environments. Even

after encapsulation, this intrinsic property limits immediate

availability, reinforcing the gradual release profile observed

(Karthikeyan et al., 2020; Omidian et al., 2023). The combination

of poor solubility and the hydrophobic nature of zein results in a

controlled release without burst effects.

The release of bioactive compounds from zein-based systems

typically follows anomalous kinetics, often fitting the Korsmeyer–

Peppas model. This suggests that both diffusion and slow matrix

relaxation or degradation contribute to the release mechanism

(Zhang et al., 2021; Lin et al., 2024). These processes occur

simultaneously, with diffusion predominating in the initial phase

and matrix reorganization influencing release behavior at

later stages.
FIGURE 5

Survival of oral mucosal cells in response to different concentrations of zein nanocapsules loaded with curcumin. *The p-values: p < 0.05 indicate a
significant difference according to Tukey’s test.
FIGURE 4

Release of nano-curcumin in citrate–phosphate buffer (pH 7.0) over
24 hours.
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Systems with these characteristics are highly desirable for topical

formulations targeting the oral cavity. Prolonged release on surfaces

such as the oral mucosa, gingiva, or dentin enhances the local

retention of curcumin, thereby amplifying its pharmacological

activity. Curcumin is well known for its anti-inflammatory,

antioxidant, and antimicrobial properties, with demonstrated

benefits in the treatment of gingivitis, periodontitis, and chronic oral

lesions (Inchingolo et al., 2024). Moreover, controlled release reduces

the frequency of reapplication and contributes to a superior safety

profile by avoiding local concentration peaks. These findings confirm

that zein is an effective carrier system for the controlled release of

hydrophobic compounds like curcumin, representing a promising

strategy for minimally invasive therapies in oral healthcare.

The results of this study confirm the biocompatibility of zein

nanocapsules loaded with curcumin for oral mucosal cells—an

essential requirement for safe use in dental applications.

Minimizing cytotoxicity is Inchingly critical to ensure that

formulation does not harm surrounding healthy tissues while

maintaining its therapeutic effects (Shahi et al., 2019). In this

study, at the highest tested concentration of nanocapsules (100

mg·mL-¹, equivalent to 7.5 mg·mL-¹ of curcumin), cell survival
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remained above 50%. At concentrations of 50 and 75 mg·mL-¹,

viability approached 80%. Although a viability threshold above 50%

is generally acceptable, these results suggest that even at full

concentration, the formulation does not induce critical toxicity.

This is particularly relevant for applications in the oral cavity, where

direct mucosal exposure requires safe and well-tolerated materials.

The observed LC50 value (49.75 μg·mL-¹) indicates that 50% of

the exposed cells did not survive at the highest tested concentration.

LC50 is a standard toxicological parameter representing

concentration at which half of the cells are affected, serving as a

key indicator of formulation safety (Idrees and Kujan, 2023). The

nanometric scale of the zein nanocapsules may have enhanced their

penetration and interaction with oral mucosal cells, increasing

curcumin ’s local bioavailability. While this property is

advantageous for targeted antimicrobial action, it also

underscores the importance of carefully optimizing dosage to

mitigate toxicity risks and maintain a favorable therapeutic index.

These findings are consistent with previous studies on the

Inchingly biocompatibility of curcumin when encapsulated in

nanocarriers. Meng et al. (2023) demonstrated that starch-based

nanocapsules loaded with curcumin exhibited low toxicity toward

healthy cells while effectively inhibiting tumor cells, suggesting that

encapsulation plays an important role in modulating curcumin’s

biological interactions. Similarly, Minhaco et al. (2023) reported

over 80% cell viability at 325 mg/mL using PLGA-curcumin

nanoparticles in oral cells, supporting their biomedical potential.

While reducing zein-curcumin concentrations may lower

cytotoxicity, maintaining antimicrobial efficacy is key. Curcumin

nanostructures remain effective at low doses; for example, 6.25 μg/

mL of curcumin nanocrystals inhibited P. gingivalis growth. The 7.5

μg/mL used in this study supports the efficacy of nano-curcumin at

low concentrations (Maleki Dizaj et al., 2022).

These results reinforce the promise of zein-based curcumin

nanocapsules for safe, effective dental applications—especially in

pediatric care, where non-invasive, biocompatible treatments

are preferred.

Photodynamic therapy (PDT) with photosensitizers (PS) is

well-documented for treating oral pathogens, including S. mutans

(Cusicanqui Méndez et al., 2019; Hosseinpour-Nader et al., 2022;

Manoil et al., 2014; Parizzi et al., 2025; Silvestre et al., 2023). Upon

irradiation, the PS generates reactive oxygen species (ROS),
FIGURE 6

Median lethal concentration (LC50) of zein nanocapsules loaded
with curcumin.
FIGURE 7

Comparison of antimicrobial effectiveness against s. mutans between the tested groups. **The p-values: p < 0.05 indicate a significant difference
according to Tukey’s test.
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primarily singlet oxygen, which promotes oxidative damage to

microbial DNA, organelles, and cell membranes, ultimately

leading to bacterial death (Taraszkiewicz et al., 2013).

Curcumin, a natural polyphenol derived from plants, displays

broad-spectrum antibacterial activity due to its unique molecular

structure and antioxidant properties. It disrupts quorum sensing,

impairs biofilm formation, reduces virulence factor expression, and

prevents bacterial adhesion to host cell receptors. When activated,

curcumin acts as a photosensitizer, generating phototoxic effects

that inhibit bacterial growth and enhance the efficacy of other

antimicrobials through synergistic interactions (Zheng et al., 2020).

By producing reactive oxygen species (ROS) such as hydrogen

peroxide, superoxide, and singlet oxygen, curcumin damages

bacterial cell structures by oxidizing membranes, proteins, and

nucleic acids, leading to cell death. Gram-positive bacteria are

particularly susceptible due to their permeable peptidoglycan-rich

cell walls, which facilitate photosensitizer entry (Ghate et al., 2019).

Additionally, curcumin induces intracellular damage, affecting

DNA and proteins, disrupting biofi lm adhesion, and

downregulating virulence genes involved in pathogenicity. While

its effect on outer membranes is limited, photodynamic inactivation

(PDI) with curcumin causes significant internal damage and

cytoplasmic leakage. The superior antimicrobial effect of light-

activated curcumin highlights its potential for targeting biofilm-

associated infections and oral pathogens such as Streptococcus

mutans (Ghate et al., 2015; Hu et al., 2018; Huang et al., 2020;

Pereira et al., 2014; Tonon et al., 2015).

Microbiological analysis confirmed that both conventional and

photosensitized curcumin nanocapsules significantly reduced S.

mutans CFU/mL in dentin. Although the photosensitized group

showed the lowest count, the difference was not statistically significant.

This may be due to the strong inherent antimicrobial activity of

nano-curcumin, suboptimal PDT parameters (e.g., light dose,

wavelength, pre-irradiation time), or limited light penetration into

biofilms. Pre-irradiation time is crucial for PS penetration (de

Oliveira et al., 2019), especially in mature biofilms, which are

more resistant due to their dense extracellular matrix (Silvestre

et al., 2023; Taraszkiewicz et al., 2013).

In this study, extended pre-irradiation was used to assess

whether PDT efficacy could be enhanced or if nano-curcumin

alone was sufficient. Less structured biofilms may respond well to

nano-curcumin without PDT, as the formulation improves

curcumin delivery and release.

Curcumin’s poor solubility and rapid degradation limit its

therapeutic use, but nanoencapsulation improves stability, lowers

the MIC, and enhances antimicrobial efficacy (Pourhajibagher

et al., 2018).

Studies support combining PDT with nano-curcumin.

Pourhajibagher et al. (2022) found that a 5% nano-curcumin

cavity liner with PDT inhibited S. mutans for 60 days. Araújo

et al. (2017) required 5 g·L-¹ for photoactivation effects on S. mutans

and L. acidophilus. In contrast, this study used only 0.0075 g·L-¹, yet
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showed efficacy—suggesting nanoencapsulation allows lower doses

and reduces side effects like dental staining.

PDT also improves restoration outcomes.Clinical studies show

its use in selective caries removal (SCR) reduces microbial load and

enhances restoration success (Alves et al., 2019; Borges et al., 2010;

Melo et al., 2015; Steiner-Oliveira et al., 2015). Long-term data

confirm no compromise in restoration integrity after 6–12 months

(Alves et al., 2019).

Combin ing nano- curcumin wi th PDT promote s

remineralization by enhancing calcium and phosphate

penetration into demineralized dentin (Koo et al., 2013; Wilson

and Patterson, 2008; Zaleh et al., 2022). This approach aligns with

minimally invasive dentistry, especially in pediatrics, by preserving

primary teeth, reducing discomfort, and shortening treatment time.

However, PDT is less effective in deeper dentin due to light

scattering and absorption (Koo et al., 2013; Zanin et al., 2005),

highlighting the need for personalized treatment based on

lesion depth.

Despite promising results, limitations exist. In vitro conditions

don’t fully replicate the oral environment, where saliva, mechanical

forces, and microbial diversity affect outcomes. While effective

against S. mutans, further studies should assess polymicrobial

biofilms. Curcumin’s limited dentin penetration may reduce

efficacy in deep lesions, emphasizing the need to optimize

nanoencapsulation for better bioavailability.

Tooth staining is another concern. Although some in vitro

studies report no significant discoloration (Araujo et al., 2023),

these are based on simplified models. PDT with nano-curcumin

may be a viable alternative to silver diamine fluoride, especially in

posterior teeth where esthetics are less critical (Araujo et al., 2023).

Long-term in vivo studies are needed to assess safety,

biocompatibility, and clinical effectiveness. Future research should

refine PDT parameters—pre-irradiation time, light dose, and

treatment frequency—and explore nano-curcumin’s role in

remineralization and its interaction with restorative materials.
5 Conclusions

This study synthesized and characterized curcumin-loaded zein

nanocapsules with high encapsulation efficiency, spherical

morphology, low polydispersity, and good colloidal stability.

Cytotoxicity assays showed oral mucosal cell viability above 50%

at high concentrations, supporting safety for topical use. Curcumin

nanocapsules significantly reduced S. mutans on primary dentin.

Although PDT further reduced bacterial load, the difference was not

statistically significant, indicating the nanocarrier alone enhances

antimicrobial efficacy via improved penetration and sustained

release. With the limitation of this study, these results support

nano-curcumin as a safe, effective, and minimally invasive strategy

for caries management in primary teeth, aligning with conservative

pediatric dental practices.
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