
   
    

  

  

  

  
      

      

  

  
    

  
  

     
  

  
     

    

 

  

 

  

 

      
  

    
    
    

 

         
 
    
 
   
 

  
 
    
 

 
 

 

          
      

      
       

       
      

       
        

     
     

       

      

TYPE Original Research 
PUBLISHED 15 July 2025 
DOI 10.3389/fcimb.2025.1615443 

OPEN ACCESS 

EDITED BY 

Cheshta Sharma, 
The University of Texas Health Science 
Center at San Antonio, United States 

REVIEWED BY 

Chao Wang, 
Chengdu University of Information 
Technology, China 
Song Feng, 
Pacific Northwest National Laboratory (DOE), 
United States 
Ximei Luo, 
University of Electronic Science and 
Technology of China, China 

*CORRESPONDENCE 

Yong-Zi Chen 

yzchen@tmu.edu.cn 

Haixin Li 

lihaixin@tjmuch.com 

†These authors have contributed equally to 
this work 

RECEIVED 23 April 2025 
ACCEPTED 23 June 2025 
PUBLISHED 15 July 2025 

CITATION 

Chen Y-Z, Wang X, Wang Z-Z and Li H (2025) 
Fungi-Kcr: a language model for 
predicting lysine crotonylation in 
pathogenic fungal proteins. 
Front. Cell. Infect. Microbiol. 15:1615443. 
doi: 10.3389/fcimb.2025.1615443 

COPYRIGHT 

© 2025 Chen, Wang, Wang and Li. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms. 

Frontiers in Cellular and Infection Microbiology 
     
    

   
      

   

            
            
             

           
   

Fungi-Kcr: a language model for 
predicting lysine crotonylation in 
pathogenic fungal proteins 
Yong-Zi Chen1,2*† , Xiaofeng Wang3† , Zhuo-Zhi Wang4 

and Haixin Li1,2* 

1Cancer Biobank, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research 
Center for Cancer, Tianjin, China, 2Key Laboratory of Molecular Cancer Epidemiology, Tianjin’s 
Clinical Research Center for Cancer, Tianjin, China, 3College of Mathematics and Computer Sciences, 
Shanxi Normal University, Taiyuan, China, 4School of Biomedical Engineering, Tianjin Medical 
University, Tianjin, China 
        
            

           
            

  

          
            
         
           

  

       
        
        

           
  

           
           

          
       

Introduction: Lysine crotonylation (Kcr) is an important post-translational 
modification (PTM) of proteins, playing a key role in regulating various biological 
processes in pathogenic fungi. However, the experimental identification of Kcr sites 
remains challenging due to the high cost and time-consuming nature of mass 
spectrometry-based techniques. 

Methods: To address this limitation, we developed Fungi-Kcr, a deep learning-
based model designed to predict Kcr modification sites in fungal proteins. The 
model integrates convolutional neural networks (CNN), gated recurrent units 
(GRU), and word embedding to effectively capture both local and long-range 
sequence dependencies. 

Results: Comprehensive evaluations, including ten-fold cross-validation and 
independent testing, demonstrate that Fungi-Kcr achieves superior predictive 
performance compared to conventional machine learning models. Moreover, 
our results indicate that a general predictive model performs better than species-
specific models. 

Discussion: The proposed model provides a valuable computational tool for the 
large-scale identification of Kcr sites, contributing to a deeper understanding of 
fungal pathogenesis and potential therapeutic targets. The source code and 
dataset for Fungi-Kcr are available at https://github.com/zayra77/Fungi-Kcr. 
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Introduction 

Protein post-translational modifications (PTMs) play a pivotal role in regulating 
protein function, localization, and interactions, thereby influencing various cellular 
processes. Among the diverse array of PTMs, lysine crotonylation (Kcr) has emerged as 
a critical modification involved in gene regulation, metabolism, and cellular signaling. It 
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was initially discovered in histones (Tan et al., 2011) and then 
subsequently identified in non-histone proteins (Wei et al., 2017; 
Xu et al., 2017; Wu et al., 2019; Hou et al., 2021), highlighting its 
widespread biological significance. For instance, in the small 
intestine crypt and colon, increased crotonylation at the lysine 18 
site on histone H3 abundance at transcription start sites was 
associated with higher gene expression levels (Fellows et al., 
2018). Crotonylation levels have also been reported to be changed 
in various cancers (Wan et al., 2019; Hou et al., 2024; Yang et al., 
2024; Ji et al., 2025; Lin et al., 2025; Wang et al., 2025). 

In fungi, particularly pathogenic species, crotonylation has 
emerged as a critical regulatory mechanism, potentially 
infl uencing  funga l  deve lopment ,  pathogenic i ty ,  and  
environmental adaptation. Targeting crotonylation sites holds 
significant promise for developing therapeutic interventions to 
combat fungal diseases in both humans and plants. For example, 
studies have revealed that crotonylation is more prevalent than 
acetylation and succinylation in Candida albicans, underscoring its 
biological importance. The functional significance of crotonylation 
appears to be closely associated with ribosomal biogenesis/protein 
translation, proteome regulation, and carbon metabolism/ 
mitochondrial energy production (Xu et al., 2017) (Zhou et al., 
2016; Zhou et al., 2021). In Trichophyton rubrum, a model 
organism for dermatophytes and anthropophilic pathogenic 
filamentous fungi, crotonylated proteins have been shown to 
participate in distinct pathways during the conidial and mycelial 
stages. These findings provide novel insights that could guide the 
development of antifungal agents (Xu et al., 2022). Similarly, 
Botrytis cinerea, a globally significant fungal pathogen responsible 
for gray mold disease in a wide range of hosts, presents an 
opportunity for further exploration. Investigating the functions of 
crotonylation in substrate proteins could deepen our understanding 
of the molecular mechanisms underlying B. cinerea pathogenesis at 
the protein level (Zhang et al., 2020). 

Experimental methods for detecting lysine crotonylation sites 
employ a range of techniques designed to identify and quantify this 
post-translational modification in proteins. These include high-
performance liquid chromatography (HPLC) fractionation, stable 
isotope labeling of amino acids in cell culture (SILAC), 
immunological affinity enrichment, high-resolution liquid 
chromatography-tandem mass spectrometry (LC-MS/MS), 
immunofluorescence microscopy, and chemical labeling and 
enrichment strategies (Jiang et al., 2024). While these biological 
experiments are the gold standard for Kcr site identification, they 
are often time-consuming, labor-intensive, and costly. Moreover, 
despite their high sensitivity, mass spectrometry-based platforms 
can only detect a subset of crotonylated peptides due to challenges 
such as protein abundance, incomplete protein hydrolysis, and 
variable digestion efficiency. These limitations underscore the 
need  for  complementary  approaches  to  enhance  Kcr  
site identification. 

Initial models for predicting lysine crotonylation sites were 
limited by small, histone-specific datasets and relied on 
conventional machine learning methods like SVMs and random 
forests (Ju and He, 2017; Qiu et al., 2018; Malebary et al., 2019; Liu 
       Frontiers in Cellular and Infection Microbiology 02 
            
        

       
         

          
            

        
        

          
          

           
    
         

          
          

          
       
         

          
        

         
       

          
        

        
       

        
        

        
         

         
          

          
         

        
      

       
         

        
            

et al., 2020). While they were limited in scope and predictive power 
due to the restricted datasets, they  laid  the  groundwork  for
subsequent advancements. Advances in mass spectrometry and 
deep learning have enabled the development of more robust 
models, such as Deep-Kcr (Lv et al., 2021), DeepCap-Kcr (Khanal 
et al., 2022), and BERT-Kcr (Qiao et al., 2022), which predict Kcr 
sites on both histones and non-histones, achieving significant 
performance improvements. Others are tailored to predict Kcr 
sites on non-histones, such as nhKcr (Chen et al., 2021), 
iKcr_CNN (Dou et al., 2022), and CapsNh-Kcr (Khanal et al., 
2023). The primary input features of these models consist of binary 
encoding and embedding vectors. 

While some models, like PlantNh-Kcr (Jiang et al., 2024), 
extend predictions for Kcr sites on non-histones in plants, there 
remains a critical gap in computational tools for fungi. Recent 
studies have identified Kcr sites in fungal species, emphasizing their 
biological importance in fungal physiology and pathogenicity. 
However, no dedicated models exist for fungal Kcr prediction, 
highlighting the need to integrate fungal Kcr data and develop 
specialized computational tools. Addressing this gap will advance 
our understanding of fungal biology and provide valuable insights 
into fungal-host interactions and potential therapeutic targets. 

To address these challenges, we present Fungi_Kcr, a novel deep 
learning model specifically designed for the prediction of 
crotonylation sites in fungi. Built on advanced architectures, 
Fungi_Kcr integrates word embeddings to capture sequence-based 
features to accurately identify crotonylation sites across diverse 
fungal species. By leveraging large-scale fungal proteomic data, 
Fungi_Kcr overcomes the limitations of existing models and 
provides a robust, generalizable framework for PTM prediction in 
fungi. The development of Fungi_Kcr represents a significant step 
forward in the study of fungal crotonylation, offering new insights 
into the functional roles of this modification in fungal biology. 
Moreover, the model’s ability to predict crotonylation sites with 
high accuracy has practical implications for understanding fungal 
pathogenicity, identifying potential therapeutic targets, and 
advancing fungal biotechnology. This work underscores the 
potential of word embeddings and language models in bridging 
the gap between computational biology and experimental research, 
paving the way for future discoveries in the field of PTM biology. 
   

  

         
          

           
          

       
           
           

           
          

Materials and methods 

Benchmark dataset 

We first collected lysine crotonylation sites from three fungal 
species, including 3,923 from Botrytis cinerea (Xu et al., 2017), 
5,200 from Candida albicans (Zhou et al., 2021), and 12,543 from 
Trichophyton rubrum (Xu et al., 2022). Next, we retrieved the 
corresponding protein sequences from the UniProt database 
(Dimmer et al., 2012) for each species. From these sequences, we 
extracted peptides ranging in length from 23 to 33 residues. Based 
on performance evaluation, a window size of 31 residues yielded the 
highest AUC (Supplementary Figure 1). In this setting, the central 
 frontiersin.org 
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lysine (K) residue was positioned at the 16th position, flanked by 15 
upstream and 15 downstream residues. If a peptide lacked sufficient 
residues on one side, we padded the missing positions with “X.” 
Peptides where the central K residue corresponded to an 
experimentally verified Kcr site were labeled as positive samples, 
while peptides with a central unmodified lysine were labeled as 
negative samples. This resulted in 30,213 negative peptides from 
Botrytis cinerea, 70,639 from Trichophyton rubrum, and 59,793 
from Candida albicans. 

To reduce redundancy and minimize potential false negatives, 
we applied the CD-HIT program (Huang et al., 2010) with a

sequence identity threshold of 40%, resulting in 9,626 non-
redundant positive samples. An equal number of negative 
samples (9,626) were randomly selected to ensure a balanced 
dataset for model training. To assess model performance across 
species, we stratified the samples accordingly. For each species, we 
randomly partitioned the samples into training and test sets at a 7:3 
ratio while maintaining the balance between positive and negative 
samples. The training dataset comprised 1,780, 2,261, and 4,969 
samples for Botrytis cinerea, Candida albicans, and Trichophyton 
rubrum, respectively, totaling 6,738 samples, with a 1:1 positive-to
negative ratio. Similarly, the test dataset contained 763, 970, and 
2,130 samples for the respective species, totaling 2,888 samples, also 
maintaining a 1:1 ratio. The sample collection process was 
meticulously designed, as illustrated in Figure 1, and the detailed 
distribution of samples across the training and test datasets is 
provided in Table 1. 
       Frontiers in Cellular and Infection Microbiology 03 
  

          
         

        
          

       
         

            
        

            
           

            
           

        
         

       
         
         
        

            
          

  

  
  

Encoding methods 

To transform amino acid sequence samples in our dataset into 
numerical representations suitable for model input, we employed a 
method that combines word embedding with positional encoding. 
Word embedding is a widely used technique in both natural 
language processing (NLP) and bioinformatics, mapping words 
into a low-dimensional vector space (Nguyen et al., 2019; 
Pratyush et al., 2023; Mahmud et al., 2024; Asim et al., 2025). 
This approach ensures that semantically similar words are 
represented by vectors that are close to each other in this space. 
In our context, peptides are treated as sentences, with each amino 
acid residue acting as a word. Initially, the 20 standard amino acid 
residues are assigned unique integer values ranging from 0 to 19. 
These integers are then transformed into low-dimensional vectors, 
denoted as d_model, allowing the model to capture semantic 
relationships between amino acids. While word embedding 
effectively encodes semantic similarity, it lacks the ability to 
represent the sequential order of amino acids in protein 
sequences. To address this limitation, we incorporated positional 
encoding (Yuan et al., 2023; Shi et al., 2025). Positional encoding is 
computed using sine and cosine functions, with the formula given 
as follows: 

pos
PE(pos, 2i) =  sin 

100002i=dmodel 
  

      
FIGURE 1 

Flowchart illustrating the dataset preparation process. 
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pos
PE(pos, 2i + 1)  =  cos 

100002i+1=dmodel 

Here, pos represents the position of an amino acid in the 
sequence, while 2i and 2i+1 index the components of the positional 
encoding vector, which has the same dimensionality as d_model. We  
adopted sinusoidal functions—sine for even dimensions and cosine 
for odd dimensions—because they encode unique position

information across multiple frequencies, enabling the model to 
learn both absolute and relative positional relationships. The 
periodic and continuous nature of sine and cosine ensures that the 
encoding generalizes to sequences longer than those encountered 
during training and allows the model to infer position-dependent 
patterns without requiring learned parameters. This design, originally 
introduced in Transformer architectures, effectively captures both 
local and long-range dependencies in sequences. To comprehensively 
represent each residue within a peptide, we combined the word 
embedding vector with the positional encoding vector. Each 
component of the resulting d_model-dimensional vector is obtained 
by summing the corresponding components of the word embedding 
and positional encoding vectors. This fusion allows the model to 
capture not only the semantic relationships between amino acids but 
also their sequential dependencies, thereby enhancing its overall 
understanding of protein sequences. 
      Frontiers in Cellular and Infection Microbiology 04
      

        
     
          

        
       

         
     

        
          

         
       
       

          
        

           
  

      
         

       
         

              
        

The structures of the fungi-Kcr model 

The model consists of multiple modules, integrating word 
embedding,  positional  encoding,  two  one-dimensional  
convolutional layers, a GRU layer, and two fully connected layers 
(Figure 2). Additionally, various strategies are employed to 
effectively  mitigate  overfitting  and  ensure  the  model ’s 
generalization capability. Below is a detailed explanation of each 
key component in the model: 

Fusion of Word Embedding and Positional Encoding: The 
model input is a 31-dimensional integer vector. First, a word 
embedding layer transforms these discrete integer values into a 
continuous 128-dimensional vector space, forming a 31×128 
embedding matrix. This transformation enriches the semantic 
information in the data and lays a solid foundation for 
subsequent processing steps. Next, the positional encoding vectors 
are added to each embedding vector to preserve the sequential order 
of elements. 

One-Dimensional Convolutional Layers: To effectively extract 
local features from the embedding and positional encoding matrix, 
we employ two consecutive one-dimensional convolutional layers. 
The first convolutional layer maintains both input and output 
channel dimensions at 128, using a kernel size of 7 and a stride of 
1, with ReLU activation introducing non-linearity. The second 
  

       
FIGURE 2 

Schematic representation of the Fungi-Kcr model architecture. 
                  

     

    

      

      

      

      

TABLE 1 The number of positive and negative samples for each species in the training and testing datasets. 

Species Training set Testing set 

Positive Negative Positive Negative 

Botrytis cinerea 1,780 1,780 763 763 

Candida albicans 2,261 2,261 970 970 

Trichophyton rubrum 4,969 4,969 2,130 2,130 

Combined dataset 6,738 6,738 2,888 2,888 
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convolutional layer expands the output channel dimension to 256 
while keeping the kernel size at 7 and the stride at 1, also utilizing 
ReLU activation. This dual-layer configuration significantly 
enhances the model’s ability to recognize complex local patterns. 

GRU Layer: To capture long-range dependencies inherent in 
the sequence, the output from the convolutional layers is passed 
into a GRU layer. This layer has a hidden state dimension of 64, 
enabling it to process sequential data and generate hidden states 
containing contextual information. Additionally, a ReLU (Nair and 
GE, 2010) activation function is applied after the GRU layer to 
further enhance the model’s nonlinear representation capability. 

Fully Connected Layers: The output from the GRU layer 
undergoes a flattening process, converting it into a one-
dimensional vector. This vector is then processed through two 
fully connected layers. The first fully connected layer reduces the 
input dimension from 1600 (25×64) to 64 and applies a ReLU 
activation function. The second fully connected layer further 
reduces the input dimension from 64 to the final task-specific 
output dimension of 2, suitable for binary classification. A 
softmax activation function is used in the final layer to generate 
the probability distribution for each class. 

To combat overfitting during training, multiple strategies are 
employed. First, Dropout layers are placed after the positional 
encoding, two convolutional layers, the GRU layer, and the first 
fully connected layer. By randomly discarding a portion of neuron 
outputs, the model complexity is reduced, enhancing generalization 
capability. The Dropout rates are carefully tuned, with a rate of 0.2 
for the positional encoding layer and 0.5 for the convolutional 
layers, GRU layer, and first fully connected layer. Additionally, an 
L2 regularization term with a coefficient of 5e-4 is incorporated into 
the loss function to further constrain model complexity. 
Furthermore, batch normalization layers are introduced after each 
convolutional layer and the first fully connected layer to accelerate 
the training process and ensure model stability. 
  

          
            

           
          
            

        
       

          
         

        
       

Model optimization 

We use cross-entropy as the loss function. The training process 
consists of 100 epochs, and the model with the lowest training loss 
across all epochs is selected as the final predictive model. During 
each epoch, the model’s weights and biases are iteratively updated 
using the Adam optimizer. The initial learning rate for Adam is set 
to 0.001 to balance convergence speed and stability. 

To optimize computational resources and accelerate training, 
we adopt a mini-batch learning strategy, with each batch containing 
128 samples. All model training and subsequent sample prediction 
experiments are conducted in a Python 3.10.10 environment, 
utilizing the PyTorch 2.0.0+cu118 deep learning framework. 
  

        
        

Model evaluation 

The model was evaluated using 10-fold cross-validation and 
independent testing. For 10-fold cross-validation, the dataset was 
       Frontiers in Cellular and Infection Microbiology 05 
            
          

         
      

        
           

      

 
  

   

 
  

   

   
  

       

   
    

       

       
   

               

          
         

       
         

       
         

         
  

   
         

          
         

          
           

  
         

           
       

            
          

       
          

       
          

           
          
       
          
         

        
        

  
          
         

ffi

divided into 10 subsets, with each subset used once as the validation 
set while the remaining nine subsets were used for training. 
Independent testing was performed on a separate test set. 
Evaluation metrics included accuracy, sensitivity, specificity, F1
score, Matthews correlation coefficient (MCC), ROC curve, and 
area under the curve (AUC). The mathematical formulas for Sn, Sp, 
ACC, and MCC are as follows: 

TP 
Sn = 

TP + FN 

TN 
Sp = 

TN + FP 

TP + FN 
ACC = 

TP + FN + TN + FP 

2 x TP 
F1 − Score = 

2 x TP + FP + FN 

TP x TN − FP x FN 
MCC = pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 

(TP + FP) x (TP + FN) x (TN + FN) x (TN + FP) 

In the above equations, TP (true positives), FP (false positives), 
TN (true negatives), and FN (false negatives) represent the 
respective classification outcomes. Sensitivity (Sn) measures the 
model’s ability to correctly identify positive samples, with higher 
values indicating better performance in detecting positives. 
Specificity (Sp) evaluates the model’s ability to correctly identify 
negative samples, where higher values reflect improved accuracy in 
detecting negatives. 

The F1-score provides a balanced  measure of the  model’s 
performance by considering both precision and recall, making it 
particularly useful in cases of imbalanced data. A higher F1-score 
indicates a more reliable model in distinguishing positive samples. 
MCC takes both sensitivity and specificity into account, with values 
ranging from −1 to 1. A higher MCC suggests better overall 
model performance. 

The ROC curve graphically represents the trade-off between the 
true positive rate (TPR) and false positive rate (FPR) at different 
classification thresholds. Notably, TPR corresponds to sensitivity, 
while FPR is computed as 1 − specificity. The AUC quantifies the 
model’s ability to rank positive samples above negative ones. A 
higher AUC, approaching 1, indicates superior classification 
performance. The closer the ROC curve is to the upper-left 
corner, the better the model’s discriminative ability. 

In this study, samples with a predicted probability greater than 
0.5 are classified as positive. The evaluation metrics (Sn, Sp, ACC, 
F1-score, and MCC) are computed based on this fixed threshold. 
However, to comprehensively compare different models, we 
primarily rely on the ROC curve and AUC, which allow 
evaluation across various thresholds. The ROC curve provides an 
effective visualization of the balance between sensitivity and 
specificity, enabling direct model comparison at the same 
specificity levels. 

To ensure the robustness of our model, we conducted rigorous 
testing. In ten-fold cross-validation, we computed the mean and 
 frontiersin.org 
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standard deviation of each evaluation metric across folds. For the 
independent test, we performed 10 independent runs using different 
random seeds and calculated the mean and standard deviation of the 
results to ensure reliable and reproducible performance evaluation. 
 

       
 

        
         

          
          

         
         
        

         
         

            
        

Results 

Conservation analysis of Kcr sites in fungal 
species 

The conservation of Kcr (lysine crotonylation) sites suggests 
their functional significance (Chen et al., 2021). Using the Two-
Sample-Logo tool (Vacic et al., 2006), we analyzed the sequence 
motifs of Kcr sites in Botrytis cinerea, Candida albicans, and 
Trichophyton rubrum based on a merged training and test 
dataset. This dataset included 2,543 Kcr sites from Botrytis 
cinerea, 3,231 from Candida albicans, and 7,099 from 
Trichophyton rubrum, along with an equal number of non-Kcr 
sites selected from peptides centered on unmodified lysine residues. 
All peptides were standardized to 31 amino acids in length (−15 to 
+15 residues flanking the central lysine), ensuring consistency 
      Frontiers in Cellular and Infection Microbiology 06
         
        

        
            

           
              

         
            

         
          

          
         

        
          
  

across species and enabling direct comparison. (Figure 3). Residue 
K was consistently overrepresented, while residue S was 
underrepresented across all three species. In Botrytis cinerea, 
residues E, D, F, and V were significantly enriched at position +1, 
with F, Y, and E overrepresented at position -1. Candida albicans 
showed a strong presence of residue F at position +1, while Y and F 
were the most dominant at position -1. Trichophyton rubrum 
displayed a prevalence of residues E and D from positions -1 to 
+3. Conversely, residues R and P were underrepresented at 
positions +1 and -1 in both Trichophyton rubrum and Botrytis 
cinerea, while R and K were underrepresented in Candida albicans. 
These findings indicate that fungal species have distinct Kcr 
sequence motifs compared to humans and plants, underscoring 
the need for a specialized prediction tool for fungal Kcr 
site identification. 
     
    

         
        

Performance of Fungi-Kcr on ten-fold 
cross-validation and independent tests 

To assess the performance of Fungi-Kcr, we conducted ten-fold 
cross-validation and ten independent tests. In cross-validation, the 
  

                      
     

FIGURE 3 

Sequence logo of Kcr sites on pathogenic fungal proteins. (A) Sequence logo for Botrytis cinerea; (B) Sequence logo for Candida albicans; (C) 
Sequence logo for Trichophyton rubrum. 
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model achieved AUC values of 0.847, 0.882, and 0.895 for Botrytis 
cinerea, Candida albicans, and Trichophyton rubrum, respectively. 
Notably, when applied to the combined dataset, the model attained 
an even higher AUC of 0.904, demonstrating strong predictive 
capability (Figure 4A). The combined model exhibited robust 
performance, with an average sensitivity of 0.875, specificity of 
0.786, accuracy of 0.830, F1-score of 0.837, and MCC of 0.663 
(Table 2). In independent testing, the model consistently performed 
well, yielding AUC values of 0.872, 0.868, and 0.897 for Botrytis 
cinerea, Candida albicans, and Trichophyton rubrum, respectively, 
and an AUC of 0.901 for the combined dataset (Figure 4B). For the 
combined dataset, the model achieved a sensitivity of 0.863, 
specificity of 0.779, accuracy of 0.821, F1-score of 0.828, and 
MCC  of  0.645,  further  confirming  its  robustness  and  
reliability (Table 3). 

Additionally, to evaluate the effectiveness of the word embedding 
encoding method compared to traditional feature representations, we 
tested the binary encoding approach using both ten-fold cross-
validation and independent testing in the combined dataset. In 
cross-validation, the binary encoding-based model achieved an 
average sensitivity of 0.806, specificity of 0.800, accuracy of 0.802, 
F1-score of 0.803, MCC of 0.604, and AUC of 0.881. In the 
independent test, the performance remained consistent, with a 
sensitivity of 0.815, specificity of 0.793, accuracy of 0.804, F1-score 
of 0.806, MCC of 0.609, and AUC of 0.881. 
    
 

         
             

       
        
          

            

T-SNE visualization of Fungi-Kcr 
classification 

To evaluate the classification performance of the model trained 
on the combined training set and tested on the combined test set, we 
employed t-distributed stochastic neighbor embedding (t-SNE) for 
dimensionality reduction and visualization, allowing for an intuitive 
understanding of the classification results. As shown in Figure 5A, 
the test set data, encoded using a binary scheme, was projected onto 
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a two-dimensional space using t-SNE (Platzer, 2013). The 
distribution reveals that positive and negative samples are 
interwoven without a clear separation boundary, highlighting the 
inherent challenges of classification in the original feature space. In 
contrast, Figure 5B illustrates the distribution of the test set data 
after being processed through multiple layers of the model, 
including the embedding layer, positional encoding layer, 
convolutional layers, gated recurrent unit (GRU) layers, and the 
first fully connected layer. The processed data was then projected 
onto a two-dimensional space using t-SNE. Notably, a distinct 
separation between positive and negative samples emerged, with 
positive samples predominantly clustering on the left and negative 
samples on the right. This transformation demonstrates the model’s 
ability to extract meaningful representations that enhance class 
separability, further validating its effectiveness in distinguishing 
positive from negative samples. 
    
  

        
        

       
          

         
        

        
         

          
         

         
         

          
      

      

Comparison with conventional machine 
learning models 

To comprehensively evaluate the performance of the Fungi-Kcr 
model, we compared it with traditional machine learning 
algorithms, including AdaBoost (Yoav and Schapire, 1997), 
LightGBM (Ke et al., 2017), and Random Forest (Breiman, 2001). 
To ensure a fair and rigorous comparison, we independently 
optimized hyperparameters for each baseline model using grid 
search combined with 10-fold cross-validation on the training 
dataset. For Random Forest, the hyperparameters were set to 
n_estimators = 500, max_depth = 10, and max_leaf_nodes = 10, 
with class_weight = ‘balanced’ to address class imbalance. For 
AdaBoost, we used n_estimators = 100. For LightGBM, the 
hyperparameters were n_estimators = 500, max_depth = 15, and 
learning_rate = 0.1, also with class_weight = ‘balanced’. The results 
demonstrated that Fungi-Kcr consistently outperformed all 
traditional methods across multiple evaluation metrics. 
  

                     
     

FIGURE 4 

ROC curves of the Fungi-Kcr model on ten-fold cross-validation and independent tests. (A) The ROC curves on ten-fold cross-validation; (B) The 
ROC curve on independent tests. 
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During cross-validation (Figure 6A), the Fungi-Kcr model 
achieved the highest AUC (0.904), surpassing AdaBoost (0.800), 
Random Forest (0.791), and LightGBM (0.830). It also exhibited 
superior sensitivity, specificity, accuracy, F1-score, and MCC, 
highlighting its strong predictive capability (Table 4). Similarly, in 
independent testing (Figure 6B), Fungi-Kcr maintained its 
advantage, achieving an AUC of 0.901, outperforming AdaBoost 
(0.800), Random Forest (0.788), and LightGBM (0.837). Its 
consistently higher classification performance across all metrics 
further validates its robustness and effectiveness in distinguishing 
Kcr sites (Table 5). 

These findings underscore the superior classification 
capabilities of Fungi-Kcr compared to conventional machine 
learning methods, establishing it as a powerful tool for Kcr site 
prediction in fungal proteins. 
  
 

         
        

         
          

         
          

             
          

       
           
          

        
       

            
          

       
       

Discussion 

In the present study, we developed Fungi-Kcr, the first 
prediction model specifically tailored for fungal proteins. Motif 
analysis revealed that fungal species exhibit distinct Kcr sequence 
motifs compared to those observed in humans and plants. Notably, 
each fungal species displayed its own characteristic motif pattern; 
however, they also shared some common features. For instance, the 
enrichment of acidic residues (E and D) at positions +1, +2, and +3 
across all three species may increase the local negative charge, 
thereby promoting lysine crotonylation—a trend consistent with 
previous studies (Xu et al., 2017; Zheng et al., 2022). Additionally, 
arginine showed the lowest enrichment at position -1, possibly due 
to electrostatic repulsion or structural interference between the 
positively charged arginine and the crotonylated lysine. 

The enrichment of aromatic residues (F and Y) at position -1 in 
Botrytis cinerea and Candida albicans might imply a role in 
structural stabilization or substrate recognition. Notably, previous 
studies have shown that certain crotonylation-recognizing proteins, 
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such as SIRT3, can interact with the crotonyl group through p–p 
stacking interactions mediated by phenylalanine residues in their 
binding pockets (Yan et al., 2024). This suggests that the presence of 
aromatic residues near Kcr sites might contribute to recognition or 
binding by reader or eraser proteins, thereby playing a role in the 
regulation of this modification. The consistent depletion of proline 
in Botrytis cinerea and Trichophyton rubrum, known to disrupt 
secondary structure or alter protein conformation (Mor et al., 
2016), may indicate a selective pressure against structural 
constraints near modification sites. Altogether, these findings 
highlight distinct fungal-specific Kcr motifs and suggest possible 
mechanistic preferences in crotonylation, emphasizing the need for 
a tailored prediction model. 

The superior performance of the proposed model in predicting 
Kcr modification sites in fungal pathogenic proteins can be 
attributed to three key aspects: model architecture, feature 
processing, and regularization strategies. To better understand 
their contributions, we conducted an independent evaluation 
using the combined dataset. 

The model’s deep learning architecture, consisting of an input 
layer, one-dimensional convolutional layers, gated recurrent unit 
(GRU) layers, fully connected layers, and an output layer, was 
designed to capture both local and global sequence features. 
Comparative experiments demonstrated that progressively 
incorporating these components significantly enhanced predictive 
performance. Specifically, a baseline model consisting only of an 
input layer, fully connected layers, and an output layer achieved an 
average AUC of 0.854. The addition of one-dimensional 
convolutional layers increased the AUC to 0.895, highlighting the 
effectiveness of local feature extraction. Further integration of GRU 
layers  led  to a modest improvement  in  AUC to 0.901,

demonstrating their ability to capture long-range dependencies 
within the sequence. These findings underscore the critical role of 
model depth and complexity in improving predictive accuracy. 

The model integrates both word embedding and positional 
encoding in its input features. While word embedding captures 
           

             

        

        

         

        

TABLE 3 Metric values of the Fungi-Kcr model on independent test. 

Species Sensitivity (%) Specificity (%) Accuracy (%) F1-score (%) MCC (%) AUC (%) 

Botrytis cinerea 0.760±0.021 0.815±0.016 0.788±0.003 0.781±0.007 0.577±0.006 0.872±0.002 

Candida albicans 0.793±0.014 0.773±0.015 0.783±0.005 0.785±0.005 0.566±0.010 0.868±0.004 

Trichophyton rubrum 0.858±0.014 0.780±0.015 0.819±0.003 0.826±0.003 0. 640±0.005 0.897±0.002 

Combined dataset 0.863±0.019 0.779±0.020 0.821±0.002 0.828±0.003 0.645±0.003 0.901±0.001 
  
           

             

        

        

        

        

TABLE 2 Metric values of the Fungi-Kcr model on ten-fold cross-validation. 

Species Sensitivity (%) Specificity (%) Accuracy (%) F1-score (%) MCC (%) AUC (%) 

Botrytis cinerea 0.774±0.029 0.768±0.041 0.772±0.017 0.773±0.014 0.544±0.036 0.847±0.019 

Candida albicans 0.801±0.022 0.802±0.026 0.802±0.018 0.801±0.020 0.603±0.036 0.882±0.016 

Trichophyton rubrum 0.863±0.013 0.782±0.017 0.823±0.010 0.829±0.011 0.647±0.019 0.895±0.009 

Combined dataset 0.875±0.020 0.786±0.019 0.830±0.007 0.837±0.007 0.663±0.014 0.904±0.008 
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the semantic relationships among amino acids, positional encoding 
encodes the relative or absolute positional information of each 
residue within the sequence. Experimental results revealed that 
removing positional encoding led to a decrease in AUC to 0.882, 
suggesting that positional encoding plays a crucial role in capturing 
sequence structure and its influence on Kcr modification sites. This 
highlights its importance in enhancing the model’s ability to 
identify modification patterns more effectively. 

To mitigate overfitting during training, the model incorporates 
multiple regularization techniques, including dropout, weight decay 
(L2 regularization), and batch normalization. Ablation studies 
demonstrated that omitting any of these strategies resulted in 
performance degradation: removing dropout reduced the AUC to 
0.861, eliminating weight decay led to an AUC drop to 0.892, and 
excluding batch normalization similarly resulted in an AUC decline 
to 0.892. These findings emphasize the critical role of regularization 
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techniques in improving the model’s generalization ability and 
preventing overfitting. 

Even though Fungi-Kcr achieved superior performance 
compared to other methods, there is still room for improvement. 
The model currently relies solely on sequence-based features, 
whereas protein structural information has been shown to 
enhance post-translational modification site prediction (Mattei 
et al., 2001; Liang et al., 2023; Ertelt et al., 2024; Qin et al., 2024). 
Incorporating protein 3D structural features or contact maps could 
further improve the model’s performance. For instance, predicted 
secondary structure (e.g., via PSIPRED (McGuffin et al., 2000)), 
solvent accessibility (e.g., from ASAquick (Faraggi et al., 2014) or
NetSurfP-3.0 (Hoie et al., 2022)) or evolutionary profiles (e.g., 
PSSM (Zhan et al., 2020)) could help enrich the feature space. 
Furthermore, incorporating protein-protein interaction network 
features—such as degree centrality or functional modules—may 
  

                   
    

FIGURE 6 

ROC curves comparing the Fungi-Kcr model with conventional machine learning methods. (A) ROC curves for ten-fold cross-validation; (B) ROC 
curves for independent testing. 
  

                        
      

FIGURE 5 

T-SNE visualization of test samples in Fungi-Kcr layers. (A) T-SNE visualization of input test data; (B) T-SNE visualization of the test set data after 
passing through the model’s processing modules. 
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reveal whether Kcr preferentially occurs on network hubs or in 
specific pathways. In future work, these structural and network-
based features could be encoded alongside sequence features using 
multimodal learning strategies, such as feature-level concatenation 
or attention-based architectures. 

Although this study focused on three fungal species with 
extensive experimentally verified Kcr data, we acknowledge that 
this taxonomic scope may limit the generalizability of the findings. 
Expanding the analysis to include additional fungal species— 
especially those from diverse evolutionary lineages—could reveal 
further conserved or lineage-specific Kcr patterns. Moreover, cross-
species comparisons may enhance our understanding of the 
evolutionary constraints on Kcr motifs and test the robustness of 
the Fungi-Kcr model across different levels of sequence homology. 
We intend to pursue these directions in future research to further 
validate and refine the predictive utility of our model. 

To  further understand the  limitations and  areas for

improvement of the Fungi-Kcr model, future work will include an 
in-depth analysis of misclassified samples, including both false 
positives and false negatives. This investigation may help identify 
specific sequence patterns or contextual features contributing to 
incorrect predictions. For instance, false positives could result from 
unannotated or conditionally modified lysines, while false negatives 
might reflect limitations in the sequence window size or insufficient 
representation of rare motifs in the training data. A deeper 
examination of these cases would offer valuable insights into 
performance bottlenecks and inform future enhancements in 
feature engineering or model architecture. 

Additionally, the model does not explicitly distinguish between 
histone and non-histone Kcr sites, despite evidence suggesting 
different modification patterns between these protein types (Chen 
et al., 2021; Khanal et al., 2023; Jiang et al., 2024). Developing 
separate models for histone-specific and non-histone-specific Kcr 
modifications may lead to better predictive accuracy. Another 
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limitation is that the dataset may contain an imbalanced 
distribution of Kcr sites among different bacterial species, which 
could introduce species-specific biases. Expanding the dataset to 
include a broader range of bacterial species and ensuring a balanced 
sample distribution could improve robustness. The generalizability 
of the model to other organisms is also uncertain, as it is specifically 
designed for fungal proteins. Future research should explore 
whether the model can be adapted to other species, such as plants 
and mammals. Integrating multi-omics data, such as proteomics, 
epigenomics, and transcriptomics, may provide additional 
contextual  information  for  more  accurate  predictions.  
Furthermore, the development of a user-friendly web server or 
standalone software would allow researchers to use the model for 
large-scale Kcr site predictions without requiring extensive 
computational resources. While Fungi-Kcr represents a significant 
advancement in Kcr site prediction, addressing these limitations 
and incorporating future improvements will be crucial for further 
enhancing its predictive capabilities and expanding its applications 
in bacterial protein research. 
 

         
         

       
       

        
      

       
        

         
         

       

Conclusion 

In this study, we developed Fungi-Kcr, a deep learning-based 
model for predicting lysine crotonylation sites in pathogenic fungi. 
The model integrates convolutional neural networks, gated 
recurrent units, and word embedding, leveraging biologically 
relevant sequence features to enhance predictive accuracy. Our 
results demonstrate that Fungi-Kcr outperforms conventional 
machine learning methods and species-specific models, achieving 
robust performance across diverse fungal species. Importantly, this 
study provides a valuable tool for understanding crotonylation in 
fungal pathogens, which may offer new insights into their 
regulatory mechanisms. As more experimentally validated Kcr 
             

             

       

       

        

       

TABLE 5 Comparison of Fungi-Kcr to other machine learning methods on independent test. 

Methods Sensitivity (%) Specificity (%) Accuracy (%) F1-score (%) MCC (%) AUC (%) 

AdaBoost 0.713 0.739 0.726 0.722 0.452 0.800 

LightGBM 0.761 0.748 0.754 0.756 0.509 0.837 

Random Forest 0.685 0.749 0.717 0.708 0.435 0.788 

Fungi-Kcr 0.863 0.779 0.821 0.828 0.645 0.901 
             

             

       

       

        

       

TABLE 4 Comparison of Fungi-Kcr to other machine learning methods on ten-fold cross-validation. 

Methods Sensitivity (%) Specificity (%) Accuracy (%) F1-score (%) MCC (%) AUC (%) 

AdaBoost 0.708 0.752 0.730 0.724 0.460 0.800 

LightGBM 0.753 0.756 0.754 0.749 0.508 0.830 

Random Forest 0.684 0.760 0.722 0.711 0.445 0.791 

Fungi-Kcr 0.875 0.786 0.830 0.837 0.663 0.904 
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sites become available and deep learning techniques continue to 
advance, further refinements of Fungi-Kcr are expected to improve 
its predictive power and biological applicability. 
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