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Frontiers in Cellular and Infection Microbiology 
Clinical features of patients with 
fungal infections caused by 
CARD9 deficiency: a literature 
review of case reports 
Congchen Tang1†, Yalan Liu1†, Jiangchao Long2 and Xiaoju Lv1* 

1Center for Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 
2Intensive Care Unit, People’s Hospital of Dafang, Bijie, Guizhou, China 
Caspase recruitment domain containing protein 9 (CARD9) deficiency is an 
autosomal-recessive primary immunodeficiency disorder, undermines the 
body’s capacity to combat fungal infections. In recent years, the number of 
reported cases of fungal infections associated with CARD9 deficiency has been 
increasing. This study undertook a systematic review of case reports, 
incorporating 89 patients with CARD9 deficiency complicated by fungal 
infections.  The  findings  demonstrated  that  the  patient  population  
predominantly consisted of young and middle-aged individuals (33.43 ± 19.12 
years, range: 1-91), and the majority (52 patients, 58.43%) developed the disease 
during childhood or adolescence. Significant geographical variations were 
observed in the distribution of gene mutations. Specifically, the c.820dupG 
mutation was predominantly found in East Asia, while the c.865C>T mutation 
was primarily found North Africa. Regarding the clinical manifestations, the most 
frequently affected sites were the skin, central nervous system, and lymph nodes, 
and the principal fungal pathogens identified were Trichophyton and Candida. 
Correlation analysis indicated that c.883C>T increased the likelihood of Candida 
infection (p=0.008, OR=10.421, 95% CI 1.849-58.748), c.865C>T increased the 
probability of Trichophyton infection (p=0.038, OR=5.760, 95% CI 1.098-30.217) 
and dematiaceous fungi infection (p=0.005, OR=9.653, 95% CI 2.019-46.153). 
According to the types of mutations, nonsense mutation increased the risk of 
dematiaceous fungi infection (p=0.014, OR=6.212, 95% CI 1.453-26.556). 
Notably, a proportion of patients succumbed to the disease, and this was 
predominantly associated with infections of the central nervous system, blood 
system, and viscera. This underscores the importance of adequate antifungal 
therapy and long-term follow-up for patients with CARD9 deficiency-related 
fungal infections. 
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Introduction 

CARD9 is a crucial adaptor protein in the innate immune 
response against fungal infections and its Online Mendelian 
Inheritance in Man (OMIM) number is 607212. Autosomal 
recessive CARD9 deficiency was first documented in 2009 within a 
consanguineous Iranian pedigree presenting with chronic 
mucocutaneous candidiasis (CMC) and dermatophytosis (Glocker 
et al., 2009). When the immune system detects fungal pathogens, 
CARD9 plays a pivotal role in the activated signaling pathways (Yazdi 
et al., 2023). Mutations in the CARD9 gene (NM_052813) result in 
CARD9 deficiency, which substantially compromises the body’s 
capacity to elicit an effective antifungal immune response. This 
disruption targets mechanisms primarily mediated by the C-type 
lectin receptor (CLR) and Toll-like receptor (TLR) families, which 
initiate defense responses against fungal pathogens (Drummond 
et al., 2018; Doron et al., 2021). In recent years, the number of 
reported cases of fungal infections associated with CARD9 
deficiency has been gradually increasing. These infections 
present diverse clinical manifestations and can affect multiple 
organs and systems in the human body. Understanding the 
clinical features of patients with CARD9 deficiency-related 
fungal infections is of great significance for early diagnosis, 
appropriate treatment, and improving patient prognosis. 
However, due to the relatively rare study of CARD9 deficiency 
and the wide variety of fungal pathogens involved, the current 
comprehensive understanding of its clinical characteristics 
remains limited. Previous studies have been fragmented, and it 
is necessary to conduct a systematic review of case reports to 
summarize and analyze the existing data. This review aims to 
provide more perspectives by collecting and analyzing case reports 
from around the world. By systematically examining the clinical 
features, gene mutations, treatment strategies, and prognoses of 
patients with CARD9 deficiency-related fungal infections, we 
hope to provide valuable insights for clinicians and researchers 
in the fields of infectious diseases and immunology, facilitating 
better management of these complex cases. 
Materials and methods 

Literature search 

The review process entailed a comprehensive exploration of all 
extant published literature on reported cases of fungal infections 
attributable to CARD9 deficiency. In the pursuit of relevant 
published works, a systematic search was conducted across the 
PubMed and China National Knowledge Infrastructure (CNKI) 
databases. The search terms employed were “CARD9”, “caspase 
recruitment domain deficiency” and “caspase recruitment domain 
containing protein 9”. Subsequently, the references of the initially 
selected papers underwent meticulous examination and screening. 
Articles of a review nature, those lacking detailed clinical data, and 
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reports concerning patients without fungal infections were 
meticulously excluded from the analysis. 
Data extraction 

The following data were extracted: publication year, first author, 
age of the patient at the time of reporting, age of onset of the patient, 
patient’s gender, site of infection, fungal culture results, mutation 
sites, treatment regimens, treatment outcomes, whether the patient 
died of the disease, and patient origin. According to Melanized 
Fungi in Human Disease (Revankar and Sutton, 2010), the 
dematiaceous fungi category was extracted. According to Fungal 
Infection: Diagnosis and Management, Fourth Edition (Fsbath, 
2012), superficial fungal infections are defined as only infections 
confined to the outermost layers of the skin, nails, hair, and mucous 
membranes. Deep fungal infections include the subcutaneous 
mycoses and the systemic mycoses, defined as infections of the 
dermis, subcutaneous tissues, and adjacent bones, as well as 
infections involving internal organs and vital structures. Define 
invasive fungal infection according to the Consensus Definitions of 
Invasive Fungal Disease from the European Organization for 
Research and Treatment of Cancer and the Mycoses Study Group 
Education and Research Consortium (Donnelly et al., 2020). We 
distinguish the types of gene mutations through https:// 
www.ncbi.nlm.nih.gov/clinvar. 

Regarding the treatment outcomes, a subjective classification 
was employed, categorizing them into five distinct groups. The “not 
reported” category encompassed cases where treatment outcome 
information was unavailable. The “ineffective” category denoted 
cases in which, following systematic treatment, the patient’s general 
condition and the results of auxiliary examinations exhibited no 
signs of improvement. The “slightly improved” category referred to 
cases showing some degree of improvement, yet with a low 
likelihood of achieving complete clinical remission. The “partially 
improved” category applied to cases demonstrating improvement 
and a relatively high probability of attaining complete clinical 
remission. Finally, the “complete clinical remission” category 
signified cases where the patient’s fungal infection was eradicated, 
and organ functions were essentially restored. 
Statistical analysis 

The data extracted from the study were analyzed by the SPSS 27.0 
software. The Mantel-Haenszel test was used to analyze the 
association between different factors, with sex as the stratification 
factor. When the sample size (n) is≥40 and all the theoretical count 
under the null hypothesis (T) are≥5, choose the Pearson chi-square 
test. When n≥40 and at least one theoretical count meets 1≤T<5, use 
the continuity-corrected chi-square test (Yates’ correction). When 
n<40 or T<1, select Fisher’s exact test. To explore further correlations, 
univariate and multivariate binary logistic regression analysis were 
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conducted. In the multivariate regression analysis, we included age, 
gender, and different pathogens to eliminate confounding. The 
outcomes of this analysis were presented in terms of odds ratios 
(ORs) and their corresponding 95% confidence intervals (CIs). 
Results 

Patient basic information 

In this study, a total of 58 articles were comprehensively 
incorporated, involving 89 patients with CARD9 deficiency, as 
detailed in Table 1. Among them, 48 patients were male 
(56.18%). The reported average age was 33.82 ± 18.90 years 
(range: 1-91), and 52 patients (58.43%) whose age of onset was 
less than 18 years old. The patients in this study originated from 17 
distinct countries. As depicted in Figure 1, the countries with the 
highest 3 number of cases were China (34 cases, 38.20%), Algeria 
(12 cases, 13.48%), and Iran (10 cases, 11.24%). 
 

Gene variation distribution 

As illustrated in Figure 2, this article comprehensively 
encompasses a total of 38 CARD9 gene mutations. The 5 most 
frequently occurring mutations are as follows: c.865C>T (18 cases), 
c.883C>T (14 cases), c.819-820insG (12 cases), c.1118G>C (9 cases) 
and c.820dupG (5 cases). The “others” segment in Figure 2 
encompasses 27 distinct gene mutations, each with a frequency of 
only one instance. These mutations are c.472C>T, c.302G>T, 
c.52C>T, c.967_969delGAG,c.1138G>C,c.3G>C,c.241G>A, 
c . 7 8 1d e lG , c . 1 8 4G>A , c . 2 8 8C>T , c . 7 5 9dup , c . 6 9 2C>T ,  
c.905_907delTCT,c.1204_1205insC,c.1269 + 18G>A,c.610C>T, 
c.1108C>T, c.1526G>A, c.440T>C, c.596A>R, c.106C>T, c.808
11G>I, c.86G>A, c.491delT, and c.35G>A. The CARD9 gene and 
related gene mutations are shown in Figure 3. There are 6 types of 
gene mutations: nonsense (30 cases), missense (29 cases), frameshift 
(23 cases), deletion (1 cases), silent (2 cases), and intronic (6 
cases) mutation. 
 

Clinical features 

This study enrolled patients with fungal infections involving 18 
distinct anatomical sites, as depicted in Figure 4. All  patients  had  deep  
infections. Among them, 32.82% were invasive infections and 67.18% 
were non-invasive infections. The 3 most commonly affected sites 
were the skin, central nervous system, and lymph nodes. In terms of 
taxonomic classification at the genus level, Trichophyton and Candida 
were the 2 most prevalent pathogens, as illustrated in Figure 5. 
Dematiaceous fungi (16 cases) including: Exophiala, Phialophora, 
Corynespora, Exserohilum, Alternaria, and  Cladosporium. In

addition to standard antifungal pharmacotherapy, diverse treatment 
modalities were employed. Colony-stimulating factor (CSF) was 
administered to 5 patients (P18, P33, P39, P50, P52), surgical 
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interventions were performed on 6 patients (P21, P36, P46, P61, 
P70, P79), and 1 patient (P53) received recombinant interferon g-1b 
treatment. According to the clinical outcomes, they were classified into 
the following 5 categories: not reported (22 cases, 24.71%), ineffective 
(14 cases, 15.73%), slightly improved (6 cases, 6.74%), partially 
improved (13 cases, 14.61%), and complete clinical remission (34 
cases,38.20%). Unfortunately, 16 patients (17.98%) succumbed to 
the disease. 
The relationship among genes, fungal 
pathogens and infection sites 

To explore the relationships among various factors, we included 
the top 5 most frequent gene mutations (c.865C>T, c.819_820insG, 
c.1118G>C, c.883C>T, c.820dupG), gene mutations not in the top 5 
(other mutations), Trichophyton, Candida, dematiaceous fungi, the 
top 3 most frequent anatomical sites (skin, CNS, lymph nodes), as 
well as invasive infections in the data analysis. Initially, the Mantel-

Haenszel test was employed to assess the relationships between 
these factors. This statistical approach identified 18 significant 
associations, as detailed in Table 2: c.865C>T and Trichophyton, 
c.865C>T and dematiaceous fungi, c.865C>T and skin, c.865C>T 
and lymph nodes, c.865C>T and invasive infections, c.819_820insG 
and Trichophyton, c.819_820insG and lymph nodes, c.883C>T and 
Candida, other mutations and Candida, other mutations and skin, 
other mutations and central nervous system, other mutations and 
invasive infections, nonsense mutation and dematiaceous fungi, 
missense mutation and dematiaceous fungi, missense mutation and 
skin, missense mutation and invasive infections, frameshift 
mutation  and  Trichophyton , f rameshift mutation and

dematiaceous fungi. Subsequently, binary logistic regression 
analysis was carried out on these 19 identified associations to 
further quantify the relationships and estimate the strength of the 
associations, as presented in Table 3. The results indicated that 
c.883C>T increased the likelihood of Candida infections(p=0.008, 
OR=10.421, 95% CI 1.849-58.748), c.865C>T increased the 
probability of Trichophyton infections (p=0.038, OR=5.760, 95% 
CI 1.098-30.217) and dematiaceous fungi (p=0.005, OR=9.653, 95% 
CI 2.019-46.153). According to the types of mutation, nonsense 
mutation increased the risk of dematiaceous fungi infections 
(p=0.014, OR=6.212, 95% CI 1.453-26.556). 
Discussion 

CARD9, a pivotal downstream component of pattern 
recognition receptors (PRRs), plays a central role in mediating a 
cascade of inflammatory responses against invasive fungi, bacteria, 
viruses, and parasites. Mutations in the CARD9 gene, which lead to 
reduced expression and functional impairment, are associated with 
an autosomal recessive primary immunodeficiency disorder. This 
genetic defect renders affected individuals highly susceptible to 
microbial infections. The PRRs/Syk/CARD9 signaling pathway, 
situated downstream of PRRs, is one of the most well-
frontiersin.org 
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TABLE 1 Statistical summary of the 82 enrolled patients’ information. 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

KTCZ 
Complete 

clinical remission 
No Iran 

(Glocker 
et al., 2009) 

– Ineffective Yes Iran 
(Glocker 

et al., 2009) 

– – No Iran 
(Glocker 

et al., 2009) 

– – No Iran 
(Glocker 

et al., 2009) 

– – No Iran 
(Glocker 

et al., 2009) 

– – Yes Iran 
(Glocker 

et al., 2009) 

– Ineffective Yes Iran 
(Glocker 

et al., 2009) 

– – No Algeria 
(Lanternier 
et al., 2013) 

+KTCZ+ITZ Ineffective Yes Algeria 
(Lanternier 
et al., 2013) 

– – No Algeria 
(Lanternier 
et al., 2013) 

– – No Algeria 
(Lanternier 
et al., 2013) 

– – Yes Algeria 
(Lanternier 
et al., 2013) 

– – No Algeria 
(Lanternier 
et al., 2013) 

– – No Algeria 
(Lanternier 
et al., 2013) 
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Reportd 

age 
Onset 
age 

Gender 
Site 

of infection 
Fungal 

culture results 
Mutation site of 

mutation 
genetic 
mutation 

genetic 
testing 

P1 
Kindred 

1 
19 3 Male Oral cavity Candida 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P2 
Kindred 

1 
– <18 Male Oral cavity, CNS Candida 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P3 
Kindred 

1 
50 42 Female Skin, vagina Candida albicans 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P4 
Kindred 

1 
– – Female 

Oral cavity, 
vagina, skin 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P5 
Kindred 

1 
– <18 Male Skin -

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P6 
Kindred 

1 
– <18 Female Oral cavity, CNS -

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P7 
Kindred 

1 
– <18 Female Oral cavity, CNS Candida 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P8 
Kindred 

2 
75 6 Male 

Skin, Scalp, 
Nails, 

Lymph nodes 

Trichophyton 
violaceum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P9 
Kindred 

2 
29 2 Male 

Skin, Scalp, 
Nails, Lymph 
nodes, CNS 

Trichophyton 
violaceum 

– – Not found 
Sanger 

sequencing 
G

P10 – 40 9 Female 
Skin, Scalp, 

Nails, 
Lymph nodes 

Trichophyton 
rubrum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P11 
Kindred 

3 
56 8 Male Skin, Scalp, Nails 

Trichophyton 
violaceum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P12 
Kindred 

3 
34 8 Male 

Skin, Scalp, 
Nails, 

Lymph nodes 

Trichophyton 
violaceum 

– – Not found 
Sanger 

sequencing 

P13 
Kindred 

3 
41 8 Female Nails 

Trichophyton 
violaceum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P14 
Kindred 

4 
43 19 Male 

Skin, Scalp, 
Nails, 

Lymph nodes 
-

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 
F
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TABLE 1 Continued 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

– – No Algeria 
(Lanternier 
et al., 2013) 

– – Yes Algeria 
(Lanternier 
et al., 2013) 

GF+KTCZ Partially improved Yes Algeria 
(Lanternier 
et al., 2013) 

– – No Algeria 
(Lanternier 
et al., 2013) 

– – No Morocco 
(Lanternier 
et al., 2013) 

– – Yes Morocco 
(Lanternier 
et al., 2013) 

– – No Tunisia 
(Lanternier 
et al., 2013) 

– – No Tunisia 
(Lanternier 
et al., 2013) 

– – No Tunisia 
(Lanternier 
et al., 2013) 

– – No Tunisia 
(Lanternier 
et al., 2013) 

M-CSF+VRC 
Complete 

clinical remission 
No France 

(Gavino 
et al., 2014) 

ITZ+AMB Ineffective No China 
(Wang 

et al., 2014) 

ITZ+AMB 

Partially improved, 
relapse after 

discontinuation of 
the drug 

No China 
(Wang 

et al., 2014) 
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Site 

of infection 
Fungal 

culture results 
Mutation site of 

mutation 
genetic 
mutation 

genetic 
testing 

P15 
Kindred 

4 
40 21 Male 

Skin, Perineum, 
Scalp, 

Lymph nodes 
-

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P16 
Kindred 

4 
28 – Male Skin, Scalp - – – Not found 

Sanger 
sequencing 

P17 
Kindred 

5 
39 – Male 

Skin, Scalp, 
Lymph nodes 

Trichophyton 
violaceum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P18 
Kindred 

5 
37 – Female Nails, Skin -

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P19 
Kindred 

6 
40 – Male 

Skin, Bone, 
Lymph nodes 

Trichophyton 
rubrum 

Homozygous 
c.301C>T 

(p.Arg101Cys) 
Missense Not found 

Sanger 
sequencing 

P20 
Kindred 

6 
49 – Female Scalp, Nails -

Homozygous 
c.301C>T 

(p.Arg101Cys) 
Missense Not found 

Sanger 
sequencing 

P21 
Kindred 

7 
91 6 Male Skin, Scalp, Nails -

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P22 
Kindred 

7 
44 12 Male Scalp, Nails 

Trichophyton 
rubrum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P23 
Kindred 

7 
52 5 Female 

Skin, Scalp, 
Nails, 

Lymph nodes 

Trichophyton 
rubrum and 
Trichophyton 
violaceum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P24 – 62 6 Male 
Skin, Scalp, 

Nails, 
Lymph nodes 

Trichophyton 
rubrum and 
Trichophyton 
violaceum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P25 – 41 30 Male CNS Candida albicans 
Homozygous 

c.271T>C (p.Tyr91His) 
Missense Not found 

Whole 
exome 

sequencing 
G

P26 – 21 13 Male Skin -

Compound 
c.191_192insTGCT (p. 
Leu64fsTer59) and 

c.472C>T 
(p.Gln158Ter) 

Frameshift 
and 

nonsense 
Not found 

Whole 
exome 

sequencing 

P27 – 17 6 Male Skin -
Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Whole 
exome 

sequencing 
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TABLE 1 Continued 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

cal operation+ITZ Partially improved No China 
(Wang 

et al., 2014) 

ITZ+TBF Partially improved No China 
(Wang 

et al., 2014) 

, ITZ, TBF, AMB Slightly improved No Italy 
Anete2015 
(Grumach 
et al., 2015) 

-FC+VRC followed 
long-term FCZ 

Complete 
clinical remission 

No Turkey 
(Herbst 

et al., 2015) 

POS 
Complete 

clinical remission 
No Egypt 

(Jachiet 
et al., 2015) 

AMB+VRC Ineffective – France 
(Lanternier 

et al., 
2015a) 

– – – Iran 
(Lanternier 

et al., 
2015a) 

+5-FC followed by 
ng-term FCZ 

Complete 
clinical remission 

No Turkey 
(Lanternier 

et al., 
2015b) 

AMB +FCZ Partially improved No Turkey 
(Lanternier 

et al., 
2015b) 

FCZ, ITZ Ineffective No Iran 
(Lanternier 

et al., 
2015b) 

and 5-FC followed 
long-term FCZ 

Complete 
clinical remission 

No Morocco 
(Lanternier 

et al., 
2015b) 

AMB+POS Slightly improved No Pakistan 
(Lanternier 

et al., 
2015b) 

MB+CAS+G-CSF 
d by long-term FCZ 

Complete 
clinical remission 

No Turkey 
(Celmeli 

et al., 2016) 

h-dose systemic 
gal agents followed 
long-term KTZ 

Partially improved No Britain 
(Jones 

et al., 2016) 

(Continued) 
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P28 – 43 20 Female Skin -
Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Sanger 
sequencing 

Surgi

P29 – 64 48 Male Skin -
Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Sanger 
sequencing 

P30 – 24 3 Male 
Skin, Oral cavity, 

Scalp, Nails 
Trichophyton 
mentagrophytes 

Homozygous c.302G>T 
(p. Arg101Leu) 

Missense Not found 
Sanger 

sequencing 
KTZ

P31 – 4 1.5 Female CNS Candida albicans 
Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

AMB+
by

P32 – 40 13 Male Skin 
Trichophyton 

rubrum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P33 – 8 5 Female CNS, Liver, 
Exophiala 
dermatitidis 

Homozygous c.52C>T 
(p. Arg18Trp) 

Missense Not found 
Sanger 

sequencing 

P34 – 26 18 Female Bone, Skin, Lung 
Exophiala 
spinifera 

Homozygous 
c.967_969delGAG 
(p. Glu323de) 

Deletion Not found 
Sanger 

sequencing 

P35 – 42 36 Female CNS, Vagina, Candida albicans 
Homozygous c.208C>T 

(p. Arg70Trp) 
Missense Not found 

Sanger 
sequencing 

AMB 
l

P36 – 7 7 Female 
Skin, CNS, Oral 
cavity, Nails 

Candida albicans 
Homozygous c.208C>T 

(p. Arg70Trp) 
Missense Not found 

Sanger 
sequencing 

P37 – 28 17 Male 
Colon, 

Ileum, CNS, 
Candida glabrata 

Homozygous c.104G>A 
(p. Arg35Gln) 

Missense Not found 
Sanger 

sequencing 

P38 – 37 34 Female 
CNS, 

Oral cavity, 
Candida albicans 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

AMB
by

P39 – 34 26 Male 
Oral cavity, 
Esophagus, 

Colon 
Candida albicans 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P40 – 25 3 Male 
CNS, Oral 
cavity, Skin 

Candida albicans 
Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Targeted 
Resequencing 

FCZ+
followe

P41 – 25 25 Female 
Eye, 

Bone, Vagina 
Candida albicans 

Compound c.1138G>C 
(p. Ala380Pro) and 

Missense 
+ Silent 

Not found 
Whole 
exome 

sequencing 

Hig
antifun

by
5
 

o

 
 

A
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TABLE 1 Continued 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

Long-term KTZ 
Complete 

clinical remission 
No Europe 

(Rieber 
et al., 2016) 

ntifungal drug treatment 
surgical operation+double 
umbilical cord stem 
cell transplantation 

Ineffective Yes Africa 
(Rieber 

et al., 2016) 

AMB Slightly improved No China 
(Yan 

et al., 2016) 

Long-term ITZ 
Complete 

clinical remission 
No Algeria 

(Boudghene 
Stambouli 
et al., 2017) 

GM-CSF+ITZ+TBF Slightly improved No China 
(Zhang 

et al., 2017) 

VRC+AMB Ineffective Yes Turkey 
(Cetinkaya 
et al., 2018) 

AMB Partially improved No Turkey 
(Sari 

et al., 2018) 

Long-term VRC 
Complete 

clinical remission 
No Canada 

(Gavino 
et al., 2018) 

ITZ+TBF – No China 
(Huang 

et al., 2019) 

Long-term VRC 
Complete 

clinical remission 
No China 

(Quan 
et al., 2019) 

AMB +VRC Ineffective Yes China 
(Wang C. 
et al., 2019) 

ITZ+TBF+ 
surgical operation 

Complete 
clinical remission 

No China 
(Guo 

et al., 2019) 

(Continued) 
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c.951G>A 
(p.Arg317Arg) 

P42 – 45 9 Male 

CNS, Oral 
cavity, 

Abdominal 
cavity, Liver, 
Lymph nodes 

Aspergillus, 
Candida. 

Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense 

SPAST 
mutation 

Whole 
exome 

sequencing 

P43 – 12 12 Male 
Blood vessel, 
Abdominal 
cavity, Skin 

Aspergillus 
fumigatus 

Homozygous c.3G>C 
(p. Met1Ile) 

Missense Not found 
Targeted 
sequencing 

+

P44 – 37 35 Female 
Skin, Lymph 

nodes, 
Oral cavity 

Corynespora 
cassiicola 

Homozygous 
c.191_192InsTGCT 
(p. Leu64fsTer59) 

Frameshift Not found 
Whole 
exome 

sequencing 

P45 – 47 10 Female 
Skin, Scalp, 
Lymph 

nodes, CNS 

Trichophyton 
rubrum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

P46 – 34 16 Female 
Skin, Oral 
cavity, CNS 

Phialophora 
verrucosa 

Compound c.104>A (p. 
Arg35Gln)+c.241G>A 

(p. Glu81Lys) 
Missense Not found 

Sanger 
sequencing 

P47 – 17 7 Female 
CNS, Lung, 
Oral cavity 

Candida albicans 
Compound 
c.883C>T 

(p.Gln295Ter) 

Nonsense 
+ Missense 

Heterozygote 
NLRP12 
mutation 

(c.910C>T; p. 
His304Tyr) 

Targeted 
sequencing 

P48 – 8 8 Female Colon Prototheca zopfii 
Homozygous c.781delG 

(p. Val261fs). 
Frameshift Not found 

Whole 
exome 

sequencing 

P49 – 58 43 Female Eye, CNS Candida albicans 
Compound c.184G>A 

and c.288C>T 
Intronic 
(splicing) 

Not found 
Sanger 

sequencing 

P50 – 28 26 Male Skin 
Phialophora 
americana 

Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Sanger 
sequencing 

P51 – 24 12 Male 
Skin, 

Esophagus, Bone 

Trichosporon 
asahii, 

Candida albicans 

Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Sanger 
sequencing 

P52 – 23 23 Male 
CNS, Skin, 

Lymph nodes 
Exophiala 
dermatitidis 

Homozygous c.759dup 
(p. Lys254GlufsTer81) 

Frameshift Not found 
Sanger 

sequencing 

P53 – 35 17 Female 
Skin, Lymph 
nodes, CNS 

Pallidocercospora 
crystallina 

Homozygous 
c.1118G>C 

(p. Arg373Pro) 
Missense Not found 

Whole 
exome 

sequencing 
A
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TABLE 1 Continued 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

B + long-term FCZ 
Complete 

clinical remission 
No Turkey 

(Martin 
et al., 2019) 

B + long-term ITZ 
Complete 

clinical remission 
No China 

(Wang X. 
et al., 2019) 

ITZ+TBF Partially improved No China 
(Zhang 

et al., 2019) 

–CSF+FCZ+5-FC 
Complete 

clinical remission 
No China 

(Du 
et al., 2020) 

B followed by ITZ 
Complete 

clinical remission 
No China 

(Gao 
et al., 2020) 

F+GM-CSF+ multiple 
antifungal drugs 

Slightly improved, 
recurrent episodes 

No 

The 
United 
States 
of 

America 

(Nazarian 
et al., 2020) 

mbinant interferon g
1b+ multiple 

antifungal drugs 
Ineffective Yes Argentina 

(Perez 
et al., 2020) 

ITZ+TBF 
Complete 

clinical remission 
No China 

(Wang X. 
et al., 2020) 

AMB+ITZ 
Complete 

clinical remission 
No China 

(Huang 
et al., 2020) 

VRC 
Complete 

clinical remission 
No China 

(Ba 
et al., 2021) 

ITZ 

Partially improved, 
relapse after 

discontinuation of 
the drug 

No Spain 
(Benmehidi 
et al., 2021) 

(Continued) 
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P54 – 7 5 Female 
Oral cavity, 
Nails, CNS 

Candida albicans 
Homozygous c.208C>T 

(p. Arg70Trp) 
Missense Not found 

Sanger 
sequencing 

AM

P55 – 46 46 Female Skin Mucor irregularis 

Compound c.692C>T 
(p. p.Ser231Phe) and 
c.905_907delTCT 
(p.Ser302del) 

Missense 
+ 

Frameshift 
Not found 

Sanger 
sequencing 

AM

P56 – 27 16 Female Skin 
Microsporum 
ferrugineum 

Compound c.883C>T 
(p.Gln295Ter) and 

c.1118G>C 
(p.Arg373Pro) 

Nonsense 
+ Missense 

Not found 
Sanger 

sequencing 

P57 – 10 9 Male 
CNS, Oral 
cavity, Liver 

Candida albicans 
Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Whole 
exome 

sequencing 
G

P58 – 12 9 Male 
Colon, 

Esophagus, 
Oral cavity 

Histoplasma 
capsulatum 

Compound 
c.1204_1205insC (p. 
Cys402SerfsTer2) and 

c.1118G>C 
(p.Arg373Pro) 

Frameshift 
+ Missense 

Not found 
Targeted 
sequencing 

AM

P59 – 31 16 Male 
Skin, Nails, 
Lymph nodes 

Trichophyton 
rubrum, 

Trichophyton 
violaceum, 
Aspergillus 

fumigatus, and 
Aspergillus flavus. 

Compound c.271T>C 
(p.Tyr91His) and 
c.1269 + 18G>A 

Missense 
+ Intronic 

STS 
gene 

(Xp22.3) 

Targeted 
sequencing 

G-CS

P60 – 56 32 Female 
Skin, Lymph 
nodes, Lung 

Aspergillus 
nomius, 
Exophiala 
spinifera 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Sanger 
sequencing 

Reco

P61 – 48 17 Male Skin 

Trichophyton 
rubrum, Candida 

albicans, 
Mucor irregularis 

Compound c.184 + 
5G>T and 
c.951G>A 

(p.Arg317Arg) 

Intronic 
(Splice) 

Not found 
Whole 
exome 

sequencing 

P62 – 55 30 Female Skin 
Phialophora 
expanda 

Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found – 

P63 – <1 <1 Male 
Lung, Liver, 
Skin, Spleen, 
Lymph nodes 

Talaromyces 
marneffei 

Compound c.1118G>C 
(p. Arg373pro) and 

c.610C>T 
(p.Asp204Asp) 

Missense 
+ Silent 

Not found 
Whole 
exome 

sequencing 

P64 – 32 27 Male 
Skin, Nails, 

Scalp, 
Lymph nodes 

Trichophyton 
rubrum 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found – 
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TABLE 1 Continued 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

AMB+VRC followed 
by TBF 

Complete 
clinical remission 

No Japan 
(Imanaka 
et al., 2021) 

ITZ+5-FC 
Complete 

clinical remission 
No India 

(Kalantri 
et al., 2021) 

ultiple antifungal drugs Ineffective Yes Turkey 
(Kuruoğlu 
et al., 2021) 

urgical operation+ VRC+ 
AMB followed by long 

term VRC 

Complete 
clinical remission 

No China 
(Lai 

et al., 2021) 

AMB+VRC Ineffective Yes China 
(You 

et al., 2021) 

AMB+ITZ Partially improved No China 
(Huang 
et al., 
2022a) 

VRC Partially improved No China 
(Huang 
et al., 
2022b) 

AMB+ITZ 
Complete 

clinical remission 
No Turkey 

(Paccoud 
et al., 2022) 

POS 
Complete 

clinical remission 
No China 

(Tan 
et al., 2022) 

VRC 
Complete 

clinical remission 
No China 

(Wang 
et al., 2022) 

VRC+AMB Slightly improved No China 
(Yan 

et al., 2022) 

VRC, MFG, CAS 

Complete clinical 
remission, relapse 

after 
discontinuation of 

the drug 

No China 
(Deng 

et al., 2023) 

(Continued) 
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P65 – 4 4 Female 
CNS, Spleen, 
Lymph nodes 

Exophiala 
dermatitidis 

Compound c.586A>G 
(p. Lys196Glu) and 

c.1118G>C 
(p.Arg373Pro) 

Missense+ 
Missense 

Not found 
Targeted 
sequencing 

P66 – 26 17 Female Skin 
Exserohilum 
rostratum 

c.1108C>T 
(p.Gln370Ter) 

Nonsense Not found 
Targeted 
sequencing 

P67 – 37 <18 Male 
CNS, Skin, 
Oral cavity 

Candida albicans 
Homozygous 
c.883C>T 

(p.Gln295Ter) 
Nonsense Not found 

Sanger 
sequencing 

P68 – 6 6 Male CNS Alternaria 

Compound c. 1526G>A 
(p.Arg509Lys) and 

c.586A>G 
(p.Lys196Glu) 

Missense+ 
Missense 

Not found 
Whole 
exome 

sequencing 

S

P69 – 5 5 Male 

Lung, Liver, 
Spleen, 

Abdominal 
cavity, 

Bone marrow, 

Talaromyces 
marneffei 

Compound c.440T>C 
(p.Leu147Pro) and 

c.586A>G 
(p.Lys196Glu) 

Missense+ 
Missense 

Not found 
Medical 
Exome 

Sequencing 

P70 – 55 23 Female Skin Phialophora 
Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Exome 
Sequencing 

P71 – 30 25 Male Skin, Liver 
Trichosporon 

asahii 

Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found – 

P72 – 28 23 Female 
Skin, Nasal 
cavity, CNS 

Alternaria 
infectoria 

Homozygous 
c.865C>T 

(p.Gln289Ter) 
Nonsense Not found 

Candidate 
Gene 

Sequencing 

P73 – 38 28 Male Skin 
Trichophyton 
tonsurans 

Heterozygote c.596A>R 
(p. Lys196Glu) 

Missense Not found 
Sanger 

sequencing 

P74 – 68 67 Male Skin, Lung, 
Corynespora 
cassiicola, 

Cladosporium 

Compound c.106C>T 
(p.Gln36Ter) and 

c.1118G>C 
(p.Arg373Pro) 

Missense+ 
Missense 

Not found 
Whole 
exome 

sequencing 

P75 – 6 5 Male 

Lung, Spleen, 
Lymph nodes, 
Rectum, Colon, 
Bone marrow 

Talaromyces 
marneffei 

Heterozygote 
c.820dupG 

(p. Asp274Ter) 
Frameshift 

CD40LG 
mutation 

(c.346G>A) 

Whole 
exome 

sequencing 

P76 – 21 20 Female Urethra Candida glabrata c.808-11G>I Intronic Not found 
Whole 
exome 

sequencing 
M
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TABLE 1 Continued 

Type Other Method of 
Treatment Outcome Death 

Patient 
origin 

References 

Surgical operation+ GF 
Complete 

clinical remission 
No Morocco 

(El Maati 
et al., 2023) 

Long term VRC 
Complete 

clinical remission 
No Iran 

(Fallahi 
et al., 2023) 

VRC+AMB Partially improved No China 
(Feng 

et al., 2023) 

VRC 
Complete 

clinical remission 
No Japan 

(Majima 
et al., 2023) 

MB+VRC+5-FC followed 
by VRC+5-FC 

Complete 
clinical remission 

No China 
(Wang 

et al., 2023) 

POS 

Partially improved, 
relapse after 

discontinuation of 
the drug 

No China 
(Zhang L. 
et al., 2023) 

AMB 
Complete 

clinical remission 
No China 

(Zhou 
et al., 2023) 

VRC followed by ITZ – – China 
(Chen 

et al., 2023) 

ITZ 
Complete 

clinical remission 
No China 

(Zhang W. 
et al., 2023) 

Surgical operation+ long 
term ITZ 

Complete 
clinical remission 

No Japan 
(Ansai 

et al., 2024) 

CAS+VRC+AMB Ineffective Yes China 
(Liang 

et al., 2024) 

VRC+5-FC+AMB Ineffective Yes China 
(Ma 

et al., 2024) 

CAS followed by FCZ 
+5-FC 

Complete 
clinical remission 

No China 
(Zhou 

et al., 2024) 

C, 5 - Fluorocytosine; GF, Griseofulvin; MFG, Micafungin; KTCZ, Ketoconazole; G-CSF, 
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P77 – 23 <18 Male 
Skin, Lymph 

nodes, 
Parotid gland 

Trichophyton 
rubrum, 

Microsporum 
canis 

– – Not found – 

P78 – 14 12 Female Lung 
Aspergillus 
terreus 

Homozygous c.86G>A 
(p. Arg29His) 

Missense Not found 
Whole 
exome 

sequencing 

P79 – 17 16 Male Skin, CNS 
Prototheca 
wickerhamii 

c.820dupG 
(p. Asp274fs) 

Frameshift Not found – 

P80 – 40 40 Female 
Skin, 

Lymph nodes 
Purpureocillium 

lilacinum 
Homozygous 

c.820dupG(p.Asp274fs) 
Frameshift Not found – 

P81 – 12 12 Male CNS, Oral cavity Candida albicans 

Compound c.1118G>C 
(p.Arg373Pro) and 

c.951G>A 
(p.Arg317Arg) 

Missense 
+ Silent 

Not found 
Whole 
exome 

sequencing 

A

P82 – 29 25 Male Skin 
Phialophora 
verrucosa 

Compound c.1118G>C 
(p.Arg373Pro) and 
c.820_821insG 

(p.Asp274fsTer60) 

Missense 
+ 

Frameshift 
Not found 

Sanger 
sequencing 

P83 – 66 59 Female Skin 
Fusarium 
solaniae, 

Mucor irregularis 
Homozygous c.491delT Frameshift Not found 

Whole 
exome 

sequencing 

P84 – 21 13 Female Skin, Lung 
Trichosporon 

asahii 

Homozygous 
c.820dupG 

(p. Asp274fs) 
Frameshift Not found 

Exome 
Sequencing 

P85 – 41 16 Female Skin 
Fusarium 

verticillioides 

Homozygous 
c.819_820insG 

(p.Asp274fsTer60) 
Frameshift Not found 

Whole 
exome 

sequencing 

P86 – 80 77 Male 
Skin, 

Lymph nodes 
Trichophyton 

rubrum 
Homozygous c.586A>G 

(p. Lys196Glu) 
Missense Not found 

Whole 
exome 

sequencing 

P87 – 63 63 Male 
Blood, 

Abdominal 
cavity 

T. marneffei c.35G>A (p.Ser12Asn) Missense Not found 
Whole 
exome 

sequencing 

P88 – 6 2 Female CNS 
Exophiala 
dermatitidis 

Homozygous 
c.820dupG 

(p. D274GfsX60) 
Frameshift Not found 

Whole 
exome 

sequencing 

P89 – 24 24 Female CNS Candida albicans 
Homozygous c.184 

+ 5G>T 
Intronic Not found 

Whole 
exome 

sequencing 

CNS, Central Nervous System; VRC, Voriconazole; ITZ, Itraconazole; AMB, Amphotericin B; TBF, Terbinafine; FCZ; POS, Posaconazole; CAS, Caspofungin; FCZ, Fluconazole;5-F
Granulocyte Colony Stimulating Factor; GM-CSF, Granulocyte Macrophage Colony Stimulating Factor. 
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FIGURE 1 

The origins of all patients. 
FIGURE 2 

Distribution of gene mutations. 
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Tang et al. 10.3389/fcimb.2025.1615929 
characterized and fundamental signaling cascades in the immune 
response (Hu et al., 2022). CARD9-related C-type lectin receptors 
(CLRs) primarily include Dectin-1, Dectin-2, Dectin-3, and Mincle. 
Upon recognition of carbohydrate agonists, these CLRs recruit the 
tyrosine kinase Syk following Src kinase-mediated tyrosine 
phosphorylation of immunoreceptor tyrosine-based activation 
motif (ITAM)-like motifs (hem-ITAMs) or canonical ITAMs 
Frontiers in Cellular and Infection Microbiology 12 
within their cytoplasmic tails (Rogers et al., 2005; Drummond 
et al., 2011). Syk serves as a pivotal signaling mediator, coupling 
activated immunoreceptors to downstream pathways in immune 
cells. Following recruitment, Syk undergoes phosphorylation, 
triggering the activation of protein kinase Cd (PKCd). This, in 
turn, facilitates the recruitment and phosphorylation of CARD9 at 
Thr231, initiating downstream signaling cascades (Wang Y. et al., 
FIGURE 3 

Schematic diagram of CARD9 gene mutations (intronic mutations represented by gene changes, other mutations denoted by amino acid changes. 
I to XIII = exons of CARD9, Coding DNA Sequence:155-1765). 
FIGURE 4 

Site of infections. 
frontiersin.org 
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2020).Animals with a genetic deletion of Card9 are susceptible to 
challenge with a variety of fungal species, including Candida 
albicans, Aspergillus fumigatus, Cryptococcus neoformans, and

some rarer dematiaceous fungi (Drummond et al., 2018). 
The demographic profile of patients with CARD9-deficiency

associated fungal infections predominantly comprises young and 
middle-aged individuals. A significant proportion, specifically 
57.32% (47 cases) of the patients, experience disease onset during 
childhood or adolescence. Notably, there are distinct geographical 
variations in the distribution of CARD9 gene mutations. For 
instance, the c.820dupG mutation is predominantly observed in 
East Asia, a finding that aligns with previous research by Tomomasa 
et al. (Tomomasa et al., 2024). Additionally, our study identified 
that the c.819-820insG and c.1118G>C mutations are uniquely 
present in the East Asian region, with 819-820insG being 
reported exclusively in China. In the case series presented by 
Lanternier et al. (Lanternier et al., 2013), all 12 patients with the 
c. 865C>T mutation were from Algeria, Morocco, and Tunisia. 
Over the past 12 years, 6 additional cases of this mutation have been 
reported, of which only 3 were from Spain, Turkey and Argentina, 
and the rest were from the above-mentioned North African 
countries, indicating that c.865C>T is mainly distributed in 
North Africa. 
Frontiers in Cellular and Infection Microbiology 13 
Fungal infections associated with CARD9 deficiency exhibit 
remarkable heterogeneity. The present study documented 
involvement of 18 distinct anatomical sites and identified 19 
different genera of fungal pathogens. Among them, Candida and 
Trichophyton were the most isolated fungi. Meanwhile, fungal 
infections in CARD9-deficient patients showed a tendency toward 
severe invasiveness. According to the classification criteria of 
Classification and Nomenclature of Fungi, Fungal diseases (Fsbath, 
2012), all patients met the criteria for deep infection (involving at 
least the dermis and subcutaneous tissues). According to the 
definition of invasive fungal infection (Donnelly et al., 2020), 
32.82% of patients had definite invasive infections. Through 
correlation analysis, we found that the c.883C>T mutation 
significantly increased the likelihood of Candida infection, 
consistent with the analysis by Vaezi (Vaezi et al., 2018) and

Dantas (Dantas et al., 2024). Moreover, the c.865C>T mutation 
was associated with an elevated probability of Trichophyton and 
dematiaceous fungi infection. A previous study (Vaezi et al., 2018) 
reported an association between c.819-820insG and disseminated 
phaeohyphomycosis (OR=2.42, 95%CI 1.84–3.2, p<0.001), and we 
did not find similar results. 

The c.883C>T mutation in the CARD9 gene results from the 
substitution of cytosine (C) with thymine (T) at nucleotide position 
FIGURE 5 

Distribution of fungal pathogens. 
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883, leading to the premature formation of a stop codon. This 
reduces the short-term killing ability of CARD9-deficient 
neutrophils against unopsonized Candida albicans conidia 
(Gazendam et al., 2014; Corvilain et al., 2018). The c.865C>T 
mutation, where the cytosine (C) at nucleotide position 865 is 
replaced by thymine (T), results in a premature stop codon. This 
mutation inhibits the release of inflammatory cytokines such as IL
6, IL-1b, and IL-17A, potentially serving as the underlying 
mechanism for Trichophyton infections (Lanternier et al., 2013; 
Tan et al., 2022). This may explain the different pathogen 
susceptibilities associated with the two gene mutations. 
Dematiaceous fungi have been reported to cause subcutaneous 
and invasive infections, including chromoblastomycosis, 
phaeohyphomycosis, and mycetoma (McGinnis, 1983). A study 
investigating the response to pathogenic dematiaceous fungi in 
Card9-knockout mice found that the inability to control these 
fungi was associated with a lack of Th17 differentiation and 
reduced levels of tumor necrosis factor (TNF)-a, interleukin (IL)
1b, IL-6, and IL-17A in footpad homogenates (Wu et al., 2016). 
Previous research has not explored the relationship between 
mutation types and pathogens. We found that nonsense 
mutations increased the risk of dematiaceous fungi infections, yet 
the c.883C>T mutation, a relatively frequent nonsense mutation, 
did not exhibit this association. This discrepancy may be related to 
epidemiological  differences.  Although  there  is  l imited  
epidemiological data on dematiaceous fungi in Africa, a study on 
chromoblastomycosis prevalence, showed that Africa has the 
Frontiers in Cellular and Infection Microbiology 14 
second-highest incidence after South America, while the 
c.883C>T mutation is absent in both regions. 

Among the 82 patients included in this study, 13 succumbed to 
the disease. The majority of these fatal cases were associated with 
infections of the central nervous system, blood system, and/or 
viscera. This poor prognosis can be attributed, at least in part, to 
the reduced effectiveness to antifungal medications, which is a 
consequence of genetic defects in these patients. The prognosis of 
CARD9 patients is associated with co-existing mutations in other 
genes, some of which may exhibit synergistic effects. For example, 
co-mutations in the DOCK8 gene can lead to severe fungal 
infections (El Hawary et al., 2022). The genetic heterogeneity of 
inborn errors of immunity and diagnostic delays in atypical cases 
lead to significant morbidity and mortality. Establishing a definitive 
genetic diagnosis is crucial for patient management (Ripen et al., 
2021). Among the patients included in this study, 28.05% (23/82) of 
the patients underwent whole exome sequencing. Only 4 cases were 
found to have mutations in other genes: P35 (SPAST mutation) 
(Rieber et al., 2016), P40 (NLRP12 mutation) (Cetinkaya et al., 
2018), P52 (STS gene mutation) (Nazarian et al., 2020), and P68 
(CD40LG mutation) (Yan et al., 2022). The latter 3 gene mutations 
are associated with infections, and in these 3 patients, the disease is 
more severe and the treatment is more difficult. Granulocyte colony 
stimulating factor (G-CSF) and granulocyte macrophage colony 
stimulating factor (GM-CSF) exert pleiotropic effects on the innate 
immune system by enhancing the function of human neutrophils 
(Lin et al., 2024). While their efficacy has been demonstrated in 
TABLE 2 The relationship between genes and infections. 

Total 
patients 
(N=82) 

Trichophyton 
(n=20) 

Candida 
(n=18) 

Dematiaceous 
fungi (n=16) 

Skin 
(n=52) 

Central nervous 
system (n=26) 

Lymph 
nodes 
(n=24) 

Invasive 
infection 
(n=44) 

Site of mutation/P-value 

c.865C>T (n=18) <0.001b 0.114b <0.001 b 0.047a 0.121a 0.006a 0.002a 

c.819_820insG 
(n=12) 

0.033b 0.919b 0.147b 0.220b 0.381b 0.039b 0.126a 

c.1118G>C (n=8) 0.208b 0.818b 0.319b 1.000b 1.000b 0.897b 0.368b 

c.883C>T (n=14) 0.267b 0.005b 0.388b 0.072a 0.068b 0.634b 0.167b 

c.820dupG (n=5) 0.439b 0.505b 0.580b 0.520b 1.000b 0.970b 0.450b 

Other 
Mutations (n=42) 

0.739a 0.042a 0.150b 0.004a 0.036a 0.222a 
0.027b 

Type of mutation/P-value 

Nonsense(n=26) 0.059a 0.349a 0.004a 0.692a 0.908a 0.299a 0.052a 

Missense(n=29) 0.265a 0.362a 0.033a 0.015a 0.164a 0.207a 0.012a 

Frameshift(n=23) 0.001a 0.070a 0.013b 0.218a 0.082a 0.140a 0.248b 

Deletion(n=1) 1.000b 1.000b 1.000b 1.000b 1.000b 1.000b 1.000b 

Silent(n=2) 1.000b 0.067b 1.000b 0.253b 0.183b 0.893b 0.540b 

Intronic(n=6) 0.763b 0.118b 0.580b 0.520b 1.000b 1.000b 0.866b 
Bold represents having statistical differences.
 
The “n” in parentheses indicates the number of patients with a positive result for this item.
 
The superscripts on the right side of the P-value represent different test methods. “a” denotes the Pearson test, and “b” denotes the continuity-corrected test (Yates’ correction).
 
frontiersin.org 

https://doi.org/10.3389/fcimb.2025.1615929
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tang et al.	 10.3389/fcimb.2025.1615929 

 

individual case reports (Gavino et al., 2014; Du et al., 2020), large-
scale clinical trials are still lacking. Nevertheless, they represent 
valuable salvage treatment options for patients who do not respond 
adequately to conventional antifungal therapy. 

In conclusion, CARD9 deficiency should be considered in the 
differential diagnosis of patients presenting with progressive fungal 
infections of unknown etiology. Early initiation of antifungal 
treatment is crucial for improving patient outcomes, and long-
term prophylactic treatment and regular follow-up are essential 
components of comprehensive management strategies. 
Limitations 
Fron
1.	 Our judgment of the patients’ clinical outcomes was 
subjective and only represented their conditions at that 
time, which might lead to a certain degree of bias. 
tiers in Cellular and Infection Microbiology 15	 
2. There was no subjective classification of anatomical sites, 
such as the scalp and skin. However, for the integrity of the 
data, we directly extracted the sites stated in the articles. 
This might have some impact on the results. 

3. Limited by the low prevalence of CARD9 deficiency, the 
statistical results may not reflect  the true situation,

especially for the interpretation of OR values. 
4.	 This study did not include all CARD9 patients. It only included 

case reports and case series, and excluded patients without 
detailed clinical data and those with non-fungal infections. 
Conclusion 

In the contemporary landscape of medical research, there has 
been a burgeoning focus on non-HIV-associated opportunistic 
TABLE 3 The results of binary logistic regression analysis. 

Project/Analysis 
Univariate analysis Multivariate analysis 

P-value OR (95%CI) P-value OR (95%CI) 

c.865C>T and Trichophyton <0.001 7.636 (2.258-25.829) 0.038 5.760 (1.098-30.217) 

c.865C>T and 
dematiaceous fungi 

<0.001 18.543 (4.974-69.125) 0.005 9.653 (2.019-46.153) 

c.865C>T and skin 0.998 – – – 

c.865C>T and lymph nodes 0.008 4.464 (1.482-13.445) 0.412 – 

c.865C>T and 
invasive infections 

0.005 0.171 (0.051-0.581) 0.937 – 

c.819_820insG 
and Trichophyton 

0.998 – – – 

c.819_820insG and 
lymph nodes 

0.999 – – – 

c.883C>T and Candida <0.001 8.585 (2.469-29.844) 0.008 10.421 (1.849-58.748) 

Other mutations and Candida 0.018 0.309 (0.117-0.819) 0.131 – 

Other mutations and skin 0.005 0.238 (0.088-0.643) 0.053 – 

Other mutations and central 
nervous system 

0.039 2.835 (1.054-7.627) 0.644 – 

Other mutations and 
invasive infections 

0.031 3.066 (1.109-8.475) 0.550 

Nonsense mutation and 
dematiaceous fungi 

0.006 5.100 (1.584-16.422) 0.014 6.212 (1.453-26.556) 

Missense mutation and 
dematiaceous fungi 

0.047 0.206 (0.043-0.983) 0.103 – 

Missense mutation and skin 0.015 0.303 (0.116-0.792) 0.059 0.304 (0.088-1.048) 

Missense mutation and 
invasive infections 

0.014 3.424 (1.286-9.113) 0.147 – 

Frameshift mutation 
and Trichophyton 

0.998 – – – 

Frameshift mutation and 
dematiaceous fungi 

0.998 – – – 
Bold represents having statistical differences in Multivariate analysis. 
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infections, which has emerged as a crucial area of investigation due 
to their increasing prevalence and clinical significance. This study 
retrospectively analyzed 82 patients with CARD9 deficiency 
complicated by fungal infections and found significant differences 
in clinical symptoms, fungal pathogens, and gene mutation sites. It 
provides potential relationships between gene mutations, 
pathogens, infection sites, and regional distributions, aiming to 
enhance the understanding of this disease. 
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