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precise and interpretable
detection of malaria parasites in
blood smear images
Bader Alawfi*

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University,
Madinah, Saudi Arabia
Introduction: Rapid and precise malaria diagnosis is critical in resource-

constrained settings to enable timely treatment and reduce mortality. Existing

convolutional neural network (CNN) and capsule network hybrids, although

effective, often suffer from high computational demands and limited

generalizability across datasets.

Methods: We propose Hybrid Capsule Network (Hybrid CapNet), a lightweight

architecture combining CNN-based feature extraction with dynamic capsule

routing for accurate parasite identification and life-cycle stage classification. A

novel composite loss function—integrating margin, focal, reconstruction, and

regression losses—was employed to enhance classification accuracy, spatial

localization, and robustness to class imbalance and annotation noise. The model

was evaluated on four benchmark malaria datasets (MP-IDB, MP-IDB2, IML-

Malaria, MD-2019) and assessed for both intra- and cross-dataset performance.

Results: Hybrid CapNet achieves superior accuracy with significantly reduced

computational cost (1.35M parameters, 0.26 GFLOPs), rendering it suitable for

mobile diagnostic applications. Experimental results demonstrate up to 100%

accuracy in multiclass classification and consistent improvements over baseline

CNN architectures in cross-dataset evaluations. Grad-CAM visualizations

confirm that the model focuses on biologically relevant parasite regions,

validating interpretability.

Discussion: The proposed framework delivers a pragmatic and interpretable

solution for malaria diagnosis, balancing high accuracy with minimal

computational requirements, and demonstrates strong potential for

deployment in real-world, resource-limited clinical environments.
KEYWORDS

malaria detection, Capsule Network, Hybrid CapNet, parasite classification, life cycle
stage recognition, blood smear microscopy
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1 Introduction

Malaria is considered one of the most ancient and severe

infectious diseases in human history Paica et al. (2023). It is

transmitted to humans through the bite of a female Anopheles

mosquito and is caused by one of five Plasmodium species—

Knowlesi, Ovale, Malariae, Vivax, or Falciparum Prabhu et al.

(2021). In 2022, the WHO anticipated 249 million malaria cases in

85 countries and 608,000 fatalities. Interestingly, Africa, where these

diseases originally appeared and account for 94% of global malaria

incidence and deaths, bears a significant burden. Falciparum, the

deadliest plasmodium species, is more common in Africa, although

Vivax is found elsewhere Organization,W. H (2023). Symptoms such

as headache, fever, and fatigue typically emerge 10–15 days after

being bitten by a mosquito carrying the Plasmodium parasite. If left

untreated, it can progress to acute respiratory distress, coma, seizures,

organ failure, and ultimately death.

A carrier mosquito introduces the malaria parasite, which uses

red blood cells to live and reproduce. There are four species of

malaria parasites—P. malariae, P. ovale, P. vivax, and P. falciparum

—with the latter two being the most commonly encountered Price

et al. (2020). Malaria infects aged RBCs and young RBCs of the

vivax type Neveu and Lavazec (2021). Different species exhibit

distinct lifespans and maturation periods; some can remain

dormant for weeks or even cause a relapse after the initial

infection Bousema and Drakeley (2011). Thus, infected cells must

be diagnosed for the type of infection and the specific parasite

involved. Each malaria parasite progresses through four stages:

gametocyte, ring, trophozoite, and schizont Adegoke et al. (2022);

Nasir et al. (2024c). Identifying the particular stage of the parasite is

essential for effective treatment, as different phases demand timely

and targeted intervention. The trophozoite and ring stages of the

parasite are most visible in people; therefore, detecting the disease

early improves patient survival and organ safety Kochan et al.

(2021). In addition, malaria parasite identification and detection are

less studied than life cycle stage classification.

Malaria’s early symptoms and signs are like those of typhoid.

Thus, laboratory identification is needed to treat and prevent it

Cerilo-Filho et al. (2024). Thin and thick blood smear microscopy

remains the most reliable and widely used method for diagnosing

malaria. To detect and identify malaria parasites, a patient’s blood is

spread on a glass slide, stained to highlight the parasites by color,

and then examined under a microscope by a skilled microscopist to

determine both their presence and species within red blood cells.

This method is labor-intensive, time-consuming, and subjective,

with its accuracy heavily dependent on the microscopist’s expertise

—an expertise often lacking in malaria-endemic regions Mbanefo

and Kumar (2020); Tehsin et al. (2024b).

Current malaria diagnosis involves mechanically detecting

parasites in red blood cells in blood slides. If parasites are

detected, the type, life cycle stage, and number of infected RBCs

are studied White (2022). The infrastructure and pathologists’ skills

determine accuracy. High-volume samples might be evaluated

hundreds of times without a qualified pathologist, leading to

misdiagnosis, especially in overcrowded medical institutions in
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flood-stricken areas of Pakistan Mohammed and Abdelrahman

(2017); Tehsin et al. (2024c). The test procedure takes time and

costs people and money. If they don’t increase errors, speed up

findings, and cost less, computer-aided diagnostic (CAD) systems

can reduce this strain. Traditional image processing, based on cell

image intensity values and increased morphological features, has

been used to detect malaria parasites and their types earlier Punitha

et al. (2017). More advanced machine learning and deep learning

architectures, such as convolutional neural networks (CNNs), are

favored due to their ability to deliver superior diagnostic

performance Razzak (2015); Yousafzai et al. (2024). Like any deep

learning architecture, these require strong hardware and network

coverage. CAD systems are unviable in nations with significant

economic disparities between rural and remote areas, as well as

inadequate computer hardware and internet connectivity. We

require a deep learning method that is computationally efficient,

portable on mobile devices, and does not rely on the internet or

other digital tools.

Various CAD systems utilizing conventional image processing

or machine learning techniques have been proposed for malaria

detection. These approaches, while beneficial, often rely heavily on

manually built features, color thresholding, or morphological

indicators, which restrict their applicability across datasets with

varying staining protocols or lighting conditions. With the

emergence of deep learning, CNNs have gained prominence in

malaria classification due to their exceptional capabilities in

representation learning. Nonetheless, CNNs are intrinsically

constrained in their ability to capture hierarchical pose

relationships due to max-pooling layers, which frequently leads to

a loss of spatial context—essential in blood smear research, where

parasite morphology exhibits subtle variations. Capsule Networks

(CapsNets), designed to maintain spatial hierarchies, have

demonstrated potential in medical imaging applications.

Nonetheless, independent CapsNet models often demonstrate

inadequate scalability and require meticulous routing strategies

that can be computationally demanding. Recent hybrid models

that integrate CNNs with Capsule layers largely mitigate these

challenges but continue to have optimization instability and

constrained interpretability. Moreover, the majority of these

studies focus on binary categorization (infected versus uninfected)

and overlook the classification of life cycle stages, which is crucial

for effective treatment planning and management. The identified

limitations drive the creation of Hybrid CapNet, a lightweight and

interpretable architecture featuring an innovative composite loss

function designed to ensure precise classification, localization, and

reconstruction while maintaining computational efficiency and

robustness across various datasets.

The research presents Hybrid CapNet, an innovative architecture

that accomplishes precise malaria parasite identification and various

dataset classification tasks. The model performs dual diagnostic

duties by identifying parasite types and life cycle stages, enabling

users to obtain enhanced diagnostic information beyond binary

classification. The architecture integrates convolutional layers for

feature extraction with capsule layers that preserve spatial

hierarchies, enhancing resilience to morphological and orientation
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fluctuations in microscopic smear images. The innovative loss

function integrates margin loss with reconstruction loss, focused

classification loss, and offset regression loss to facilitate concurrent

learning of diagnostic precision, spatial accuracy, and enhanced noise

immunity. The model demonstrates its effectiveness across four

benchmark datasets—Malaria-Detection-2019, IML-Malaria, MP-

IDB2, and MP-IDB—through both in-dataset and cross-dataset

evaluations, confirming its superiority over existing CNN-based

models in terms of accuracy and generalization performance. This

architecture employs a lightweight design featuring 1.35 million

parameters and 0.26 GFLOPs of operations, which facilitates

deployment on mobile diagnostic devices in resource-constrained

environments. Interpretability is ensured by Grad-CAM visuals that

illustrate the model’s focus on clinically significant regions within the

stained blood smear images. The collaborative research yields a

reliable AI-driven diagnostic tool for field malaria assessment,

offering both efficacy and clarity.

This work begins by presenting the shortcomings in malaria

diagnosis, followed by an examination of deep learning

methodologies and their existing constraints. The methodology

outlines the proposed structure of the Hybrid CapNet model, the

datasets used, the preprocessing techniques employed, the training

methodology, and the implementation of loss functions. The

experimental findings encompass performance assessments of four

datasets, cross-dataset validations, and Grad-CAM interpretation

methodologies. The research article concludes with a summary of

the obtained data and an analysis of potential future endeavors.
2 Related literature

Numerous computer-aided diagnostic (CAD) systems have

been developed to classify malaria parasites from blood smear

images Fatima and Farid (2020). The binary classification of

malaria Rahman et al. (2019) uses patient blood slide images to

categorize blood cells as infected or not. Most available malaria

datasets include only healthy and infected labels, as well as blood

slide images Rajaraman et al. (2018a). Conventional malaria

classification is based on morphological properties of infected

blood cells Savkare and Narote (2015), image capture process

improvement Fn et al. (2016), and cell size and image intensity

information Kareem et al. (2012). Some studies have evaluated the

quantity of healthy red blood cells and malaria-infected cells using

whole-image color spaces to determine whether they are healthy or

infected May et al. (2013).

In contrast, pixel discrimination was used to distinguish malarial

cells Roy et al. (2018).In Arco et al. (2015), histogram equalization

and connected component analysis are used to estimate malaria

parasite density. However, traditional image processing techniques

tend to be slow and rely heavily on dataset specific parameters, such

as image intensity and intense color contrasts typically introduced

through staining. We employed both machine learning and deep

learning architectures to enhance image classification accuracy and

accelerate the diagnostic process. Stacking CNNs to perform binary

classification of malaria Umer et al. (2020); Yousafzai et al. (2025b) or
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Gautam et al. (2020) is a common approach in machine learning.

Neural networks have also been pre-trained to improve binary

malaria classification and automatic malaria patient identification

in blood slide images Imran et al. (2022).

Several datasets with multiclass labels for malaria parasites are

available Loddo et al. (2019); however, the subject is not well-

explored. Kassim et al. (2021) classified thick smear images of P.

vivax and P. falciparum. Recently published datasets included

malaria parasite type with blood slides and multiclass labels for

life cycle stage Arshad et al. (2022). They propose using pre-trained

neural network architectures based on deep learning to classify and

segment the phases of the malaria life cycle. Loddo et al. (2022);

Yousafzai et al. (2025a) used P. Falciparum malaria type blood slide

images for multiclass life cycle stage classification. Another malaria

life cycle classifier identifies the parasite in the trophozoite,

schizont, and ring stages Abbas and Dijkstra (2020). Recent

research on the classification of the Plasmodium parasite life

cycle, employing data from Hospital Universiti Sains Malaysia,

has utilized AlexNet and GoogleNet. GoogleNet and AlexNet

achieved test accuracies of 89.1% and 91.1%, respectively Azhar

et al. (2023). In a separate study, Deep Neural Networks classified

Plasmodium into four life cycle stages—gametocyte, trophozoite,

schizont, and ring—achieving an accuracy of 87.95% with

EfficientNet-B7, outperforming other models Araujo et al. (2023);

Tehsin et al. (2025).

To minimize image inversion blur, the proposed Wiener filter

reduces additive noise, and the Median filter is added for impulsive

noise, similar to MOHD AZIZ (2013). Arco et al. (2015)

successfully removed Gaussian noise from images using a

Gaussian filter. Das et al. (2015) developed the Geometric Mean

Filter to preserve the edges of microscopic images while effectively

reducing Gaussian noise. Savkare and Narote (2015) developed a

Laplacian filter for enhancing edges and smoothing images, while

Soni et al. (2011) employed the SUSAN filter to preserve image

quality and structural details. Dıáz et al. (2009) applied a low-pass

filter that averages image pixel intensities to eliminate high-

frequency components. In contrast, Suradkar (2013) introduced

adaptive local histogram normalization to preserve contrast in low-

resolution images. Abbas and Mohamad (2013) recommended

histogram matching to equalize pixel intensities, while various

contrast enhancement techniques have been consistently used to

improve image clarity. Lighting correction is often done using the

Grey World assumption Liu et al. (2020).

In experiments using the standard NIH dataset, VGG16

identified malaria 95.96% accurately Huq and Pervin (2020);

Nasir et al. (2024b). The original set of 27,556 images was resized

to 224 × 224 pixels. A customized sequential CNN achieved an F1

score of 95.90%, sensitivity of 94.70%, and accuracy of 92.70%

Rajaraman et al. (2018b). On the same malaria dataset, ResNet50

attained 95.40% accuracy Reddy and Juliet (2019). A bespoke CNN

model with five convolutional and pooling layers reached 96.33%

accuracy and an F1 score of 96.82% Maqsood et al. (2021).

Additionally, we developed a hybrid platform designed to reduce

both structural and empirical risks, achieving 93.44% sensitivity and
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93.13% accuracy Var and Tek (2018). Another Capsule Network

(CapsNet) hybrid screening method can identify and pixel label

(segmenting) malaria parasite-infected RBCs with 98.70% accuracy

Maity et al. (2020). Modified YOLOv4 and YOLOv3 models

achieved accuracies of 96.14% and 95.46%, respectively, on a

public malaria dataset Abdurahman et al. (2021). More recently,

YOLOv5 and Darknet-53 were used to detect Plasmodium

falciparum life stages, attaining accuracies of 96.02% and 95.20%,

respectively Zedda et al. (2022). However, earlier work utilizes CNN

models to detect parasite images in natural samples. In contrast,

medical images show parasite malaria infection patterns and

textures that limit model performance.

Recent advancements in deep learning-based malaria

diagnostics have yielded numerous high performing architectures,

especially post-2022. Kumar et al. (2024); Malik et al. (2024)

introduced an Inception-based Capsule Network that attained

over 95% accuracy in the binary categorization of parasitized and

uninfected red blood cells. Their model, albeit useful, was restricted

to coarse-level judgments and failed to consider parasite stage or

localization. Mujahid et al. (2024) developed an EfficientNet-based

CNN classifier, employing five-fold cross-validation, which

achieved an accuracy of 97.57% on red blood cell pictures. This

model mainly concentrated on cell-wise classification and did not

investigate cross-dataset generalization or spatial context. Nettur

et al. (2025) introduced UltraLightSqueezeNet, a parameter-efficient

network that attained accuracy rates of 96.6% to 97.1% while

utilizing considerably fewer parameters than conventional models,

rendering it appropriate for embedded platforms, albeit deficient in

explainability and stage differentiation.

Additionally, Ali et al. (2024); Tehsin et al. (2024a) presented

M2ANET, a mobile-optimized deep learning architecture that

integrates MobileNet inverted residual blocks with a mobile self

attention mechanism. Their architecture exhibited competitive

accuracy while being optimized for real-time field diagnostics

deployment. Furthermore, Abbas and Dijkstra (2020) utilized

random forest classifiers to identify Plasmodium falciparum in

Giemsa-stained thin smear images, presenting stage classification

outcomes with commendable efficacy. However, the traditional

nature of their methodology limited its scalability and profound

representational capacity. Chaudhry et al. (2024) introduced a

CNN-based approach for classifying malaria life cycle stages from

annotated blood smear pictures, attaining an accuracy of around

80%. Nevertheless, the system was trained exclusively on a singular

dataset and failed to integrate localization cues or account for model

uncertainty. Madhu et al. (2023) developed an Inception-V3-based

capsule network for binary classification of malaria-infected cells,

achieving 99.35% accuracy and 99.73% AUC on the NIH dataset.

Their model combined multi-scale feature extraction with capsule

routing to preserve spatial hierarchies. Though effective, it focused

solely on binary tasks without addressing stage classification,

interpretability, or cross-dataset validation.

Notwithstanding these contributions, numerous issues endure.

The majority of the previously stated models focus exclusively on

binary detection tasks and are generally validated on a single dataset,

such as the NIH Malaria Cell Image dataset. They frequently exhibit
Frontiers in Cellular and Infection Microbiology 04
inadequate mechanisms for spatial localization, neglect multiclass life

cycle stage classification, and are deficient in aspects of

interpretability essential for clinical integration. Moreover, although

several models reduce the parameter count or inference duration,

they seldom provide a comprehensive solution that concurrently

addresses classification, localization, robustness to class imbalance,

and explainability. Conversely, our proposed Hybrid CapNet

enhances the current state of the art by integrating an innovative

composite loss function comprising margin, focal, reconstruction,

and regression losses to augment diagnostic accuracy, spatial

localization, and model resilience in the presence of noise and

imbalance. Our model, with merely 1.35 million parameters and

0.26 GFLOPs, achieves state-of-the-art accuracy while facilitating

real-time inference on low-resource devices. In contrast to previous

techniques, Hybrid CapNet is comprehensively verified on four

public datasets, exhibiting consistent generalization across various

imaging settings and annotation methodologies. Its interpretability is

further augmented by Grad-CAM-based visuals, which emphasize

contaminated areas and bolster physician confidence. Hybrid CapNet

is established as a robust, scalable, and transparent approach for

classifying malaria parasites and their stages across various

clinical contexts.
3 Materials and methods

The comprehensive description of the proposed methodology is

located in Section 3. The study employs four distinct datasets: MP-

IDB, MP-IDB2, IML-Malaria, and Malaria-Detection-2019, detailing

their staining techniques, image resolutions, and annotation criteria

in Section 3.1. The model training procedure involves normalization

and subsequent image augmentation, as detailed in Section 3.2.

Section 3.3 illustrates how Hybrid CapNet. derived from original

Capsule Network Sabour et al. (2017), integrates diverse components,

routing mechanisms, and tailored loss functions to formulate its

architecture and attain classification, localization, and reconstruction

capabilities. The training algorithm outlined in Section 3.4 is

determined by hyperparameter configurations, routing iterations,

and the optimization technique. Each subsection offers

fundamental principles for constructing an accurate, interpretable,

and efficient framework for analyzing blood smear images.
3.1 Datasets

The MP-IDB dataset Loddo et al. (2019); Nasir et al. (2024a),

available at the Centre Hospitalier Universitaire Vaudois (CHUV),

offers free access to images of mosquito parasites captured using an

optical laboratory microscope equipped with an integrated camera

setup. In total, there are 229 full-slide blood images representing

four malaria parasite types: P. ovale, P. malariae, P. vivax, and P.

falciparum. These complete-slide PNG images possess a 24-bit color

depth and a resolution of 2592 × 1944 pixels. The parasites are

categorized into four distinct stages, which include schizont

development, ring phases, trophozoite growth, and gametocyte
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growth. MP-IDB2 provides PNG files containing images of cellular

parasites of varying resolutions. The illumination parameters and

background stability exhibit inconsistent levels, as well as varying

border dimensions, despite the fact that these images were acquired

using a single microscope.

Standard components for the classification of malaria life cycles

in thin blood smear images generated from Giesema-stained whole

blood slides are included in the IML-Malaria Arshad et al. (2022).

The public was introduced to a dataset in 2021 that provides 345

microscopic images. Each image in the dataset is in JPG format and

has a resolution of 1280 × 960 pixels. JSON array data is present in

each image of the dataset, and a distinct annotation file is also

included. “image name” and “objects” are the two primary elements

of the JSON objects. The “type” values in the objects array correspond

to the cell categories in each image, as indicated by the bounding box

outline. The publicly available dataset includes annotations for

various blood cell types, such as “difficult,” “gametocyte,”

“trophozoite,” “schizont,” “ring,” and “red blood cell,” among others.

The Malaria-Detection-2019 dataset is promptly accessible via

the internet Abbas and Dijkstra (2020); PP and Tehsin (2025).
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Triple comprises 883 full-body slide images of malarial parasites

that have been stained with Giesema. The PNG-type images in this

collection have a resolution of 1382–1030 pixels. The life cycle stage

of the specimens is determined by the inclusion of supplementary

labels in the dataset. The dataset includes eight possible labels:

garbage, white blood cells (WBC), mid trophozoite (MT), early

trophozoite (LR-ET), segmenter (Seg), ring (R), late schizont (Lsch),

and early schizont (Esch). The authors encountered significant

challenges in distinguishing between all eight periods due to the

early and late labels. To evaluate rings, trophozoites, and schizonts,

the research group simplified three biological assessment stages

from the original eight phases. We will adhere to the same

evaluation system throughout our investigation. Sample images

from each dataset are shown in Figure 1.
3.2 Preprocessing

The MP-IDB dataset was partitioned into three subsets for

training, validation, and testing, with parasite classes allocated as
FIGURE 1

Representative cell images from each dataset used in this study: MP-IDB, MP-IDB2, IMLMalaria, and MP-IDB2, illustrating differences in staining,
resolution, and parasite appearance across data sources.
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66% for training and 17% each for validation and testing. The IML

subsets were constructed by the researchers using division methods

that adhered to the guidelines established by the authors Arshad

et al. (2022). The proposed tasks obtain consistent results by

utilizing mean and standard deviation normalization on all

images. We employed full-slide blood smear images to classify

various malaria parasite types, as illustrated in the image examples

from the previous section. Infected labeled cells were generated by

extracting cell crop segmentations from the annotation files of the

Malaria-Detection2019 and IML-Malaria datasets. The life cycle

stage classification information from the MPIDB2 dataset was pre-

provided by cropping the infected labeled cells. All images used for

classifying malaria life cycle stages in MP-IDB2, Malaria-Detection-

2019, and IML-Malaria exhibit symmetrical properties.

Because these classes were disproportionately represented in the

training datasets, the networks were at a high risk of conforming

better to them. To resolve this issue, various augmentation

techniques were implemented. In our study, we applied

horizontal and vertical flip augmentations, along with the random

pad and random crop methods. These modifications were

individually incorporated into each batch sequence, with a 50%

likelihood of being implemented. After undergoing augmentations,

the input images must be resized to 224/299 pixels for all other

architectures. Prior to processing, the input framework necessitates

that the images be transformed into tensors. Table 1 presents

statistical information on the full-slide images, cropped images,

and augmented images across all datasets utilized in this study.

To alleviate the effects of class imbalance—especially for

infrequent parasite kinds and less commonly observed life stages

—we implemented focused data augmentation techniques. These

encompassed horizontal and vertical flips, random padding, and

cropping, with an increased likelihood of implementation for

underrepresented classes. The synthetic augmentation of the

minority classes facilitated the equalization of their contribution

during training. Additionally, during batch construction, we

implemented balanced sampling to guarantee that each mini-

batch included representative samples from all classes, thereby

mitigating the model’s propensity to overfit to predominant classes.
3.3 Hybrid CapsuleNet

The hybrid CapNet model exhibited outstanding performance

when applied to the analysis of microscopic blood smear images for

malaria diagnosis. Several critical procedures must be implemented

prior to the commencement of model training to optimize its
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functionality. Image enhancement is considered one of the most

sophisticated techniques by experts due to its ability to incorporate

new training data by modifying the original images. This technique

enhances the operational efficacy of the model when it is presented

with a variety of data types. Rotational and flipping procedures,

scale methods, cropping, and noise addition to images are all

included in the collection of image enhancement techniques

Sabour et al. (2017). Setting all pixel values in each image to

adhere to a standard measurement ratio is the process of

standardizing images. The impact of variations in illumination,

contrast, and color on model performance is mitigated by

standardization techniques. Normalization necessitates the

integration of contrast expansion applications and normalization

procedures combined with averaging subtraction. The distribution

of the analysis data for malaria diagnosis is unbalanced, as images

depicting ailments are less frequently represented than those

without disease Alqudah (2020). The combination of

oversampling and undersampling techniques facilitates class

allocation for this issue. Image normalization encompasses a

variety of tasks, including the correct resizing of images, the

conversion of images to grayscale, and the enhancement of

contrast to improve their quality. The methods are effective in

reducing visual disturbance and irrelevant information in images,

thereby rendering them suitable for model training. Image

augmentation, normalization, and class evaluation must be

implemented as part of an integrated solution to optimize hybrid

CapNet operation for malaria diagnosis. The strategies improve the

quality and diversity of the data used in the working out process

while simultaneously reducing the reliance on changes in the

prediction model’s input theory. The experimental method is

illustrated in Figure 2, where as all definations of symbols and

variables are presented in Table A1 in Appendix A.

The actual preprocessing steps used in this study include RGB

normalization, resizing all images to 224 × 224, contrast-limited

adaptive histogram equalization (CLAHE) for local contrast

improvement, and targeted augmentation (flipping, cropping) to

address class imbalance. These are integrated directly into our

training pipeline. When feasible, the data normalization process

must be executed in conjunction with any necessary data

supplements. The ConvNet-based feature extraction approach

replaces traditional fully connected layers with convolutional

operations to preserve spatial hierarchies and reduce parameter

complexity. While sustaining the final classification stages, CNN

maintains its capacity to detect significant spatial information

through this technique. The Capsule Layer Integration approach

substitutes one or more capsule layers for all connected layers
TABLE 1 The data utilization statistics for malaria parasite-type and life cycle stage classification processes.

Dataset Full Crops Augmented Classes Resolution

MP-IDB 210 – 105 4 224

MP-IDB2 – 1361 680 4 224

IML_Malaria – 427 213 4 224

md-2019 – 1361 680 3 224
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within the CNN. Each capsule employs vector representation in this

layer to communicate the instantiation parameters of the

corresponding entity, including its shape and size. The

implementation of dynamic transit between capsule layers

facilitates the development of strong relationships between

entities. Dynamic routing enables capsules in one layer to

transmit information that impacts capsules in subsequent layers.

CapNets employ this capability to enhance the generation of their

spatial hierarchy. To enhance readability, we simplified and

standardized subscripts across all equations. For instance, cij now

consistently refers to the coupling coefficient between capsule i and

capsule j, and uij denotes the predicted output from capsule i to

capsule j. The convolutional output is flattened into a feature vector

of dimension Vf, which serves as input to the primary capsule layer.

Here, Vf denotes the total number of flattened features after

convolution and pooling operations, calculated in Equation 1 as:

Vf =
(Wi − Ks + 2Ps)

Ss
+ 1 (1)

The vector size Vf is calculated using the usual convolutional

output formula, with kernel size, stride, and padding chosen to

preserve adequate spatial resolution. The convolutional depth and

filter dimensions were empirically refined to achieve compactness

and precision, employing 3×3 kernels with progressively increasing

channels across layers for hierarchical representation learning. The

computation entails the padding value Ps with a stride of Ss, the

convolution kernel size represented by Ks, and the image width

denoted by Wi. While maintaining the vector direction, the

squashing function vknon-linearly transforms capsule outputs into

unit vectors is calculated in Equation 2 as:

vk =
∥ zk ∥2

1 + ∥ zk ∥2
·

zk
jjzkjj

(2)

Where, zk is input to capsule k and vk is output of capsule k. To

encourage capsules to encode spatial and contextual information, a

reconstruction loss Lr is introduced, typically based on pixel-wise

reconstruction using cross-entropy is calculated in Equation 3 as:
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Lrecon = −
1
N o

N

n=1
½ynlog (ŷ n) + (1 − yn)log (1 − ŷ n)� (3)

Here, y ∈ RCdenotes the one-hot ground truth label vector, ŷ ∈
RC is the predicted class probability distribution and index N refers to

the number of capsules in the lower layer. CapNet dynamically

computes relationships between capsule pairs using transformations.

For any capsule j, the transformation log relationship Rij between it and

capsule i is calculated in Equation 4 as:

Rij = log (Tij) = vj · vi + bj + bi (4)

here, Tij is the transformation matrix between capsule i and j

and bj and bi are bias terms for respective capsules, vj ∈ Rd is the

output vector of capsule j after applying the squash function,

capturing both the probability and instantiation parameters of the

detected entity. The Capsule Potential function f aggregates

transformed outputs and evaluates their alignment is calculated in

Equation 5 as:

F =o
u

j=1
o
u

i=1
eTij vkj · vi + bj + bi − log (Tij)
� �2

(5)

U denotes the total number of capsules. The routing mechanism

is governed by a margin loss function Lm, ensuring strong

agreement among capsules is calculated in Equation 6 as:

Lm = (1 − tk) ·max (0, ∥ vk ∥−m)2 + tk ·max (0,m − ∥ vk ∥ )
2 (6)

here, tk is a indicator variable (1 if class k is present, 0 otherwise)

and m is the margin threshold. The summation is taken over all

lower-level capsules i = 1 to N, where N is the total number of

capsules in the preceding layer. The SoftMax probability Pij for

capsule j given input from capsule i is calculated in Equation 7 as:

Pij =
elij

oj
elij
, if  lij < lmax

1, otherwise

8<
: (7)

here, lij is the logit score and lmax is the threshold. Pooling

operations split features into smaller regions. Routing logits are
FIGURE 2

Hybrid CapNet architecture for the detection of malaria parasites. The model processes a preprocessed input image (224×224 RGB) and then
performs convolutional feature extraction, integrating capsule layers with dynamic routing, and utilizes multi-loss optimization for classification,
localization, and reconstruction.
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normalized using a capped softmax to limit unstable coupling and

ensure balanced agreement across capsules. Pooling size and stride

were tuned to retain spatial integrity while reducing dimensionality.

Alternative normalization schemes could enhance stability but were

avoided here to preserve the model’s lightweight design. The

number of pooled feature maps Q is determined in Equation 8 as:

Q =
q − Kf + 2Rs

Sp
+ 1 (8)

here, q is feature map dimension, Kf is pooling kernel size, Rs is

resize padding and Sp is pooling stride. The internal dynamics of

CapNet also follow gated memory mechanisms similar to LSTM,

which includes cell update Ct = g(at ,Ct−1), input gate It = s (Waat
+Whht−1 +Wmmt−1 + bi), forget gate Ft = s (Wf at +Whf ht−1 +

Wmfmt−1 + bf ), memory gate Mt = Ft ☉mt−1 + It☉tanh (Wmat +

Whcht−1 + bm), output gate Ot = s(Woat +Whoht−1 +Wmomt−1 +

bo)and image activation Im = Ot☉tanh (mt). Max pooling was

utilized just in the initial layers to diminish feature map

dimensions while preserving prominent local features. The ReLU

activation function introduced non-linearity while maintaining

spatial consistency. Capsule layers subsequently functioned on

these processed features to capture pose and part-whole

relationships, preserving spatial hierarchy.

To facilitate deeper routing, the network applies transformation

and rotation steps across routing layers as calculated in Equation 9:

vz+1 = Wq(Ht + uz)

Ht = s (Wquz)
(9)

The final CapNet activation function with sigmoid classification

loss is defined as in Equation 10:

La = −
1
n o

i
log (Hi) +o

i
log (1 − Hi)

 !
(10)

Weight initialization, regularization, and routing update

equations are as follows in Equation 11:

Initialize weights :                     Wij = 0   ∀i, j

Softmax coupling coefficient :   Ci = Softmax (Wi)

Weighted output vector :         S
j
=o

i
Cij  ·  û j ∥ i

Squashing output vertor :         vj =
∥ Sj ∥2

1+∥ Sj ∥2
  ·  

Sj
∥ Sj ∥

L2 regularization :                    L2 =o
T

j=1
W2

j

Routing update :                       Wij = û j i · vjj

(11)

Each of these operations is instrumental in constructing an

interpretable, high-accuracy model for malaria classification.

Through the integration of dynamic routing, reconstruction loss,

and squashing, as well as margin-based classification, the hybrid

CapNet architecture achieves dependable learning from the

complexity of medical images. The model’s classification accuracy
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is enhanced by the implementation of numerous parameter refining

processes and routing iteration adjustments.

To improve both classification reliability and localization

precision in malaria parasite detection using the Hybrid CapNet,

we extend the standard capsule loss framework by incorporating

advanced loss design principles, which ensures that the model is

optimized not only for classifying red blood cells as infected or

healthy but also for accurately detecting and localizing the infected

regions within a smear image. In the Hybrid CapNet, part of the

capsule output is responsible for capturing instantiation parameters

that represent spatial transformations— such as the position, scale,

and orientation of the parasite within the red blood cell. To evaluate

the accuracy of these parameters, we define a regression loss,

denoted as Loffset using the Smooth L1 loss function. Let d true
i,(x,y) be

the actual transformation offset for capsule i at spatial location (x, y)

and dpred
i,(x,y) be the predicted offset from the capsule’s output. Each

offset vector comprises four elements: horizontal and vertical

position deltas and scaling factors for width and height. The

Smooth L1 loss for each component is defined in Equation 12 as:

Loffset =o
i

o
d∈ x,y,w,hf g

H d true
i,(x,y) − dpred

i,(x,y)

� �
(12)

where H(z) is in Equation 13 as:

H(z) =
0:5z2, if   zj j < 1

zj j − 0:5, otherwise

(
(13)

This loss ensures that the capsule network learns to regress to

accurate instantiation parameters for parasite localization while

remaining robust to annotation noise and outlier errors

commonly seen in medical image datasets. Malaria diagnosis

from blood smear images presents an inherent class imbalance

problem, where the number of healthy cells typically far exceeds the

number of infected cells. To counteract this, the CapNet employs a

Focal Loss, denoted Lclass, which focuses learning on hard-to-

classify examples, preventing the model from being overwhelmed

by easy, background-dominant predictions. Let pi,(x,y) ∈ ½0, 1� be
the predicted probability that capsule iii at location (x,y)

corresponds to an infected cell, yi,(x,y) ∈ 0, 1f g be the ground

truth label (1 for infected, 0 for healthy), a ∈ (0, 1) be a

balancing factor to weigh positive and negative samples and g ≥ 0

be the focusing parameter to reduce loss contribution from easy

examples, then the Focal Loss is in Equation 14 as:

Lclass = −a · (1 − pi,(x,y))
g · yi,(x,y) · log (pi,(x,y)) − (1 − a)

· pgi,(x,y) · (1 − yi,(x,y)) · log (1 − pi,(x,y)) (14)

This formulation enables the CapNet to prioritize learning from

misclassified or borderline infected samples, thereby increasing the

model’s sensitivity to early-stage or subtle infections that are crucial

in clinical settings. For each class capsule, the length of the output

vector (not its values) is interpreted as the probability that the class

is present. The margin loss applies different penalties depending on

whether a class is present or not. It is calculated in Equation 15 as:
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1615993
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Alawfi 10.3389/fcimb.2025.1615993
Lmargin = o
K

k=1

½Tk ·max (0,m+ − ∥ vk ∥ )
2 + l · (1 − Tk)

·max (0, ∥ vk ∥−m
−)2� (15)

Where, vk is the output vector from capsule k, jjvkjj is the length
of that vector, Tk = 1 if class k is the true class, and 0 otherwise,. and

m− are margins (usually m+ = 0:9, m− = 0:1) and l down-weights

the loss for absent classes (e.g., 0:5). The intuition is that if the

length of the correct class capsule is below m+, a loss is applied to

increase it, and if the length of an incorrect class capsule is abovem−,

a loss is applied to decrease it. The margin loss function imposes a

greater penalty when the length of the proper class capsule is below

m+, therefore diminishing false negatives. Concurrently, it imposes

penalties on erroneous class activations exceeding m−, thereby

constraining the number of false positives. The down-weighting

component l guarantees that the model prioritizes accurate class

activation, which is crucial for reducing overlooked infections in

clinical applications.

The incorporation of focal loss was crucial in mitigating class

imbalance within the loss function. By diminishing the loss

contribution from accurately identified (easy) samples and

accentuating those that are misclassified or underrepresented,

targeted loss redirected the learning emphasis toward difficult and

minority situations. This method enhanced the model’s sensitivity

to uncommon parasite species, such as P. malariae and P. ovale, and

facilitated more accurate identification of life cycle stages with

restricted training samples. This loss design, in conjunction with

architectural elements and data-level techniques, facilitated

balanced learning and enhanced generalization across all

parasite classes.

During training, only the capsule corresponding to the correct

class is used to reconstruct the input image through a small decoder

network (usually 2–3 fully connected layers). The output is

compared pixel by pixel with the original image. It is calculated

in Equation 16 as:

Lrecon =o
N

i=1
(xi − x̂ i)

2 (16)

In this context, xi denotes the original pixel value, while x̂ i

represents the corresponding reconstructed pixel value generated by

the decoder. The intuition is that a lower reconstruction loss

indicates the capsule has captured enough meaningful

information about the object to recreate it accurately. It’s also

used to discourage overfitting. The final loss function guiding the

training of the Hybrid CapNet is a weighted combination of all four

components as expressed in Equation 17:

Ltotal = l1 · Lmargin + l2 · Lrecon + l3 · Lclass + l4 · Loffset (17)

Here, l1, l2, l3, and l4 are unable hyperparameters controlling

the relative contributions of margin, reconstruction, classification,

and regression losses. This composite loss structure empowers the

Hybrid CapNet to classify, localize, and reconstruct parasite-

infected regions in thin blood smear images with greater
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precision and resilience to imbalance and noise, ultimately

enhancing its diagnostic reliability.
3.4 Training algorithm

The Hybrid CapNet model architecture is designed to combine

the advantages of CNNs and CapNets, thereby enhancing

classification accuracy in detecting malaria parasites from

microscopic blood smear images. This hybrid model begins with

input images of red blood cells, which are preprocessed and fed into

the initial layers of the convolutional neural network (CNN). These

layers act as feature extractors by applying multiple convolutional

filters that capture spatial patterns, such as edges, color intensity,

texture, and cell structure. The extracted features are then passed

forward for further refinement before classification.

The Hybrid CapNet replaces completely connected layers with a

capsule layer, following the previous stages. In this system, a capsule

is a microscopic unit that consists of a collection of interconnected

neurons. This unit represents the existence and characteristics of

preferred image patterns, including the spatial positions and

dimensional features of parasites. The containers function as

indicators of the probability of feature occurrence, in conjunction

with spatial feature parameterizations, to enhance the model’s

comprehension of the spatial patterns of the input image. The

routing linkage between capsules enables firm agreement between

associated capsules to participate in the prediction process, thereby

achieving viewpoint robustness and refining the shapes of

image data.

The initial phase of the model’s development involves the

processing of blood stain images through a series of layers. The

image undergoes dropout regularization at a rate of 0.4 during the

training process to arbitrarily silence neurons and mitigate the effects

of overfitting. Twelve filters process the spatial information from the

previous stage in the additional 3D wrapper layer. Subsequently, a

pooling procedure is implemented at a rate of 0.4 to condense spatial

information while preserving critical components. To extract

essential features from the data, a fourth layer serves as an encoder,

compressing the data for capsule processing.

By processing its output, the encoder generates capsule vectors

for subsequent analysis using CapNet routing techniques. The

routing systems optimize the transmission of information

between layers while determining which capsules are required to

execute calculations for specific output class assignments. To

achieve generalization, the weight magnitude control through L2

regularization is implemented concurrently with other processes

during this phase.

The Capsule outputs are subjected to a sigmoid activation,

which generates binary results that distinguish between infected and

non-infected cells. To establish a consistent training objective

during this phase, a personalized loss function is integrated,

combining classification loss, reconstruction error, and

regularization. Sequential stages are implemented during the

training process of the hybrid CapNet model. Using a standard
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2:1 proportion, researchers divide the available data into two

sections for training and testing. The network modifies its

internal weights in response to feedback from the loss function

during each training epoch. Accuracy, precision, and recall rates are

monitored throughout the model’s training cycle to assess its

performance. To achieve the desired performance metrics, the

model requires modifications to its hyperparameters, including

the selection of filter count and adjustments to the learning rate.

Furthermore, the model necessitates changes to the routing

iteration and capsule size.

The model’s capacity to generalize is assessed by the receipt of

unidentified blood stain images for testing following the conclusion

of the training program. Due to its effective CNN-based feature

extraction and CapNet maintenance of spatial configurations and

interrelationships, the hybrid model achieves superior malaria

detection results. This architectural design enhances the precision

of detection and provides resistance to common medical image

obstacles, including noise, artifacts, and variations in

sample collection.

A 66%–34% train-test split was used to ensure adequate training

samples while preserving a suitably sized test set for performance

assessment, particularly in light of class imbalance in specific

datasets. This division aligns with established practices in medical

imaging, where computational efficiency and accurate classification

are paramount. To guarantee statistical robustness, we conducted a

5-fold cross-validation on the MP-IDB2 and IML-Malaria datasets.

The mean accuracy, F1-score, and sensitivity across folds exhibited

variations of under 1.2%, validating the robustness and

generalization ability of the proposed model. The overall system’s

training algorithm is illustrated in Algorithm 1.
Fron
Input: Image dataset I, learning rate a, batch size b,

epochs e, routing iterations R, capsule weights Wij

Output: Predicted label ŷ ∈ 0, 1f gfor each image

Preprocessing and Initialization

Apply augmentation (rotation, flip, scale, noise) to I

Normalize image intensities

Split dataset: 66% train, 34% test

Initialize Wij = 0 and routing logits

CNN Feature Extraction

Foreach image I ∈ I Extract convolutional feature maps
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Compute vector size: Vf = (Wi−Ks+2Ps)
Ss

+ 1

Apply max pooling and ReLU activation

Flatten to primary capsules

Capsule Encoding and Routing

Apply squashing function: vk = ∥ zk ∥2
1+∥ zk ∥2

· zk
∥ zk ∥

Run dynamic routing for Riterations.

Capsule Transformation and Potential

Compute Rij = log (Tij) = vj · vi + bj + bi

Compute capsule potential: F =oi,je
Tij (vkj · vi + bj + bi −

log (Tij))
2

Routing and Pooling Updates

Margin loss: Lm = (1 − tk)max (0, ∥ vk ∥−m)2 + tkmax (0,m − ∥ vk ∥ )2

Routing logit normalization: Pij = elij

oj
elij

if lij < lmax, else 1

Pooling output size: Q = q−Kf+2Rs
Sp

+ 1

Capsule Memory Module (Optional)

Use LSTM-style memory updates:

It = s (Waat + Whht−1 + Wmmt−1 + bi)

Ft = s (Wfat + Whfht−1 + Wmfmt−1 + bf)

Mt = Ft ☉mt−1 + It☉tanh (Wmat + Whcht−1 + bm)

Ot = s (Woat + Whoht−1 + Wmomt−1 + bo)

Im = Ot☉tanh (Mt)

Final Capsule Prediction

Output: vz+1 = Wq(Ht + uz), Ht = s(Wquz)

Activation loss: La = − 1
noi(log (Hi) + log (1 − Hi))

Total Loss Function

Ltotal = l1Lmargin + l2Lrecon + l3Lclass + l4Loffset

Optimization and Training

Use Adam optimizer with learning rate a
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Fron
Backpropagate gradients from Ltotal

Repeat for epochs with batch size b

Evaluate the model on the test set (accuracy, F1,

recall, precision, mAP)
Algorithm 1. Hybrid capsule network training for malaria
parasite detection.
4 Experimental results

Section 4 presents an experimental examination of the proposed

Hybrid CapNet model. Section 4.1 provides a comprehensive

overview of the framework implementation, including hardware

configuration, training parameters, and evaluation criteria for

model assessment. The model successfully classified parasite kinds

and life cycle stages, as detailed in section 4.2, utilizing results from

four datasets. Section 4.3 provides an evaluation of the model’s

generalizability across diverse clinical settings based on its training

and testing conducted on multiple dataset pairs. Section 4.4

presents an interpretability analysis utilizing Grad-CAM, which

illustrates the model’s attention to contaminated regions in blood

smear images, accompanied by visual elucidations of its decision-

making processes.
4.1 Experimental setup

The SGD and Adam optimizers were employed to train the

methods previously discussed through multiclass parasite-type

classification. We utilized the Adam optimizer in both tasks

because it yielded superior results in the multiclass classification

of the malaria life cycle stages. The optimization procedure

employed a Scheduler with a step size of 1. The Adam optimizer

was used for its adaptive updates and expedited convergence in

sparse gradient scenarios. A learning rate of a = 0.001 yielded an

excellent balance between training velocity and classification

precision. Reduced values resulted in enhanced stability during

learning but slower convergence, whereas elevated rates induced

divergence in capsule routing. The cross-entropy loss was

implemented during the training procedure to ascertain the loss

values. This loss function functions effectively when dealing with

imbalanced classes, as it utilizes non-normalized logits as input for

each class. The training model is executed on a system equipped

with a Graphics Processing Unit (GPU), 64 GB of RAM, and an

Intel Core i9 CPU operating at 3.5 GHz.

Multiple performance metrics were used to evaluate the model’s

efficacy, and the training procedures were conducted over 100

iterations. A test can yield four possible outcomes: true negative

(TN), false negative (FN), false positive (FP), and true positive (TP).

A TP indicates that the model accurately diagnoses malaria

parasites, thereby validating the original positive classification. A

false positive (FP) is generated when the model incorrectly predicts
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the presence of parasites in a negative-labeled image, resulting in

inaccurate results. False diagnoses will result from such inaccurate

assessments, as they will depict parasites that do not exist. When a

model detects the presence of parasites, the negative image

evaluation proposes that the absence of parasites was accurately

detected. The FN condition is triggered when the model fails to

identify parasites in images that have been classified as positive.

Precision, sensitivity, F1-score, and accuracy are all factors that

contribute to the evaluation of a classifier’s performance.

In addition to classification performance, we evaluated the

computational efficiency of the proposed Hybrid CapNet. The

model contains only 1.35 million parameters and operates with

0.26 GFLOPs, making it significantly lighter than conventional

models like ResNet50 (25.56M, 4.09 GFLOPs) and DenseNet201

(20.01M, 4.30 GFLOPs). We measured the average inference time

on a batch of 16 images using an NVIDIA RTX 2080 GPU. Hybrid

CapNet achieved an average inference time of 0.07 seconds per

batch, translating to approximately 4.3 ms per image. The

convolutional and capsule routing layers account for the majority

of the total time complexity per forward pass. For an input of size

224 × 224, the asymptotic complexity is O(N · M · d2 · k2), where N

and M is the number of capsules, d is the capsule dimension, and k

is the kernel size. Due to the model’s streamlined architecture and

compact routing iterations, it maintains fast execution even on low-

power devices. These results confirm the model’s suitability for real-

time malaria screening in mobile and embedded systems.
4.2 Classification results

The MP-IDB dataset serves as the initial methodology

component for the multiclass classification of malaria parasite

type. We verified the accuracy of the proposed architecture

against the test set by training it for 100 epochs. The multiclass

classification of malaria parasite type obtained an average accuracy

of 100%, as indicated by the test results. In the MP-IDB dataset, a

model achieves a 100% F1-score, 100% Sensitivity, and 100%

Precision for identifying Falciparum, Malariae, Ovale, and Vivax

parasite classes as shown in Table 2. Through its flawless integration

of true positive and actual adverse outcomes, the model exhibits

precise identification of all instances. The database comprises 276

samples, with cases of Vivax malaria surpassing all other subtypes,

totaling 251 entries. Malaria has 12 cases, while Falciparum and

Ovale each have six. Despite the variation in data distribution
TABLE 2 Classification performance of the proposed model on the MP-
IDB dataset for multiclass malaria parasite type detection.

Class F1-score Precision Sensitivity

Falciparum 1.00 1.00 1.00

Malariae 1.00 1.00 1.00

Ovale 1.00 1.00 1.00

Vivax 1.00 1.00 1.00

Average accuracy 1.00
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among the malaria subtypes, the model maintains a 100% accuracy

level in its performance assessment. The individual class confusion

matrices are depicted in Figure 3.

Through its proposed architecture, our methodology’s second

component comprises the multi-classified detection of malaria life

cycle stages. While utilizing the life cycle stage labels of the cell

images from the MP-IDB dataset, the proposed architecture

employs training and testing procedures. The test set achieves an

accuracy rate of 98% in its results across the four life cycle stages

that are enumerated. A model’s classification performance is

demonstrated by the results presented in Table 3 for the detection

of various life cycle stages in malaria, which were trained using MP-

IDB2 data. The classification system includes Trophozoite, Ring,

Schizont, and Gametocyte. The Ring stage demonstrated the highest

performance in the model evaluation, achieving a 99% F1 score,

98% precision, and 100% sensitivity. This resulted in a perfect

match among the cases that were correctly identified by the Ring
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stage. Despite exhibiting slightly reduced but stable results, the

Gametocyte stage achieved a performance level of 96% F1 score,

95% precision, and 97% sensitivity. The model achieved robust

classification results for both the Schizont and Trophozoite phases,

as evidenced by their F1 scores of 97% and 98%, respectively. The

model’s dependability in classifying a variety of malaria stages is

demonstrated by its global accuracy rate of 98% when processing

multiple life stages of malaria. Additionally, the confusion matrices

for this classification are illustrated in Figure 4. In contrast to the

majority of state-of-the-art methodologies, including Loddo et al.

(2019), the current evaluation encompasses all cell images rather

than limiting itself to the life cycle stages of falciparum.

Our second dataset in the multiclass classification of malaria life

cycle stages is IML Malaria. The four stages of the IML Malaria

dataset are equitably distributed among one another. The training

tasks on this dataset were conducted using an untrained variant of the

proposed network. Due to the balanced distribution, the outcome

scores of each class performed well individually, resulting in an

overall accuracy of 95%. The evaluation results of the proposed

model, when utilized for multiclass stage classification on IML

Malaria, are presented in Table 4. The model exhibits consistent

performance across all four developmental phases of the gametocyte,

ring, schizont, and trophozoite stages. Reliable detection performance

was demonstrated by the Gametocyte class, which achieved an F1-

score of 97%, Precision of 95%, and Sensitivity of 98%.

Furthermore, the Ring and Schizont courses achieved

exceptional results, achieving F1-scores of 95% and 94%,

respectively. Additionally, their precision and sensitivity were

nearly symmetrical. The Trophozoite class obtained a strong F1-
FIGURE 3

Confusion matrix of the proposed model on the MP-IDB dataset.
TABLE 3 Performance metrics of the proposed model on the IML
Malaria dataset for malaria life cycle stage classification.

Class F1-score Precision Sensitivity

Gametocyte 0.97 0.95 0.98

Ring 0.95 0.95 0.95

Schizont 0.94 0.93 0.95

Trophozoite 0.91 0.90 0.92

Average accuracy 0.95
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score of 91% despite delivering performance results that were lower

than those of the other classes. The model demonstrated an average

classification accuracy of 95% in detecting malaria stage

components. The results of the confusion matrices are illustrated

in Figure 5.

Finally, we implemented the Malaria Detection 2019 dataset.

The schizont, trophozoite, and ring are the three final classes that

result from the combination of the original eight life stage classes.

The proposed network achieves an accuracy level of 82%, which is

consistent with the findings of Abbas et al. Chaudhry et al. (2024),

who classified 112 features using random forests and found this

approach to be well-suited to this dataset. However, it is a specific

implementation that necessitates reformulation for other datasets.

Due to its methodological superiority, our approach provides

superior generalization capabilities and robustness. The

performance details for detecting malaria life cycle stages are

presented in Table 5 based on the classification results of the
Frontiers in Cellular and Infection Microbiology 13
proposed model on the Malaria-Detection-2019 dataset. Ring,

Schizont, and Trophozoite are the three phases that are tested

during the evaluation. The model consistently produces results,

with Ring, Schizont, and Trophozoite achieving F1 scores of 88%,

91%, and 88%, respectively. The model consistently maintains a

high level of sensitivity across all classes, with a maximum

performance of 93% in detecting Trophozoites, and achieves

precision values between 85% and 89%. The model achieves

successful and accurate positive recognition while minimizing

errors in false predictions. Through its ultimate attainment of

89% total precision, the model effectively processes multiclass

malaria stage classification. The confusion matrices that

correspond to the results are illustrated in Figure 6.

Table 6 illustrates the performance of the proposed model in

comparison to state-of-the-art methodologies when processing four

malaria datasets: MP-IDB, MP-IDB2, IML-Malaria, and MD-2019.

The model is evaluated using two classification categories: malaria

type identification and recognition of life cycle stages. Yang et al.

(2022) reported that the falciparum class accuracy in MP-IDB was

91%; however, the proposed solution achieved 100% accuracy for all

classes. Loddo et al. (2022) achieved a 99% accuracy rate in

identifying the falciparum class during testing on the MP-IDB2

dataset. However, the proposed model surpassed this figure by

completing a 98% accuracy rate across all dataset classifications.

The proposed model outperformed Arshad et al. (2022) using the

IML-Malaria data, achieving an accuracy rating of 98% compared to

his 80%. According to Abbas and Dijkstra (2020), the proposed

model achieved an 89% accuracy match when tested against the

MD-2019 dataset. The results confirm that the proposed model
FIGURE 4

Confusion matrix of the proposed model on the MP-IDB2 dataset.
TABLE 4 Performance metrics of the proposed model on the MP-IDB2
dataset for malaria life cycle stage classification.

Class F1-score Precision Sensitivity

Gametocyte 0.96 0.95 0.97

Ring 0.99 0.98 1.00

Schizont 0.97 0.96 0.98

Trophozoite 0.98 0.97 0.99

Average accuracy 0.98
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provides consistent and superior classification capabilities for all

three malaria classes across various datasets.

The new deep learning approach achieved results that

significantly surpassed the prior leading standards. The GAP layer

in our network is used to perform spatially preserving average

information calculation, while convolution layers are employed to

identify crucial image data. Our network’s integrated multiplelayer

design prevents model overfitting and accomplishes high-quality

outcomes through effective cost management. In their present state,

deep learning architectures require vast datasets to enhance their

learning capabilities, thereby achieving the most favorable results.

Due to their overfitting to the limited dataset, the deep learning

architectures demonstrated superior performance on the training

set images despite achieving inferior results on the test set. Table 7

presents a thorough evaluation of four selected datasets for nine

deep-learning models that utilize our proposed architecture. The

assessment of each model emphasizes the accuracy scores for each

dataset, inference time with a batch size of 16, and FLOPs measured
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in billions of operations. Parameters are expressed in millions. At

significantly lower computational requirements, the proposed

model exhibits superior accuracy compared to its competitors. As

it achieves 1.00, 0.98, 0.96, and 0.89 accuracy on MP-IDB, MP-

IDB2, IML-Malaria, and MD-2019 in 0.07 seconds, the model

operates at 0.26 GFLOPs and has 1.35 million parameters. In

contrast to ResNet50, which achieves an accuracy of 0.97 on MP-

IDB, the proposed model increases accuracy by 3.0% while

necessitating a 93.6% reduction in FLOPs and a 94.7% reduction

in parameter count. By reducing FLOPs by 93.9% and parameters

by 93.3%, the proposed model surpasses DenseNet201 and achieves

an accuracy of 0.95 on MP-IDB, providing a 5.3% gain. At 0.08

seconds, SqueezeNet maintains the closest inference speed;

however, its MP-IDB accuracy is 0.90, which is 10% lower than

the proposed model. The MobileNetV2 model achieves 0.93

accuracy on MP-IDB, but it operates at 0.30 GFLOPs, has 15%

more GFLOPs, and 2.5 times more parameters than the proposed

approach. Despite this, it exhibits a 7% reduction in accuracy.

The datasets exhibit significant imbalances, which necessitates

that the most advanced architectures generate favorable outcomes

exclusively for falciparum and vivax parasite varieties and ring life

cycle stages. The confusion matrix analysis indicates that the

proposed architecture outperforms other architectures by

emphasizing underrepresented classes. Through its capacity to

focus on underrepresented groups, our network demonstrates the

most significant potential for addressing asymmetrical medical and

healthcare datasets.

In addition to the typical train-test assessment, we performed 5-

fold cross-validation on two exemplary datasets (MP-IDB2 and
FIGURE 5

Confusion matrix of the proposed model on the IML Malaria dataset.
TABLE 5 Performance metrics of the proposed model on the Malaria-
Detection-2019 dataset for malaria life cycle stage classification.

Class F1-score Precision Sensitivity

Ring 0.88 0.87 0.90

Schizont 0.91 0.89 0.92

Trophozoite 0.88 0.85 0.93

Average accuracy 0.89
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IML-Malaria). The mean accuracy across folds was 98.1% and

95.2%, respectively, with negligible standard deviation. These

results confirm the model’s robustness and its capacity to

generalize consistently across diverse partitions. Table 8 presents

Accuracy, F1-Score, Precision, and Sensitivity for each fold,

accompanied by the mean and standard deviation.
4.3 Cross dataset validation

Five CNN models, namely ResNet50, DenseNet201,

MobileNetV2, InceptionV3, and the Proposed system, were

subjected to cross-dataset evaluations as shown in Table 9. This

was achieved by training each combination of MP-IDB, MP-IDB2,

IML-Malaria, and MD-2019 datasets and subsequently conducting

tests on each of these combinations. This configuration enables

researchers to simulate the actual circumstances in which models
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must apply knowledge across various data sources. The Proposed

model exhibits superior accuracy performance in comparison to all

other models in each training-testing dyad, as evidenced by the

recorded results. The Proposed model achieved an accuracy of 0.85

when MP-IDB data was utilized for training and MP-IDB2 testing.

This resulted in a 6.3% increase in accuracy compared to ResNet-50,

as well as a 10.4% increase in accuracy compared to DenseNet-201,

a 14.9% increase with MobileNet-V2, and a 19.7% increase with

Inception-V3. The proposed model achieves an accuracy rate of

0.75 in the MP-IDB to IML-Malaria configuration, which is 7.1%

superior to ResNet50 and 22.9% superior to InceptionV3. In the

MP-IDB to MD-2019 testing scenario, the Proposed model

outperforms ResNet50 by 6.8% and InceptionV3 by 14.1%.

The Proposed model achieves a score of 0.78 when trained on

MP-IDB2 and tested on MP-IDB, indicating that it outperforms

ResNet50 by 6.8% and achieves a 14% greater success rate than

InceptionV3. The Proposed model achieved a 0.86 in the MP-IDB2
FIGURE 6

Confusion matrix of the proposed model on the Malaria-Detection-2019 dataset.
TABLE 6 Performance comparison of the proposed model with existing state-of-the-art methods across four malaria datasets.

Method MP-IDB MP-IDB2 IML_Malaria MD-2019

Deep learning based method for malaria diagnosis Yang et al. (2022) 91% – – –

Convolutional networks for malaria diagnosis Loddo et al. (2022) – 99% – –

Malaria life-cycle classification using deep learning Arshad et al. (2022) – – 80% –

Random forest classifiers Detection and stage classification of Plasmodium falciparum Abbas and
Dijkstra (2020) – – – 82%

Lightweight deep learning architecture for malaria parasite- type classification Chaudhry
et al. (2024) 99% 96% 92% 82%

Proposed Model 100% 98% 95% 89%
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to IML-Malaria challenge, which was 6.2% more effective than

ResNet50 and 19.4% better than InceptionV3. The Proposed model

achieves a score of 0.85 when used in MD-2019 testing, and it

achieves a 6.3% higher accuracy than ResNet50. The Proposed

model outperforms ResNet50 by 6% and InceptionV3 by 18.9%

during IML-Malaria training with MP-IDB testing, achieving a

score of 0.88. The proposed model achieves a score of 0.76 in MP-

IDB2, representing a 7% improvement over ResNet50 and a 22.6

MD-2019 achieves an accuracy rate of 0.81, which is 6.6%

higher than ResNet-50 and 20.9% higher than InceptionV3. The

Proposed model surpassed ResNet50 by 7.1% during testing onMP-

IDB with an MD-2019-trained model, achieving a score of 0.75. The

Proposed model outperforms ResNet50 by 6.8% and InceptionV3

by 14% when evaluated on MP-IDB2, achieving a score of 0.78.

According to the IML-Malaria evaluation, the Proposed model
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achieves a score of 0.83, which surpasses ResNet50 by 6.4% and

InceptionV3 by 20.3%. The proposed model surpasses InceptionV3

by up to 20% in accuracy results and achieves accuracy

enhancements of 5% to 10% when compared to ResNet-50. The

model is well-suited to real-world applications that involve a variety

of datasets due to its exceptional multi-dataset generalization.
4.4 Computational complexity analysis

Alongside assessing classification accuracy and interpretability,

we performed a comprehensive examination of the computational

complexity and efficiency of the proposed Hybrid CapNet

architecture. This research is crucial for assessing the feasibility of

implementing the model in resource-constrained settings, such as
TABLE 7 Comparison of top pre-trained CNN models and the proposed architecture in terms of computational complexity (FLOPs), model size
(parameters), inference time (batch size = 16), and classification accuracy across selected datasets.

Model FLOPs (G) Params (M) Inference (s) MP-IDB MP-IDB2 IML_Malaria MD-2019

ResNet18 1.82 11.18 0.43 0.97 0.94 0.91 0.85

ResNet50 4.09 25.56 0.60 0.95 0.92 0.89 0.84

DenseNet121 2.88 7.98 0.28 0.93 0.91 0.88 0.81

DenseNet201 4.30 20.01 0.33 0.92 0.89 0.86 0.80

MobileNetV2 0.30 3.40 0.10 0.90 0.87 0.85 0.78

InceptionV3 5.73 24.35 0.49 0.91 0.90 0.87 0.79

SqueezeNet 0.74 1.25 0.08 0.88 0.84 0.82 0.76

EfficientNet-B0 0.39 5.30 0.20 0.86 0.83 0.80 0.74

VGG19 7.64 128.79 1.70 0.85 0.78 0.76 0.69

AlexNet 0.71 57.02 0.95 0.87 0.74 0.81 0.75

Proposed 0.26 1.35 0.07 1.00 0.98 0.95 0.89
TABLE 8 5-fold cross-validation results of the proposed hybrid CapNet on MP-IDB2 and IML-Malaria datasets.

Dataset Fold Accuracy F1-score Precision Sensitivity

MP-IDB2

Fold 1 0.981 0.980 0.979 0.981

Fold 2 0.979 0.978 0.977 0.978

Fold 3 0.982 0.981 0.981 0.982

Fold 4 0.984 0.983 0.984

Fold 5 0.980 0.979 0.978 0.980

Mean ± Std 0.981 ± 0.002 0.980 ± 0.002 0.979 ± 0.002 0.981 ± 0.002

IML-Malaria

Fold 1 0.949 0.946 0.945 0.947

Fold 2 0.955 0.952 0.951 0.953

Fold 3 0.951 0.950 0.949 0.950

Fold 4 0.954 0.951 0.950 0.952

Fold 5 0.948 0.946 0.944 0.947

Mean ± Std 0.951 ± 0.003 0.949 ± 0.003 0.948 ± 0.003 0.950 ± 0.003
Values are reported as mean ± standard deviation.
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those involving mobile health devices and point-of-care diagnostic

systems. The overall parameter count of Hybrid CapNet is roughly

1.35 million, markedly lower than traditional deep CNN models

like ResNet50 (25.56M), DenseNet201 (20.01M), and InceptionV3

(24.35M), as indicated in Table 10. The computational expense

quantified in floating point operations per second (FLOPs) is

similarly reduced—necessitating merely 0.26 GFLOPs per forward

pass. In contrast, ResNet50 and InceptionV3 require 4.09 and 5.73

GFLOPs, respectively, indicating an over 15 times reduction in

computational requirements for our design.

We evaluated the average inference time of Hybrid CapNet

utilizing an NVIDIA RTX 2080 GPU. Utilizing a batch size of 16,

the model achieved an average inference duration of 0.07 seconds,
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corresponding to approximately 4.3 milliseconds per image. This

latency is enough for real-time implementation in clinical

environments, particularly when integrated into edge-based

systems with limited processing resources. The convolutional and

capsule routing processes mostly influence the model’s temporal

complexity. For an input image measuring 224 × 224, the

convolutional layers demonstrate a standard complexity of O(k2 ·

Cin · Cout · H · W), where k represents the kernel size, Cin and Cout

denote the number of input and output channels, respectively, and

H and W signify the height and width of the feature maps. Capsule

routing incurs an extra cost of O(N · M · d2 · k2), with N and M

representing the number of capsules in the lower and upper layers,

respectively, and d indicating the dimensionality of each capsule.
TABLE 9 Cross-dataset accuracy comparison of the proposed model with four pre-trained CNN architectures, evaluating performance when trained
on one malaria dataset and tested on another, demonstrating superior generalization capability of the proposed approach.

Train → Test ResNet50 DenseNet201 MobileNetV2 InceptionV3 Proposed

MP-IDB → MP-IDB2 0.80 0.77 0.74 0.71 0.85

MP-IDB → IML_Malaria 0.70 0.67 0.64 0.61 0.75

MP-IDB → MD-2019 0.74 0.71 0.68 0.65 0.79

MP-IDB2 → MP-IDB 0.73 0.70 0.67 0.64 0.78

MP-IDB2 → IML_Malaria 0.81 0.78 0.75 0.72 0.86

MP-IDB2 → MD-2019 0.80 0.77 0.74 0.71 0.85

IML_Malaria → MP-IDB 0.83 0.80 0.77 0.74 0.88

IML_Malaria → MP-IDB2 0.71 0.68 0.65 0.62 0.76

IML_Malaria → MD-2019 0.76 0.73 0.70 0.67 0.81

MD-2019 → MP-IDB 0.70 0.67 0.64 0.61 0.75

MD-2019 → MP-IDB2 0.73 0.70 0.67 0.64 0.78

MD-2019 → IML_Malaria 0.78 0.75 0.72 0.69 0.83
TABLE 10 Comparison of top pre-trained CNN models and the proposed architecture in terms of computational complexity (FLOPs), model size
(parameters), inference time (batch size = 16), and classification accuracy across selected malaria datasets.

Model FLOPs (G) Params (M) Inference (s) MP-IDB MP-IDB2 IML MD-2019

ResNet18 1.82 11.18 0.43 0.97 0.94 0.91 0.85

ResNet50 4.09 25.56 0.60 0.95 0.92 0.89 0.84

DenseNet121 2.88 7.98 0.28 0.93 0.91 0.88 0.81

DenseNet201 4.30 20.01 0.33 0.92 0.89 0.86 0.80

MobileNetV2 0.30 3.40 0.10 0.90 0.87 0.85 0.78

InceptionV3 5.73 24.35 0.49 0.91 0.90 0.87 0.79

SqueezeNet 0.74 1.25 0.08 0.88 0.84 0.82 0.76

EfficientNet-B0 0.39 5.30 0.20 0.86 0.83 0.80 0.74

VGG19 7.64 128.79 1.70 0.85 0.78 0.76 0.69

AlexNet 0.71 57.02 0.95 0.87 0.74 0.81 0.75

Proposed 0.26 1.35 0.07 1.00 0.98 0.95 0.89
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Nonetheless, due to our design’s implementation of shallow routing

iterations and low-dimensional capsules, the routing cost remains

minimal compared to the overall calculation.
4.5 Interpretability analysis via Grad-CAM
across diverse malaria datasets

Across the selected benchmark datasets, a layer-wise Grad-

CAM analysis was conducted on the proposed architecture. The

attention patterns of the proposed model and traditional pre-

trained CNNs for discriminative regions in blood stain images are

distinct, as illustrated in Figures 7-10. Activation maps from

convolutional blocks are included in the figures, which

subsequently result in attention patterns generated by the

proposed method, as shown in the bottom row.

The attention maps of the pre-trained models ResNet50 and

DenseNet201 are dispersed across a variety of cell clusters and

background areas that contain minimal semantic content, as

illustrated in Figure 7 (Malaria-Detection-2019). The ambiguous

predictions for parasite-type classification are the consequence of

the imprecise activation patterns across various areas of the input

image. The new method produces well-organized attention spaces

that limit their examination to infected areas rather than directing

energy toward insignificant components. Consequently, this

method emphasizes critical semantic details.

The dataset depicted in Figure 8 (IML-Malaria) is characterized

by red blood cells that are morphologically similar and highly dense.

In the early to mid-level layers, models such as InceptionV3 and

MobileNetV2 exhibit an excessive spatial dispersion in their Grad-
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CAM outputs. The biological accuracy of the proposed framework

is demonstrated by its focused approach, which targets parasitic

areas without generating substantial activation strain. This

behavioral pattern reflects the model’s capacity to focus attention

and represent distinct features selectively.

The baseline models in Figure 9 (MP-IDB), which employ

attention maps, exhibit inconsistent identification of infected

regions due to the high variability in cell texture and density. The

models exhibit activation that reaches high levels when scanning

narrow cell sections without actual parasites behind these regions.

The infected components, as referred to by experts, are detected by

the proposed network model through localized hotspots that remain

focused until they align with the boundaries of the infected regions.

Its architectural design demonstrates its ability tomaintain contextual

focal points and eliminate superfluous spatial elements from images.

The robustness of the proposed model is demonstrated in

Figure 10 (MP-IDB2) when analyzing visually similar parasite

stages. The proposed model exhibits precise attention that

remains focused on the central areas, in contrast to pre-trained

networks, which frequently lose concentration on neighboring cells.

The stability of the internal representation was confirmed by the

stable and interpretable results generated by heat maps across the

model’s various layers.

4.6 Theoretical and computational insights

A supplemental analysis was performed to investigate the

computational behavior of the suggested hybrid model.

Theoretical investigation suggests that the capsule routing

mechanism facilitates equivariance to spatial transformations,
FIGURE 7

Grad-CAM comparison showing focused activations by the proposed model on MalariaDetection-2019 dataset.
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which is essential for differentiating between parasite life stages with

minor morphological variations. Additionally, we examined the

convergence rate and training dynamics by comparing the training

loss and validation accuracy curves across several topologies. The

suggested model demonstrated accelerated convergence and
Frontiers in Cellular and Infection Microbiology 19
diminished variation across epochs due to capsule-based

structural encoding. These findings, along with a reduced

parameter footprint compared to deeper convolutional neural

networks (CNNs), support both the theoretical validity and

practical efficacy of the methodology.
FIGURE 9

Grad-CAM comparison showing focused activations by the proposed model on MP-IDB dataset.
FIGURE 8

Grad-CAM comparison showing focused activations by the proposed model on IML dataset.
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5 Conclusion, limitation, and future
directions

The study introduced a novel Hybrid Capsule Network (Hybrid

CapNet) architecture for classifying malaria parasites and their life

stages through the analysis of blood microscopy images. The

model’s performance improved by integrating convolutional

feature extraction with a capsule-based spatial modeling

framework, preserving structural hierarchies and achieving strong

generalization across four datasets. The model employed a

composite loss function that optimized both classification efficacy

and spatial detection quality while addressing unbalanced data with

equal significance. The proposed model achieved complete accuracy

in in-dataset classification tasks and demonstrated superior

performance compared to state-of-the-art models in cross-dataset

evaluations, as indicated by experimental results. The Grad-CAM

images confirmed the model’s interpretability by highlighting areas

infested by parasites. This model operates efficiently by utilizing

1.35 million parameters that compute at 0.26 GFLOPs, enabling

deployment in low-resource systems and making it suitable for real-

time diagnostics in remote and resource-constrained environments.

The execution of the proposed model achieves success in terms of

performance, but it encounters several limitations. The model’s

widespread applicability in worldwide clinical settings is hindered

by the limited diversity of the datasets concerning demographics

and location. The model exhibits outstanding performance on thin

blood smears; however, its efficacy with thick blood smear images

and those obtained using various staining processes and hardware

has yet to be evaluated. Grad-CAM interpretability offers valuable

insights into model attention; however, further comprehensive

explainability approaches should be devised to align with expert
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medical evaluation protocols. The system is unable to aggregate

clinical metadata, including patient symptoms and travel history,

which could enhance diagnostic clarity and accuracy. Subsequent

research will enhance the model’s capacity to operate under

authentic healthcare conditions by systematically incorporating

medical data from diverse healthcare facilities globally. The

system’s practical application will be improved as the architecture

includes support for thick smear imaging and various staining

techniques. The diagnostic efficacy of the system can be enhanced

by integrating clinical metadata with multiple learning

methodologies. The model will undergo optimization to facilitate

deployment in mobile and embedded devices, hence enabling

diagnostic capabilities for telemedicine applications. Future

research will investigate the integration of advanced interpretative

frameworks, such as SHAP or LIME, to provide transparent clinical

decision support for medical personnel.
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APPENDIX

APPENDIX A: SUMMARY OF NOTATION
TABLE A1 Definitions of symbols and variables used in Section 3.3
(Hybrid CapsuleNet).

Symbol Description

x
F

Wi, Wij

bi
ui

Input image
Final convolutional feature map
Weight matrices for capsule transformations
Bias term for convolutional feature extraction
Output vector of the primary capsule i

uj ij Predicted output of capsule i to capsule j

cij Coupling coefficient between capsule i and j

bij Routing logit (log prior) between capsules i and j

Sj Input to capsule j before non-linearity

vj Output vector of capsule j after squash function

N Number of capsules in the lower layer

C Total number of classes

y ∈ RC Ground truth one-hot encoded class label

ŷ ∈ RC Predicted class probability distribution

·k k Vector norm (magnitude)

m+, m- Margin thresholds for capsule loss

l Down-weighting factor for negative margin loss

g Focusing parameter in focal loss

a1 to a4 Weights for loss function components

x̂ Reconstructed image from decoder

z, ẑ Regression target and prediction
F
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