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Gut microbiota and metabolite
features in NSCLC nude mouse
models of subcutaneous tumor
and leptomeningeal metastasis:
a microbiome-metabolome
combined analysis
Yang Du, Chengjuan Fan, Xiaowei Song, Chong Teng,
Zhichao Zhang, Jing Zhang, Tianjiao Zhao and Tao Xin*

Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
Background: The incidence and mortality rates of lung cancer are both elevated.

In lung cancer, leptomeningeal metastasis (LM) is a serious consequence.

Patients suffering from LM have severe symptoms and a short survival time.

Numerous studies have shown a connection between the prognosis of lung

cancer and the composition of the gut microbiota. However, Current knowledge

regarding the gut microbiota and metabolites in lung cancer patients with LM, as

well as their potential impacts on LM pathogenesis, remains remarkably limited.

Method: We established a mouse model of LM from lung cancer and a

subcutaneous metastatic model, using wild-type mice as controls. Each of the

three groups above contained six mice. We examined the fecal microbiota and

metabolites of three groups of mice utilizing 16S rRNA gene sequencing and

liquid chromatography-mass spectrometry (LC-MS) technologies. Conducting

correlation analysis on microbiome and metabolome data concurrently to

identify significant relationships.

Result: Mice with LM had a different gut microbiota and metabolite composition

than wild-type and subcutaneous metastatic mice; the LM group had a higher

ratio of Firmicutes to Bacteroidetes. Differential metabolites are primarily seen in

pathways such as Nicotinate and nicotinamide metabolism, Tryptophan

metabolism; Association analysis reveals that some changes in gut microbiota

are linked to metabolites, such as a positive association between Eubacteria and

N-Acetylsorotonin.

Conclusion: Some microbiota and metabolites may act as biomarkers for LM,

controlling gut microbiota and metabolites or giving a novel option for research

into lung cancer leptomeningeal metastases.
KEYWORDS

lung cancer, leptomeningeal metastasis, gut microbiota, metabolite lung
cancer, metabolite
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Introduction

Lung cancer is among the most prevalent malignant neoplasms,

distinguished by the greatest incidence and fatality rates globally.

Lung cancer is categorized into two primary types: non-small cell

lung cancer (NSCLC) and small cell lung cancer. NSCLC constitutes

almost 85% of cases. Leptomeningeal metastasis (LM) is a severe

complication of NSCLC, characterized by significant symptoms and

the worst prognosis. The prevalence of leptomeningeal metastases

in NSCLC can range from 9% to 26% (Mack et al., 2016; Thakkar

et al., 2020). Because the blood-brain barrier (BBB) blocks most

therapeutics, NSCLC patients with leptomeningeal metastases have

a median overall survival of only 3.6–11 months (Umemura et al.,

2011; Liao et al., 2015). Our center specializes in diagnosing and

treating lung cancer with leptomeningeal metastases. We intend to

investigate gut microbiota and metabolome attributes by developing

a mouse model of leptomeningeal metastases and screening for

potential biomarkers.

Emerging evidence highlights associations between gut

microbiota and disease diagnosis, therapeutic response, and

clinical outcomes. The gut microbiome can influence human

health and affect physiology through its influence on pathogen

resistance, gut barrier maintenance, metabolism, immunity, and

neural signaling. In particular, gut–brain and gutliver axes have

already been investigated, while the relation between gut–lung axis

has been newly suggested (Anand and Mande, 2018), in particular

the hypothesis that changes in the gut microbiota could influence

the lung microbiota, and vice versa (Botticelli et al., 2020).

Numerous investigations have demonstrated the connection

between gut microbiota and hematological cancers, lung cancer,

and colorectal cancer (Nawfal et al., 2023; Peppas et al., 2023;

Delzenne et al., 2024). Despite growing evidence of gut microbiota’s

role in primary lung cancer, research on its association with LM

remains relatively insufficient. Studies have shown that the gut

microbiota can influence neurogenesis, myelination, dendritic

morphology, microglia morphology, BBB structure and

permeability, synapse structure and function (Yassin et al., 2025).

Studies have shown that supplementing mice with Lactobacillus

plantarum can enhance the integrity of the BBB (Dhaliwal et al.,

2018).Supplementation with Clostridium butyricum can reduce

neuronal damage and increase BBB permeability (Li et al., 2017).

Some gut bacterial metabolites, such as butyric acid and propionic

acid, enhance the integrity of the epithelial barrier by promoting

intercellular tight junctions (Peng et al., 2009; Tong et al., 2016). So

we believe that there may be a correlation between gut microbiota

and the occurrence and development of LM.

Additionally, research indicates that the gut microbiota may

serve as a biomarker for the effectiveness of tumor immunotherapy

(Ning and Hong, 2024). Zheng et al. created a predictive model

based on operational taxonomic units (OTUs) for early lung cancer

diagnosis by sequencing, even impacting the treatment of cancers

and disorders (Zheng et al., 2020). However, gut microbiota

differences alone cannot fully explain their mechanistic link to

cancer progression or downstream metabolic effects (Botticelli

et al., 2020). Notably, gut microbiota-derived metabolites (e.g.,
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short-chain fatty acids, bile acids) can systemically influence

tumor metabolism and immune responses, suggesting potential

crosstalk between microbial and metabolic signatures in

leptomeningeal metastasis.

Metabolism plays a key role in cancer initiation and

progression. One of the earliest recognized metabolic changes is

the increased glucose uptake by tumors (Schmidt et al., 2021).

Cancer and cancer therapies can also alter metabolism at the whole-

body level and interact with the metabolic effects of diet and exercise

in complex ways that may affect cancer outcomes and impact a

patient’s quality of life (Schmidt et al., 2021). In recent years, there

has been a renewed interest in understanding how altered

metabolism contributes to cancer pathogenesis. Many factors,

such as tumor hypoxia, stromal composition, immune cell

infiltration, and genetic alterations, play critical roles in defining

cancer cell metabolism. Thus, we integrated metabolomics to

examine the features of leptomeningeal metastases from several

angles, based on investigating gut microbiota.

We established leptomeningeal metastasis and subcutaneous

tumor models using BALB/c nude mice, with wild-type mice as

controls. Fecal samples were collected from three groups of mice

for microbial and metabolomic sequencing to investigate the

distinctive microorganisms and metabolites associated with lung

cancer meningeal metastasis in comparison to wild-type and

subcutaneous tumor mice.
Materials and methods

Construction of tumor models and sample
collection

18 SPF-grade 7-week-old BALB/c nude mice (Liaoning

Changsheng Biotechnology) were randomly allocated into three

groups (n=6/group, 3 males and 3 females per group): healthy

controls (N), subcutaneous tumor models (P), and LMmodels. PC9

human lung adenocarcinoma cells cultured in RPMI-1640 with 10%

FBS were harvested at 1×107 cells/mL for subcutaneous injection

(200 mL) into the right axillary region under 2% isoflurane

anesthesia, with successful modeling confirmed by palpable

tumors (>100 mm³) within 1 week. For the LM model, luciferase-

labeled PC9 cells (1 × 106 cells/ml) were injected into the

cerebellomedullary cistern (10 mL). At 5 days post-injection,

bioluminescence signals were detected by a small animal real-time

imaging system (PerkinElmer, USA), confirming successful tumor

implantation. After confirming the successful establishment of the

model, fresh feces excreted by mice were collected at 19:00 (1 hour

after the end of the daily light cycle). To induce defecation, sterile

cotton swabs were gently pressed on the mice’s lower abdomen

along the intestinal path. Fresh fecal samples (approximately 200

mg/mouse) were then collected, immediately flash-frozen in liquid

nitrogen, and stored at -80°C until further processing. The animal

experimental part of this study has been approved by the Ethics

Committee of the Second Affiliated Hospital of Harbin Medical

University. Ethical approval number: YJSDW2024-125.
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Microbial DNA extraction and sequencing

Total genomic DNA was extracted from fecal samples using the

TGuide S96 Magnetic Bead DNA Extraction Kit (Tiangen Biotech,

Beijing, China) following the manufacturer’s protocol. DNA

concentration and purity were determined using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, USA), while integrity

was verified by 1% agarose gel electrophoresis. The hypervariable V3-

V4 region of bacterial 16S rRNA gene was amplified using universal

primers (5 ’-ACTCCTACGGGAGGCAGCA-3 ’) and (5 ’-

GGACTACHVGGGTWTCTAAT-3’). PCR products were purified

using the OMEGA DNA Clean-Up Kit and subsequently recovered

by gel extraction with the Monarch DNA Gel Extraction Kit. Finally,

paired-end sequencing was performed on the Illumina NovaSeq 6000

platform according to standard protocols.
16S rRNA sequencing result data
processing

Concatenate the raw data (FLASH, v1.2.11), filter the quality of

the concatenated sequence (Trimmomatic, v0.33), apply the DADA2

method in QIIME2 for denoising, concatenate the paired-end

sequences, and eliminate sequences with ambiguous bases, single

base homologous regions, and chimeras to ensure precise impurity

removal and result accuracy (Magoč and Salzberg, 2011).

Cluster the sequences at a 97% similarity threshold and

categorize them according to operational taxonomic units (OTUs)

(USEARCH, v10.0). Employing 0.005% of the total sequencing

sequences as a criterion to filter OTUs, each deduplicated

sequence produced following DADA2 quality control is

designated as Amplification Sequence Variants (ASVs).

The VennDiagram package in R software was utilized to

compute and illustrate Venn diagrams, effectively presenting the

distinct and common numbers of microorganisms across the three

groups, so intuitively depicting the overlap of characteristics among

the samples.

Microbial community composition was analyzed at multiple

taxonomic levels (phylum, family, and genus) using QIIME2, with

results visualized as stacked bar plots. Alpha diversity (Chao1

richness and Shannon diversity indices) was calculated in QIIME2

and plotted using ggplot2 (R). Beta diversity was assessed based on

Bray-Curtis dissimilarity matrices, visualized through principal

coordinates analysis (PCoA) using the ape package (R). Linear

discriminant analysis effect size (LEfSe) was performed using the

Python LEfSe package to identify differentially abundant taxa

between groups. Only taxa meeting both criteria (p<0.05 and log10

LDA score ≥3.5) were considered statistically significant.
LC/MS non-targeted metabolomics
analysis

Firstly, extract metabolites, The main steps for metabolite

extraction include adding an appropriate volume of extraction
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solution and magnetic beads for grinding and sonication. After

centrifugation and collection of the supernatant, vacuum drying is

performed. Subsequently, an appropriate amount of extraction

solution is added for reconstitution before analysis on

the instrument.

The LC/MS system for metabolomics analysis is composed of

Waters Acquity I-Class PLUS ultra-high performance liquid

tandem Waters Xevo G2-XS QTof high resolution mass

spectrometer. The column used is purchased from Waters

Acquity UPLC HSS T3 column (1.8um 2.1*100mm). Positive ion

mode: mobile phase A: 0.1% formic acid aqueous solution; mobile

phase B: 0.1% formic acid acetonitrile. Negative ion mode: mobile

phase A: 0.1% formic acid aqueous solution; mobile phase B: 0.1%

formic acid acetonitrile.

The raw data collected using MassLynx V4.2 was processed

using Progenesis QI software for peak extraction, peak alignment,

and other data processing operations. Identification is performed

using the Progenesis QI software with the online METLIN database,

public databases, and a self-built database. Theoretical fragment

identification is also conducted.

After metabolite qualitative and quantitative analysis, data

quality assessment, annotation analysis, differential expression

analysis, and functional enrichment are performed.
Statistical analysis

SPSS software (v 26.0) and GraphPad Prism software (v 9.2.0)

Statistical analysis and visualization of data using R-studio software (v

3.3.1) Chemical processing was performed using QIIME (v 1.6.0) for

bioinformatics analysis. Student’s t-test and Fisher’s exact test were

used to compare sample baseline data. Adonis analysis, Wilcoxon

ranksum test, and Kruskal–Wallis test were used to compare the

differences between microbial groups. The metabolomics data were

processed and analyzed using the Progenesis QI v2.3 software.

Student’s t-test and fold change analysis were used to compare

metabolites between groups. Pearson correlation coefficient was

used to measure the degree of linear correlation between two

metabolites. The Spearman rank correlation test was used to assess

the correlation between microorganisms and metabolites. p<0.05 was

considered as statistically significant.
Result

Microbial characteristics of different
groups

Eighteen fecal samples were collected, comprising six samples

from each of the three groups: leptomeningeal metastasis (LM),

subcutaneous tumor (P), and control (N). The sequencing results

revealed 4833 unique OTUs, with 1625, 2177, and 1691 identified in

the N, P, and LM groups, respectively (Figure 1A). We illustrated

the shared and distinct OTUs of microbial communities among

three groups using a Venn diagram (Figure 1B).
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The microbial community structure was analyzed in each group,

and the top 15 microbiota with the highest proportions were

identified based on their diversity. Bacteroidetes and Firmicutes

represent the predominant phyla across the three groups. The

tumor group shows increased levels of Proteobacteria and

Desulfobacter relative to the N group, as demonstrated in Figure 1C.
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At the family level, Muribaculaceae showed similar abundance

across all groups, while Lactobacillus was more abundant in the

tumor group compared to the N group (2.4%) and was also higher

in the LM group (22.8%) than in the P group (12.2%). The control

group demonstrated a greater abundance of Bacteroidaceae,

Rikenellaceae, and Lachnospiraceae in comparison to the LM and
FIGURE 1

Intestinal flora community structure. (A) Number of OTUs in different groups. (B) The Venn diagram showed each group of unique and common
OTUs. (C-E) At the level of phylum (C), species (D), and genus (E), the top 15 representative species and their proportion in the three groups.
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P groups. The N:P:LM ratio for Bacteroidaceae was 15.9:14.0:3.8,

while for Rikenellaceae it was 13.3:6.4:10.7. The N:P:LM ratio for

Lachnospiraceae is 10.6:4.8:5.3. (Figure 1D). At the genus level,

Ligullacoccus (14.0%) and Alistipes (10.6%) are the dominant

bacterial genera in the LM group, whereas Bacteroides (14.0%)

and Muribaculum (9.4%) are the most prevalent in the P group.

Group N displays the highest abundance of Muribaculum (16.0%),

Bacteroides (15.9%), and Alistipes (13.3%). (Figure 1E).

Alpha diversity reflects the richness and variety of species

present within individual samples. The Chao1 index measures

species richness and counts species, while the Shannon and

Simpson indices assess species diversity. The Chao1 index

indicates no significant differences in community richness

between the groups. The Shannon and Simpson indices indicate

variations in species diversity among the groups; however, these

differences lack statistical significance, as shown in Figures 2A-C.

Beta diversity was used to examine the variations in the

composition of different gut microbiota communities. This

research assessed beta diversity using PCoA based on the
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Bray-Curtis distance matrix, with inter-group differences

examined through PERMANOVA. The results demonstrated

significant differences among the three groups, with statistical

significance achieved (P = 0.001), as shown in Figure 2D.
Analysis of differences in intestinal
microbiota

Linear discriminant analysis (LDA) effect size (LEfSe) was used

to identify key microbial taxa. When the LDA score surpasses 3.5, a

total of 38 species exhibit significant differences among the three

groups. The groups N, P, and LM were characterized by seven, two,

and two distinct genera and species, respectively. Group N:

Bacteroides (LDA=4.79, P=0.011), Muribaculum (LDA=4.72,

P=0.042), unclassified Lachnospiraceae (LDA=4.03, P=0.010),

Parabacteroides (LDA=3.93, P=0.015), Lachnoclostridium

(LDA=3.74, P=0.045), unclassified Ruminococcaceae (LDA=3.52,

P=0.005), Monoglobus (L Group P: Desulfovibrio (LDA=3.90,
FIGURE 2

Alpha diversity and beta diversity. (A) Chao1 index between three groups. (B) Shannon index between three groups. (C) Simpson index between
three groups. (D) PCoA shows differences between individuals or groups. The abscissa (PC1) and the ordinate (PC2) are the two main coordinates
that explain the greatest difference between samples.
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P=0.006), uncultured rumen bacterium (LDA=3.84, P=0.017).

Group LM: Ligilactobacillus (LDA=4.79, P=0.026), Lactobacillus

(LDA=4.61, P=0.005). Refer to Figure 3.
Analysis of differential metabolites across
three groups

This study was based on the LC-QTOF platform and involved

metabolomics qualitative and quantitative analysis of 18 samples.

By performing PCA on samples, it is possible to gain preliminary

insights into the overall metabolic differences among sample groups

and the variability within each group (Figure 4A). Based on the

variable importance (VIP) in the projection, filter criteria are

implemented using FC=2, P=0.05, and VIP=1 as threshold

parameters to screen out differential metabolites between each

two groups. The results are shown in Table 1.

The significant abundance of metabolites identified via non-

target metabolomics requires the application of orthogonal

projections to latent structures discriminant analysis (OPLS-DA)

to enhance the extraction of information from sequencing results.

The results demonstrate notable variations in metabolic processes

among different groups. Refer to Figures 4B-D.
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To assess the reliability of the OPLS-DAmodel, a permutation test

is conducted. In this test, the sample groups are randomly shuffled, and

the OPLS-DA model is built using the permuted groups. The R2Y and

Q2Y values are calculated for each permutation. This process is

repeated multiple times. If the slope of the Q2Y regression line is

positive, it indicates a meaningful model. If the blue dots are generally

located above the red dots, it suggests good independence between the

modeling training set and the testing set. (Figures 4E-G).

Subsequently, we will analyze the fold change variations in the

quantitative data of metabolites across each group. The three sets of

data will be compared pairwise, and the logFC results for the top 10

upregulated and downregulated metabolites will be presented, as

illustrated in Figure 5.

Metabolites interact with each other in biological systems,

forming different pathways. Annotate differential metabolites

using the KEGG database, select the top 20 entries with the most

annotated differential metabolites in the pathway, and draw a

summary bar chart and point graph. Figure 6.

The pathways predominantly enriched by the differential

metabolites in pairwise comparisons are as follows: LM vs N:

ABC transporters, Alanine, aspartate and glutamate metabolism,

Arginine and proline metabolism, Tyrosine metabolism, Neomycin,

kanamycin and gentamicin biosynthesis. P vs N: Purine
RE 3FIGU

LEfSe analysis. (A) Histogram of LDA value distribution. (B) Cladogram.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1616695
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Du et al. 10.3389/fcimb.2025.1616695
metabolism, Pyrimidine metabolism, Tryptophan metabolism,

ABC transporters. LM vs P: Nicotinate and nicotinamide

metabolism, Insect hormone biosynthesis, Tryptophan

metabolism. Among them, the pathway ABC transporters,

Alanine, aspartate and glutamate metabolism, Arginine and

proline metabolism, Tryptophan metabolism, Purine metabolism

and Pyrimidine metabolism are associated with the occurrence and

development of lung cancer. Previous studies have shown that the

Arginine and proline metabolism pathway is closely related to the

development of tumors (Wang et al., 2024). We will compare the

metabolites involved in this metabolic pathway. Refer to Figure 7.

The metabolite L-Glutamate in this pathway was significantly lower

in the tumor group than in the control group, suggesting that it may

be due to excessive consumption by tumor growth. N(omega)-

Hydroxyarginine serves as a precursor in nitric oxide synthesis,
Frontiers in Cellular and Infection Microbiology 07
while carbon monoxide is closely associated with tumor progression

(Reddy et al., 2022). Consequently, these differential metabolites

may assist in identifying LM in lung cancer.
Cross-correlation analysis between the
microbiota and metabolites

Conduct a correlation analysis between the microbiome and

metabolome results to determine the presence of any correlation

between the two variables. The association between species diversity

and metabolites in the sample was assessed using the Pearson

correlation coefficient. Identify the top 15 differential metabolites

and microorganisms according to the absolute value of log2FC, and

subsequently create a correlation heatmap, as illustrated in

Figures 8A-C. In comparison to the N group, the LM group

exhibited significant variations in microbial communities, including

Bacteroides, Muribaculum, and unclassified Ruminococcaceae. These

communities were positively correlated with the metabolite

oleandomycin and negatively correlated with 6-hydroxytryprotatin

B and 5-methylfurfur. Desulfovibrio exhibits a positive correlation

with 6-Hydroxytryprotatin B. In contrast to the subcutaneous tumor

group, the differential metabolite N-acetylseletonin in the

leptomeningeal metastatic group exhibits a positive correlation with

the microorganism Eubacteria. Lachnoclostridium is associated with
FIGURE 4

Principal component analysis. (A) Score plot of the PCA model in three models. (B-D) OPLS-DA score chart shows the difference in metabolites
between groups. The abscissa represents the variation between groups, and the ordinate represents the variation within groups. (E-G) Comparison
of the true model parameters in the validation test and those of permutated models. (B, E) LM vs N. (C, F) P vs N. (D, G) LM vs P.
TABLE 1 The number of differential metabolites in each group.

Group DEMs_total DEMs_up DEMs_down

LM vs N 452 226 226

P vs N 947 526 421

LM vs P 282 139 143
(FC=2 Pvalue=0.05 VIP=1).
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several metabolites, including 6-Hydroxytryprotatin B, 3-Hexenyl

salicylic acid, and 5,10-Methenyltetrahydrofolate.

A correlation network diagram was plotted, with red lines

representing positive correlations, green lines indicating negative

correlations, and dashed lines denoting the classification of

metabolites and microorganisms Figures 8D-F.
Discussion

The findings revealed distinct differences in the gut microbiota

composition and metabolite profiles among lung adenocarcinoma

patients with leptomeningeal metastasis (LM), those with

subcutaneous metastasis (P), and those in the wild-type group

(N). By integrating dual-omics approaches, the underlying

pathogenesis was investigated and potential biomarkers associated

with leptomeningeal metastasis were identified in this study.

In terms of microbial diversity, the P and LM groups presented

marginally greater species richness than did the N group. At the

phylum level, Bacteroidetes was the most abundant genera across all

three cohorts, followed by Firmicutes. These two phyla constitute the

core microbial communities in the gut, playing pivotal roles in

maintaining intestinal homeostasis, and their dysregulation has been

linked to numerous diseases (Abdallah Ismail et al., 2011; Lin et al.,

2017). Previous studies have demonstrated that alterations in the

Firmicutes-to-Bacteroidetes (F/B) ratio are correlated with multiple
Frontiers in Cellular and Infection Microbiology 08
pathological conditions. Elevated F/B ratios are frequently associated

with metabolic disorders such as obesity and hypertension (Magne

et al., 2020; Moon et al., 2020), whereas Firmicutes contribute to

intestinal barrier stabilization through short-chain fatty acid (SCFA)

synthesis (Mantovani et al., 2024). Conversely, reduced F/B ratios may

compromise barrier integrity and exacerbate inflammatory responses

as observed in inflammatory bowel disease (Yan et al., 2022).

Notably, the LM group presented a significantly greater F/B

ratio than both the P and N groups did—a finding that contradicts

previous reports on breast cancer (An et al., 2023). We propose that

metabolites derived from Firmicutes, particularly butyrate, may

exert tumor-suppressive effects. Consequently, the tumor

microenvironment might trigger a compensatory increase in

Firmicutes abundance to counteract malignant progression.

Additionally, the increase in the F/B ratio in this study was

primarily attributed to a significant reduction in Bacteroidetes in

the LM group. A study investigating gut microbiota distribution in

normal and anxious populations revealed a significant association

between decreased Bacteroidetes abundance and anxious mood

(Mason et al. , 2020). Therefore, we presume that the

establishment of the LM model induces anxious behavior in mice,

which aligns with the observed reduction in their daily activity.

Alpha diversity exhibited marginal differences among the three

groups; however, these differences lacked statistical significance (p >

0.05). This metric primarily reflects species richness (e.g., the Chao1

index) and evenness (e.g., the Shannon index). The lack of statistical
FIGURE 5

LogFC results of upregulation and downregulation of the top 10 metabolites in the experimental group compared to the control group. (A) LM vs N.
(B) P vs N. (C) LM vs P.
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significance in alpha diversity is likely attributed to two primary

factors. First, the relatively small sample size of mice in this

experiment may limit the power. On the other hand, the lack of

mature T-cell immunity in nude mice may lead to insufficient

activation of tumor-induced immune-inflammatory pathways,

thereby weakening the regulatory effect on the gut microbiota. In

contrast, beta diversity, analyzed via principal coordinate analysis

(PCoA) on the basis of Bray–Curtis dissimilarity, revealed distinct

clustering patterns among the groups. The PCoA plot clearly

revealed separation of the microbial communities across the three

cohorts, with significant intergroup dissimilarity (p = 0.001),

underscoring compositional divergence at the taxonomic level.

The Lactobacillaceae family exhibited significantly greater

abundance in the LM and P groups than in the wild-type
Frontiers in Cellular and Infection Microbiology 09
group. Lactobacillus (a genus within Lactobacillaceae) is a

beneficial commensal known to inhibit pathogenic bacterial

colonization, enhance mucosal immunity, and exert protective

effects against colorectal carcinogenesis (Hendler and Zhang,

2018; Eslami et al., 2019; Han et al., 2021). A study on lung

cancer indicated that a greater abundance of Lactobacillus in the

oral cavity was significantly associated with a higher lung cancer

risk (Hosgood et al., 2020), which aligns with the findings of

this research.

Differentially abundant metabolite analysis revealed that,

compared with the P group, the LM group presented significant

alterations in metabolic pathways, including tryptophan metabolism,

nicotinic acid and nicotinamide metabolism, and steroid hormone

biosynthesis. The key enrichedmetabolites in these pathways included
FIGURE 6

Enriched differential metabolites in the KEGG pathway. (A-C) The proportion of differentially expressed metabolites annotated by various KEGG
pathways is illustrated in a bar chart. (D-F) The enrichment factor is represented by the horizontal axis, while the name of the metabolic pathway is
represented by the vertical axis. The enrichment factor is the ratio of differential metabolites annotated to a specific pathway among differential
metabolites to the ratio of metabolites annotated to that pathway among all metabolites.
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N-acetylserotonin (NAS), 6-hydroxymelatonin, xanthurenic acid, 6-

hydroxypseudooxynicotine, and b-D-ribosylnicotinate.
NAS, the direct biosynthetic precursor of melatonin, has been

implicated in cancer progression. Studies have demonstrated that

an elevated NAS/melatonin ratio promotes breast cancer cell

survival and metastasis by mimicking brain-derived neurotrophic

factor (BDNF) through TrkB receptor activation (Jang et al., 2010;

Anderson, 2019a; Anderson, 2019b). This mechanism is

particularly relevant in HER2+ breast cancers, where BDNF-

mediated phosphorylation of TrkB-HER2 heterodimers

potentiates brain metastasis (Choy et al., 2017). A clinical study

has shown that NSCLC patients with increased BDNF/TrkB

expression in tumor tissues have significantly shorter survival

than those with low expression (Okamura et al., 2012).

Additionally, research indicates that high BDNF/TrkB expression

in NSCLC is associated with lymph node metastasis and vascular

invasion (Zhang et al., 2010). Furthermore, patients with increased

BDNF levels in primary lung adenocarcinoma might have a higher

risk of developing brain metastasis, and central nervous system

metastasis showed an elevated expression of BDNF compared to

their matched primary lesions. The results showed that BDNF

might drive an immunosuppressive tumor microenvironment

(TME) by reeducation of tumour-associated macrophages

(TAMs) toward a pro-tumorigenic M2 phenotype, particularly in

brain metastasis (Yu et al., 2022). These findings position NAS as a

potential biomarker for LM risk stratification in NSCLC, although

further validation is needed to elucidate its precise role in lung

cancer pathogenesis.

Xanthurenic acid has been implicated in intercellular signaling

within the brain, although its role in oncogenesis remains poorly

characterized (Maıt̂re et al., 2024). The elevated levels observed in
Frontiers in Cellular and Infection Microbiology 10
the LM cohort may reflect tumor-host metabolic crosstalk,

potentially driven by leptomeningeal tumor cells modulating

neurotransmitter-like signaling pathways.

b-D-Ribosylnicotinate, a niacin derivative, serves as an

intermediate in the conversion of niacin to nicotinamide—a critical

precursor for nicotinamide adenine dinucleotide (NAD+)

biosynthesis via the salvage pathway. This pathway is governed by

nicotinamide phosphoribosyltransferase (NAMPT), an enzyme that

is overexpressed in diverse malignancies, including neuroendocrine

tumors, lymphomas, and adrenocortical carcinomas (Kozako et al.,

2019; Sawicka-Gutaj et al., 2022; Nomura et al., 2023). Preclinical

evidence has demonstrated that NAMPT inhibition induces rapid

cytotoxicity in small cell lung cancer (Nomura et al., 2023). The

significant accumulation of b-D-ribosylnicotinate in leptomeningeal

metastases raises a critical hypothesis; pharmacologically limiting its

biosynthesis may disrupt NAD+-dependent tumor cell survival

mechanisms. This therapeutic strategy warrants systematic

exploration in NSCLC-associated LM models.

Correlation analysis revealed a significant positive association

between the abundance of the metabolite NAS and that of the gut

microbiota genus Eubacterium (P = 0.03). Notably, Eubacterium

has been identified as a proinflammatory pathobiont capable of

promoting colitis-associated colorectal carcinogenesis via NF-kB
activation (Wang et al., 2021). Research indicates that TrkB

participates in NF-kB signaling via the ARMS protein subsequent

to its interaction with BDNF (Sniderhan et al., 2008). We

hypothesize that NAS and Eubacterium may cooperatively

amplify NF-kB-driven transcriptional programs, fostering a

protumorigenic microenvironment through dual mechanisms.

A comparative analysis of the gut microbiota and metabolites

between subcutaneous lung cancer xenografts and LM models was
FIGURE 7

Distribution of differential metabolites related to Arginine and proline metabolism pathway in each group. *p < 0.05, **p < 0.01, ns: not signisicent,
p ≥ 0.05.
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FIGURE 8

Cross-correlation analysis between microbiota and metabolites. (A-C) Heat map of correlation analysis between metabolites and microorganisms.
(D-F) Network diagram illustrating the investigation of metabolite-microbe associations. The solid line illustrates the association between metabolites
and microbial genera, with positive correlations depicted in red and negative correlations in green. The dashed line delineates the categorization of
metabolites and microorganism. *p < 0.05, **p < 0.01.
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conducted in this study. To establish a reproducible LM model,

fecal samples from nude mice were prioritized for sequencing

because of their utility in controlled experimental settings. While

environmental variables could be further standardized, murine-

derived sequencing data inherently lack direct translational

equivalence to human pathophysiology. The biological and

clinical relevance of the identified microbial and metabolic

signatures necessitates functional validation in patient cohorts

and mechanistic studies to confirm their role in LM pathogenesis.
Conclusion

This study employed 16S rRNA sequencing and LC/MS to

profile gut microbiota and fecal metabolites in nude mouse

models of lung adenocarcinoma. Comparative analysis revealed

significant divergence in microbial composition and metabolic

profiles in the LM group relative to both N and P cohorts.

Correlation networks demonstrated associations between specific

microbial taxa (e.g., Eubacterium) and dysregulated metabolites

(e.g., N-acetylserotonin, b-D-ribosylnicotinate), suggesting

microbiota-metabolite crosstalk in LM pathogenesis. Targeted

modulation of these microbial and metabolic signatures could

unveil novel therapeutic strategies for LM prevention, early

diagnosis, and precision treatment, addressing a critical unmet

need in lung oncology.
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