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Background: Urosepsis is a subset of sepsis with a high mortality rate. Currently,

the ranking of urosepsis in sepsis etiology is on the rise. Our goal is to use

machine learning (ML) methods to construct and validate an interpretable

prognosis prediction model for patients with urosepsis.

Method: Data were collected from the Intensive Care Medical Information Mart

IV database version 3.1 and divided into a training cohort and a validation cohort

in a 7:3 ratio. Random Forest (RF), Lasso, Boruta, and eXtreme Gradient Boosting

(XGBoost) were used to identify the most influential variables in the model

development dataset, and the optimal variables were selected based on

achieving the l1se value. Model development includes seven machine learning

methods and ten cross validations. Accuracy and Decision Curve Analysis (DCA)

were used to evaluate the performance of the model in order to select the

optimal model. Internal validation of the model included area under the ROC

curve (AUC), sensitivity, specificity, Matthews correlation coefficient, and F1-

score. Finally, SHapley Additive exPlans (SHAP) was used to explain ML models.

Result: A total of 1389 patients with urosepsis were included. Optimal predictors

were selected through statistical regularization, yielding a parsimonious set of 9

variables for model development. The performance of XGBoost model is the best

and the accuracy of XGBoost was 0.818, with an AUC of 0.904 (95% CI: 0.886-

0.923). The internal validation accuracy was 0.797, AUC was 0.869 (95% CI:

0.834-0.904), sensitivity was 0.797, specificity was 0.752, Matthews correlation

coefficient was 0.597, and F1-score was 0.791. This indicates that the predictive

model performs well in internal validation. SHAP-based summary graphs and

diagrams were used to globally explain the XGBoost model.

Conclusion:ML demonstrates strong prognostic capability in urosepsis, with the

SHAP method providing clinically intuitive explanations of model predictions.

This enables clinicians to identify critical prognostic factors and personalize
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treatments. While our model achieved high predictive accuracy, its retrospective

derivation from a single-center database necessitates external validation in

diverse populations, which should be addressed through future prospective

multicenter studies to establish clinical generalizability.
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1 Introduction

Urosepsis is caused by infection of the genitourinary system,

which accounts for about 9% to 31% of sepsis cases, and is one of

the worst prognosis diseases for patients with urinary tract

infections (Porat et al., 2025). For certain specific populations, the

case fatality rate of urosepsis is approximately 25%-60%,

highlighting the significant clinical importance of improving the

early diagnosis and management of urosepsis (Li et al., 2024a).

Considering the high incidence rate and mortality of urosepsis, it is

necessary to establish a reliable and effective prognosis model.

Several risk prediction models for urosepsis patients have been

widely studied and established. Villanueva-Congote (Villanueva-

Congote et al., 2024) et al. have shown that the Neutrophil-to-

Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR)

may be valuable prognostic indicators for predicting the risk of

urosepsis. They can help clinicians with early risk stratification,

timely intervention, and resource allocation. Croghan (Croghan

et al., 2023) et al. conducted a prospective multi-institutional study,

recording the baseline and continuous ureteroscopic intrarenal

pressure (IRP) of patients during ureteroscopy (URS) surgery,

and found that there seemed to be a relationship between

elevated IRP and postoperative urosepsis. Canat (Canat et al.,

2020) et al. found that the elevated level of procalcitonin (PCT)

on the second day after prostate biopsy was a statistically significant

independent predictor of urosepsis. It can be used as an early

biomarker to predict the occurrence of urosepsis after prostate

biopsy. However, the above predictive models are based on

traditional COX regression that suffers from limitations including

its reliance on the proportional hazards assumption, inability to

estimate baseline hazard functions directly, sensitivity to

multicollinearity, and inadequate handling of high-dimensional

data and nonlinear relationships, necessitating more advanced

methods for complex datasets.

In recent years, various machine learning (ML) algorithms, a

method of data analysis that develops algorithms to predict

outcomes by learning from data, have been studied for the early

detection of urosepsis. It is superior to traditional statistical

methods and does not require assumptions about input variables

and their relationship with outputs. The advantage of fully data-
02
driven learning without relying on rule-based programming is that

ML constitutes a reasonable approach. Researchers have

successfully applied a variety of ML paradigms to improve the

generalization ability of models in complex clinical scenarios, such

as Gradient Boosting Decision Trees (GBDT), Random Forests (RF)

and Deep Neural Networks (DNN). These methods further enhance

the interpretability of the model through the pathophysiological

associations revealed by feature importance analysis (Su et al.,

2023). The occurrence of urosepsis after PCNL surgery is one of

the main reasons for the increased mortality. Li (Li et al., 2024b)

et al. collected important preoperative and intraoperative clinical

data of patients and established a model combined with ML

methods that for predicting the occurrence of urosepsis after

PCNL. The results showed that the model had a good predictive

effect on the occurrence of urosepsis after PCNL (AUC = 0.89). In

addition, they also found that the change of platelet counts before

and after surgery was an important predictive factor (Li et al.,

2024b). However, although ML algorithms have performed well in

previous studies, due to the “black box” nature of ML algorithms, it

is difficult to interpret which characteristics of patients are

responsible for a given prediction. In addition, the main result of

the above study is to detect the occurrence of urosepsis, rather than

adverse clinical outcomes. Moreover, the sample size included in

the study is too small, resulting in low clinical credibility.

Therefore, we use large-scale data based on MIMIC-IV

database, to develop a prognosis prediction model for critically ill

patients with urosepsis to improve the reliability of research

conclusions. Our feature selection ensemble—incorporating

Random Forest, Lasso, Boruta, and XGBoost—mitigates

algorithm selection bias by spanning diverse learning paradigms,

thereby generating robust variable rankings essential for clinical

modeling. In addition, to explain the results of the ML model, we

combine advanced ML algorithms based on SHapley Additive

exPlans (SHAP), a popular ML technique for a deeper

understanding of the complex relationship between features and

predictions. In addition to optimizing the predictive performance of

mortality risk in critically ill patients with urosepsis, this study also

provides intuitive explanations that will help clinicians fully

understand how the developed model makes specific predictions

and increase opportunities for early intervention.
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2 Methods

2.1 Source of data

An open and free intensive care database called Medical

Information Mart for Intensive Care IV (MIMIC-IV) version 3.1

(Johnson et al., 2023; Wang et al., 2024b), which contains the latest

version of comprehensive clinical data of patients admitted to Beth

Israel Deaconess Medical Center in Massachusetts from 2008 to

2022. MIMIC-IV contains data on 65000 patients admitted to the

ICU and 200000 patients admitted to the emergency room. The

clinical data in the database include demographic characteristics,

vital signs, imaging examinations, laboratory test results, data

dictionaries and documents containing the codes of the ninth and

tenth editions of the international classification of diseases (ICD-9

and ICD-10, respectively), as well as hourly physiological data

records beside the monitors verified by ICU nurses. The health

information obtained from the MIMIC-IV database could not be

identified, so the informed consent of patients was not required

(Goldberger et al., 2000; Oweira et al., 2018). This study was

approved to extract data from the database for research purposes

(certification number: 58407754). The database has been approved

by the Massachusetts Institute of Technology (MIT) institutional

review board (IRB).
2.2 Study design and population

The study focused on patients with urosepsis who were

subsequently hospitalized and admitted to the ICU for the first

time. According to the definition of Sepsis-3.0, sepsis is defined as

life-threatening organ dysfunction caused by a dysregulated host

response to infection (Ohbe et al., 2024). Organ dysfunction

represents at least two points identified as acute and infection-

related changes in the Sequential Organ Failure Assessment

(SOFA). Urosepsis is sepsis originating from the urogenital tract.

The diagnosis of urosepsis requires both suspicion of sepsis as well

as evidence of a urinary tract infections (UTI). In this study, we

included common types of urinary tract infections, including

pyelonephritis, cystitis, and urinary tract infections. The codes in

ICD-9 and ICD-10 include 590, 595, 599.0 and N30. Patients who

met the following criteria in the database were selected for this

study: [1] first admission to ICU; [2] ICU stay >24 hours; [3] Age

>18 years old; [4] It meets the diagnostic criteria of sepsis 3.0; [5]

There is conclusive evidence of urinary tract infection, such as

positive urine culture. The diagnosis code contains the diagnosis

related to urinary tract infection and has a higher priority than

other infections (Griebling, 2019). In the MIMIC-IV database, ICD-

9 (99591, 99592, and 78552) and ICD-10 (R65.20, R65.21) codes

were used to identify patients with sepsis. Following these criteria,

we screened 1389 patients for the study (Figure 1). The final patient

cohort was allocated to training cohort and validation cohort

according to the ratio of 7:3 through stratified random

partitioning for model establishment.
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2.3 Data extraction

We first obtained the raw data using the Structured Query

language of Navicat Premium software (version 16.3.8), including

sociodemographic characteristics, vital signs, laboratory

parameters, complications, and microbial information

(Supplementary Figure S1) (Yang et al., 2020). We extracted the

following demographic data: age, sex, race, weight, height,

admission route, length of stay in the ICU, and hospital

expiration flag (records of in-hospital deaths in the database) at

the time of first admission to the ICU. Next, the vital signs of

patients in the first 24 hours of ICU stay were collected, including

mean arterial pressure (MAP), heart rate (HR), body temperature

(T), respiratory rate (RR), saturation of peripheral oxygen (SpO2),

urine volume, and then the laboratory parameters in the first 24

hours were collected, including blood routine examination, liver

and kidney function, blood glucose, and arterial blood gas (ABG).

In addition, advanced life support records such as mechanical

ventilation and renal replacement therapy were also recorded. We

removed more than 20% of the variables with missing observations,

such as height and serum albumin level, to promote and ensure the

accuracy of the study. Then, we used the mice and VIM package to

process the missing data. Missing data were completely random.

With the help of the RF algorithm, we performed 5 imputations of

50 iterations for the original missing data and completed the

sensitivity analysis. When combining the characteristics of vital

signs and relevant laboratory parameters, the maximum, minimum,

and average values were used and considered as independent

characteristics to be included in the study.
2.4 Clinical outcomes

The clinical outcome of the current study was 28 days All-Cause

Mortality (ACM). Crucially, the time of death were specified as

occurrences of death within a defined period following admission to

the ICU, rather than merely identifying whether the patient was

deceased at a specific time point.
2.5 Statistical analyses

Shapiro Wilks test was used for the normality test. Continuous

variables with normal distribution were expressed as mean (SD,

standard deviation) and compared with independent samples by T-

test. Non normally distributed variables were expressed as median

(interquartile range) and compared with the Kruskal Wallis test.

Categorical variables were described as percentages and compared

using the Chi-Square test.

In addition, candidate data variables were additionally screened

according to the principle of variable reduction to determine

whether they were included in the model (Figure 2) (Venkatesh

et al., 2023). RF is a classification algorithm composed of multiple

decision trees. It constructs a machine learning model by randomly
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sampling training data and searching for the optimal segmentation

solution. Each decision tree in the RF was constructed using feature

measures aligned to dataset attributes (Farhadian et al., 2020; Shi

et al., 2023), effectively evaluating the importance of each feature

(Nachouki et al., 2023). Lasso can select variables through a series of

parameters and reduce the complexity of the model, thus avoiding

overfitting. Lasso’s complexity is controlled by l, which eventually

leads to a model with fewer variables. Compared with the

traditional feature selection algorithm, Boruta is a packaging-
Frontiers in Cellular and Infection Microbiology 04
based method to select features. Its goal is to identify the feature

set with the greatest correlation with the dependent variable, rather

than focusing solely on creating an optimized compact subset for a

particular model (Zhou et al., 2023). By iteratively eliminating low

correlation features, it effectively reduces signal noise and produces

consistent classification performance (Sun et al., 2022b). At the

same time, XGBoost stands out as an influential ensemble learning

technology rooted in the classification tree framework; It combines

low-accuracy classifiers into high-accuracy classifiers through
FIGURE 1

Study cohort selection and model development workflow. From 58,078 urinary tract infection patients in MIMIC-IV, 1,389 met inclusion criteria.
Twelve key features were selected using four machine learning methods (RF, Lasso, Boruta, XGBoost), refined to nine variables through clinical
review. The cohort was split 7:3 (training: testing). Seven ML models were trained; XGBoost demonstrated optimal performance and was validated.
FIGURE 2

Variable Wayne diagram screened by four methods. The important variables and their intersection relationships selected by four feature selection
methods (Boruta, XGBoost, Random Forest (RF), and Lasso) are presented in the form of Venn diagrams. The different colored blocks in the figure
represent different methods and the intersection of color blocks represents the important variables selected by different methods together.
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iterative computation. The resulting ensemble classifier forms a

decision tree interconnected by branches, which is a robust tool for

effective classification (Moore and Bell, 2022). Specifically, we use

RF, Lasso, Boruta, and XGBoost to model the variables of

influencing factors. Then, we rank the variables with non-zero

coefficients according to their impact on the outcome variables

and identify common variables by taking the intersection of

variables selected by all four methods. It should be noted that the

complexity of the Lasso model is governed by the regularization

parameter l, where a 10-fold cross-validation procedure was

implemented to determine the optimal l values (lmin or l1se).
Predictor selection was based on the minimum mean squared error

criterion, as demonstrated in Supplementary Figures S2 and S3

(Kang et al., 2021; Wang et al., 2023).
3 Results

3.1 Baseline characteristics

A total of 1389 patients with urosepsis were included in this

study, including 986 cases in the training cohort and 403 cases in

the internal validation cohort. According to the survival status of

patients within 28 days, patients were divided into the “Survival”

group and the “Non-survival” group. In Supplementary Table S1,
Frontiers in Cellular and Infection Microbiology 05
variables were shown and compared in groups of 28 days. In the

training cohort, the 28-day ACM of patients with urosepsis was

48.07% (n = 986). The internal validation cohort demonstrated a

28-day ACM of 51.12%, representing a statistically significant 3.05

percentage point increase compared to the training cohort. In

univariate analysis, significant differences were observed between

the two groups in terms of age at admission, admission type,

comorbidities such as heart failure, vital signs including SpO2 and

MAP, laboratory parameters including Hct min, WBC min,

Aniongap min, Aniongap max, Bicarbonate min, Urea Nitrogen

min, Urea Nitrogen max, Potassium max, INR min, INR max, Pt

min, Pt max, Ptt min, as well as scores such as SAPSII max, OASIS,

and LODS max. Additionally, indicators such as Plt max,

Bicarbonate max, Creatinine min, and Ptt max also demonstrated

statistical significance between the two groups.
3.2 Features selected in models

Specifically, we use RF, Lasso, Boruta, and XGBoost to model

the variables of influencing factors. Subsequently, we ranked the

variables with non-zero coefficients according to their impact on the

outcome variables and identified important variables by taking the

intersection of variables selected by all four methods. The

importance ranking of variables in the intersection set was shown
FIGURE 3

The variables selected by the four methods were sorted by importance. (A) RF; (B) Lasso; (C) Boruta; (D) XGBoost;.
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in Figure 3. Finally, there are 9 variables used as predictive

indicators, including urea nitrogen minimum, age, urine output

(24-hour average), urine output (6-hour average), alkaline

phosphatase maximum, SpO2, alkaline phosphatase minimum,

MAP, and OASIS.
3.3 Model comparison

Following the identification of key predictive factors through

rigorous feature selection, we developed and evaluated seven ML

models (Bayes, Bayesian Network; DT, Decision Tree; LR, Logistic

Regression; MLP, Multilayer Perceptron; RF, Random Forest; SVM,

Support Vector Machine; and XGBoost, eXtreme Gradient

Boosting) to assess their predictive performance, which

demonstrated robust discrimination ability, with the AUC (95%

CI) of the training cohort being 0.819 (0.792, 0.845), 0.841 (0.814,

0.865), 0.851 (0.828, 0.875), 0.87 (0.847, 0.892), 0.906 (0.887, 0.924),

0.897 (0.877, 0.916), and 0.904 (0.886, 0.923), respectively

(Figure 4). The RF algorithm model showed that the training

cohort has the highest AUC. The XGBoost model was second

only to RF in performance and significantly better than the other

five models The AUC (95% CI) of the validation cohort were 0.817

(0.775, 0.859), 0.779 (0.735, 0.822), 0.856 (0.819, 0.893), 0.781

(0.737, 0.825), 0.835 (0.797, 0.873), 0.847 (0.809, 0.885), 0.869

(0.834, 0.904) (Figure 5). In the validation cohort, the XGBoost

model has the highest AUC, followed by LR, and the RF model has

the fourth highest AUC. The results of the accuracy, precision,

recall, and F1-score of the seven models were shown in Figure 6 and

Supplementary Figure S4. The performance of XGBoost

classification model is better than other models. According to the
Frontiers in Cellular and Infection Microbiology 06
DCA results of the seven prediction models (Figure 7), the net

benefit of RF is greater than that of other models. In this study, the

ROC curve and DCA curve of the training cohort and the validation

cohort were evaluated, and the classification ability, calibration

degree, and clinical application value of each model were

compared. The XGBoost model was the best, although its net

income was slightly less than that of RF.

The XGBoost model demonstrated excellent calibration, with

Brier scores of 0.142 (training) and 0.178 (validation)—well below

the 0.25 random prediction threshold—indicating high

probabilistic precision. The strong calibration performance –

evidenced by Brier score 0.143, calibration slope 1.18, and visual

alignment in Figure 8 – confirms that predicted probabilities

reliably reflect actual mortality risk.

Both RF and XGBoost demonstrated excellent discrimination in

the training cohort (RF AUC=0.906; XGBoost AUC=0.904).

However, RF showed poorer generalization in validation

(AUC=0.835 vs. XGBoost’s 0.869), indicating potential overfitting

from RF’s deep-tree architecture capturing noise in training data.

Complementing this, calibration metrics revealed a similar pattern:

while RF achieved a Brier score of 0.1816 in validation, XGBoost

attained slightly better calibration (Brier=0.1783), confirming its

probabilistic reliability. This enhanced stability stems from

XGBoost’s regularization mechanisms (L1/L2 penalties, column

subsampling), which mitigate overfitting whereas RF lacks

comparable constraints. Thus, XGBoost was selected as the

optimal model, as its superior validation performance (higher

AUC + better Brier score) reflects greater clinical utility for

probability-based decisions, despite marginally lower training

performance. This addition reinforces our selection rationale

through both discrimination and calibration perspectives.
FIGURE 4

Comparison of ROC curves of seven models in the training cohort. Red line =Bayes model, orange line = DT model, green line = LR model, blue line
= MLP model, dark purple line = RF model, bright purple line = SVM model, yellow line = XGBoost model.
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3.4 Interpretability analysis

First, the global interpretability of the baseline model was

studied. The XGBoost model was considered the baseline model

because it was found to be the best-performing model. Feature

importance estimates were based on the overall sample of the
Frontiers in Cellular and Infection Microbiology 07
training cohort. The global importance of each feature we

estimated in SHAP was used to understand the general impact of

various features in all samples (Figure 9).

The SHAP summary graph illustrates the entire distribution of

the impact of each feature on the model output. Color enables us to

understand how changes in eigenvalues affect changes in results.
FIGURE 6

Comparison of the performance of the seven models in the training cohort. Bayes, Bayesian Network; DT, Decision tree; LR, Logistic regression
model; MLP, Multilayer perceptron; RF, Random Forest model; SVM, Support vector machine; XGBoost, eXtreme Gradient Boosting.
FIGURE 5

Comparison of ROC curves of seven models in the internal validation cohort. Red line = Bayes model, orange line = DT model, green line =LR
model, blue line =MLP model, dark purple line =RF model, bright purple line = SVM model, yellow line = XGBoost model.
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FIGURE 8

The calibration curve plot of the seven models. Red line = Bayes model, orange line = DT model, green line = LR model, blue line = MLP model,
dark purple line = RF model, bright purple line = SVM model, yellow line = XGBoost model.
FIGURE 7

Decision curve analysis (DCA) of seven prediction models. The net benefit curve of the prognostic model was shown. The x-axis represents the
threshold probability of intensive care outcome, and the y-axis represents the net benefit. Red line = Bayes model, orange line = DT model, green
line = LR model, blue line = MLP model, dark purple line = RF model, bright purple line = SVM model, yellow line = XGBoost model, black line =
Treat all, gray line = Treat none.
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Purple represents high eigenvalues, while yellow represents low

eigenvalues. The farther a point is from the baseline SHAP value

zero, the greater its impact on the output. This allows a better

understanding of the relationship between features and the SHAP

value (as well as the predicted output). It can be seen from the figure

that urea nitrogen min plays a crucial role compared with other risk

factors (such as MAP and OASIS).

In addition, local interpretation analyzed the results of specific

predictions for individual patients. Figure 10A presents data from a
Frontiers in Cellular and Infection Microbiology 09
urosepsis patient who died during ICU hospitalization. Our

prediction model assigned this patient a mortality probability of

96%. The figure demonstrates that urea nitrogen min, urine output

6hr average, OASIS, anchor age, MAP, and SpO2 contributed to

biasing the prediction towards mortality, whereas alkaline

phosphatase max, alkaline phosphatase min, and uo tm 24hour

average reduced the predicted risk of death. Figure 10B illustrates

data from a surviving urosepsis patient during ICU hospitalization,

specifically highlighting features favoring mortality and their actual
FIGURE 10

Local model explanation by the Shapley Additive Explanations (SHAP) method. (A) Non-survival patient. (B) Survival patient. Each patient is
represented by the x-axis, while the feature contribution is represented by the y-axis: an increased red part for each individual patient represents a
greater probability toward the decision of “Non-survival”.
FIGURE 9

The SHAP method is used to analyze the important features of the XGBoost model. Create a point for each feature attribute value of each patient’s
model, thereby assigning a point to each patient on the line for each feature. Dots are colored according to the eigenvalues of the corresponding
patients and accumulate vertically to depict the density. Purple indicates high eigenvalues (death in this case), while yellow indicates low eigenvalues.
The farther the point is from the baseline SHAP value, the greater the impact on the output.
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measurements. In this case, the model predicted a 31.3% probability

of mortality. The x-axis denotes individual patients, and the y-axis

represents feature contributions. For each patient, the extent of the

red area indicates the magnitude of contribution towards a ‘non-

survival’ prediction.

Beyond interpretability, SHAP results translate into actionable

clinical protocols. For patients with critically elevated urea nitrogen

levels, intensivists should prioritize dynamic renal function

monitoring and initiate early nephroprotective interventions to

mitigate acute kidney injury—a dominant predictor of mortality.

Similarly, sustained depression of mean arterial pressure (MAP)

below clinically significant thresholds warrants immediate

hemodynamic optimization, including fluid resuscitation and

vasopressor escalation when indicated. These data-driven alerts,

derived from SHAP’s quantification of feature contributions, can be

integrated into ICU monitoring systems to proactively guide

bedside decisions, converting model insights into tangible

clinical workflows.
4 Discussion

In recent years, ML algorithms have become increasingly

popular in the medical field, helping clinicians diagnose diseases

faster and more accurately, while achieving personalized treatment

plans. In this study, we first used ML methods to construct a

predictive model for major adverse prognostic events in patients

with urosepsis. It has been proven that ML methods can explain the

key characteristics of patients with urosepsis and establish high-

precision death prediction models. Compared with traditional risk

models, this ML based approach considers the complex interactions

between variables and can dynamically adjust based on individual

patient characteristics.

Our research analyzed demographic data, vital signs, 80

laboratory indicators, advanced life support data, and

comorbidities of patients with urosepsis within 24 hours after

admission. Specifically, we use RF, Lasso, Boruta, and XGBoost to

model the variables of influencing factors. Then, we rank the

variables with non-zero coefficients according to their impact on

the outcome variables and identify common variables by taking the

intersection of variables selected by all four methods. Finally, 12

common variables were obtained. Combined with systematic

review, meta-analysis, and expert clinical opinions, nine factors

affecting the outcome were identified as predictors, including urea

nitrogen minimum, age, urine output (24-hour average), urine

output (6-hour average), alkaline phosphatase maximum, SpO2,

alkaline phosphatase minimum, MAP, and OASIS.

Urine output and urea nitrogen are closely related to the main

adverse prognostic events of patients (Sun et al., 2022a). Urine

output plays an important role in predicting the mortality rate of

urosepsis patients. This result has been confirmed in many related

studies (Zhang et al., 2021; Kasugai et al., 2023; Yamamoto et al.,

2025). Surprisingly, urea nitrogen is the most important predictor

of mortality in patients with urosepsis. Urea nitrogen is a metabolic

waste produced by the liver, which enters the kidneys through the
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bloodstream and is then filtered out by the kidneys (Li et al., 2021).

Urea nitrogen levels are important indicators of kidney function,

water balance, and protein metabolism. Compared to infection and

inflammation markers, urea nitrogen is a low-cost, easily accessible

indicator that can reflect kidney damage in patients. Previous

research results have shown that urosepsis significantly reduces

renal blood flow and renal function, thereby further increasing urea

nitrogen levels (Tóth-Heyn et al., 2000; Langenberg et al., 2006;

Seely et al., 2011). Therefore, urea nitrogen levels can reflect the

organ dysfunction status of patients with urosepsis, and severe

organ dysfunction is one of the main causes of death in patients

(Wang et al., 2024a). However, previous death prediction models

for patients with urosepsis did not use this key factor (Mauk, 2018;

Gou et al., 2023).

In addition, our research also suggests that alkaline phosphatase

(AP) is an important predictor of prognosis in patients with

urosepsis. AP is an endogenous detoxifying enzyme that exists

throughout the body in four different isoenzymes: germ cell AP,

intestinal AP, placental AP, and a non-specific form primarily

derived from the kidneys, liver, and bones (Millán, 2006). AP can

dephosphorylate endotoxins (Poelstra et al., 1997; Bentala et al.,

2002; Verweij et al., 2004). Through its dephosphorylation ability,

AP can not only detoxify endotoxins, but also various compounds.

The AP measured in serum is currently used as a diagnostic tool for

liver disease (Siddique and Kowdley, 2012), bone disease (Ross

et al., 2000), and testicular cancer (Neumann et al., 2011). AP may

also play an important role in the treatment of critical illnesses. Its

dephosphorylation ability can counteract the adverse cascade

reactions of molecules such as PAMP (Koyama et al., 2002) and

DAMPs (Picher et al., 2003) during urosepsis. Our study found that

AP can also serve as a predictor of outcomes in patients with

urosepsis. The maximum and minimum values of AP in patients

with urosepsis within 24 hours of admission are important

predictors of patient prognosis. This discovery may help

clinicians evaluate the patient’s condition within 24 hours of

admission and determine the patient’s prognosis early.

We used the above nine features to construct ML models to

predict the prognosis of patients. Among the ML models, the

XGBoost model performs the best. XGBoost is a popular ML

algorithm in recent years, characterized by fast computing speed,

strong generalization ability, and high predictive performance (Hou

et al., 2020; Yue et al., 2022). In the ROC curve, XGBoost performs

second only to the RF model in the training cohort, but shows the

best discriminative ability in the internal validation cohort. When

the threshold probability is between 12.5% and 70%, The clinical

intervention guided by the XGBoost model provided greater net

benefits in the training cohort. DCA indicates that the RF model has

the greatest benefit within a reasonable threshold probability, but

considering its poor performance in the validation cohort ROC

curve, this means that the RF model may not be optimal. Based on

the performance of the model in the training and validation cohorts,

the XGBoost model has higher clinical application value and good

clinical practicality compared to other models. Finally, we used

SHAP values to reveal the ‘black box’ of ML (Molnar, 2019). The

SHAP summary diagram illustrates the overall distribution of the
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impact of each feature on the model output. SHAP is a flexible

method that can be used to interpret individual predictions and

global interpretations. SHAP tries to provide an intuitive

visualization of how different characteristics affect the predicted

outcome. One advantage of SHAP for global interpretation is that

SHAP reveals not only the importance of features but also their

relationship to output. In addition, the prediction of SHAP is

reasonably distributed among eigenvalues. These factors are

essential to ensure trust in the technology. Our interpretability

framework adheres to established principles for explainable clinical

AI (Molnar, 2020), transforming complex model predictions into

clinically intuitive decision support.

Our findings demonstrate that ML models substantially

outperform conventional prognostic tools—both in accuracy and

clinical interpretability. Specifically, while traditional methods like

logistic regression (LR)—representing linear modeling approaches

—achieved competent validation performance (AUC: 0.856),

XGBoost surpassed it by a clinically significant margin (DAUC:
+0.013; Figure 5). This gap arises from ML’s ability to capture

complex, non-linear interactions that traditional models

intrinsically miss. Furthermore, ML uniquely identified dynamic

predictors like alkaline phosphatase extrema, whereas conventional

methods favor static, guideline-driven variables. Thus, ML

transcends incrementa l accuracy ga ins ; i t uncovers

pathophysiology-driven decision pathways, converting rigid

scores into adaptive, patient-specific prognostication.

However, our research is not without limitations. Firstly, our

training cohort and internal validation cohort are both from the

MIMIC-IV database, with the majority of patients coming from

Western countries; Secondly, we did not conduct a more

comprehensive study of the database, which may have led us to

overlook some key variables, resulting in potential errors; Thirdly,

the retrospective and observational nature of this study may lead to

selection bias, which may result in the inclusion of patients who do

not fully represent all patients in that category. Therefore,

conducting a prospective evaluation is necessary to assess the

performance of the model in real-world situations. To further

evaluate generalizability, future validation will utilize the eICU

Collaborative Research Database—capturing heterogeneous ICU

practices across U.S. healthcare systems—to assess model

performance using identical endpoints (28-day ACM) and

metrics (AUC, sensitivity, specificity, F1-score, Brier score, and

DCA-derived net benefit). This will be followed by prospective

multi-center testing with local hospital data, maintaining consistent

predictor variables, outcome definitions, and performance

thresholds to ensure cross-population comparability and clinical

utility quantification.
5 Conclusions

In conclusion, the ML method is a reliable tool for predicting

the prognosis of patients with urosepsis. Combining global and

local interpretability methods to interpret the intrinsic information

from the XGBoost model may prove clinically useful and help
Frontiers in Cellular and Infection Microbiology 11
clinicians customize precise management to maximize the survival

of patients with urosepsis.
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SUPPLEMENTARY FIGURE 1

Raw data and Mice filled data density plot. Blue line = raw data, red line =
interpolated data.

SUPPLEMENTARY FIGURE 2

LASSO regression path showing the coefficients of variables across different

values of the regularization parameter (l).

SUPPLEMENTARY FIGURE 3

Cross-validation error plot for selecting the optimal l in LASSO. The vertical
dashed line represents the optimal lwhere the minimal cross-validation error

is achieved.

SUPPLEMENTARY FIGURE 4

Comparison of the performance of the sevenmodels in the validation cohort.
Bayes, Bayesian Network; DT, Decision tree; LR, Logistic regression model;

MLP, Multilayer perceptron; RF, Random Forest model; SVM, Support vector
machine; XGBoost, eXtreme Gradient Boosting.
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Procalcitonin as an early indicator of urosepsis following prostate biopsy. A. ging
Male 23, 431–436. doi: 10.1080/13685538.2018.1512964

Croghan, S. M., Cunnane, E. M., O’Meara, S., Muheilan, M., Cunnane, C. V.,
Patterson, K., et al. (2023). In vivo ureteroscopic intrarenal pressures and clinical
outcomes: a multi-institutional analysis of 120 consecutive patients. BJU Int. 132, 531–
540. doi: 10.1111/bju.16169

Farhadian, M., Torkaman, S., and Mojarad, F. (2020). Random forest algorithm to
identify factors associated with sports-related dental injuries in 6 to 13-year-old athlete
children in Hamadan, Iran-2018 -a cross-sectional study. BMC Sports Sci. Med.
Rehabil. 12, 69. doi: 10.1186/s13102-020-00217-5

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G.,
et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research
resource for complex physiologic signals. Circulation 101, E215–E220. doi: 10.1161/
01.cir.101.23.e215

Gou, J. J., Zhang, C., Han, H. S., and Wu, H. W. (2023). Risk factors of concurrent
urinary sepsis in patients with diabetes mellitus comorbid with upper urinary tract
calculi. World J. Diabetes 14, 1403–1411. doi: 10.4239/wjd.v14.i9.1403

Griebling, T. L. (2019). Re: the clinical impact of bacteremia on outcomes in elderly
patients with pyelonephritis or urinary sepsis: A prospective multicenter study. J. Urol
201, 8. doi: 10.1097/01.ju.0000550105.63529.31

Hou, N., Li, M., He, L., Xie, B., Wang, L., Zhang, R., et al. (2020). Predicting 30-days
mortality for MIMIC-III patients with sepsis-3: a machine learning approach using
XGboost. J. Transl. Med. 18, 462. doi: 10.1186/s12967-020-02620-5

Johnson, A. E. W., Bulgarelli, L., Shen, L., Gayles, A., Shammout, A., Horng, S., et al.
(2023). MIMIC-IV, a freely accessible electronic health record dataset. Sci. Data 10, 1.
doi: 10.1038/s41597-022-01899-x

Kang, J., Choi, Y. J., Kim, I. K., Lee, H. S., Kim, H., Baik, S. H., et al. (2021). LASSO-
based machine learning algorithm for prediction of lymph node metastasis in T1
colorectal cancer. Cancer Res. Treat 53, 773–783. doi: 10.4143/crt.2020.974

Kasugai, D., Nakashima, T., and Goto, T. (2023). Clinical implications of urine
output-based sepsis-associated acute kidney injury. Intensive Care Med. 49, 1263–1265.
doi: 10.1007/s00134-023-07190-w

Koyama, I., Matsunaga, T., Harada, T., Hokari, S., and Komoda, T. (2002). Alkaline
phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through
dephosphorylation. Clin. Biochem. 35, 455–461. doi: 10.1016/s0009-9120(02)00330-2

Langenberg, C., Wan, L., Egi, M., May, C. N., and Bellomo, R. (2006). Renal blood
flow in experimental septic acute renal failure. Kidney Int. 69, 1996–2002. doi: 10.1038/
sj.ki.5000440

Li, X., Li, T., Wang, J., Dong, G., Zhang, M., Xu, Z., et al. (2021). Higher blood urea
nitrogen level is independently linked with the presence and severity of neonatal sepsis.
Ann. Med. 53, 2192–2198. doi: 10.1080/07853890.2021.2004317

Li, P., Tang, Y., Zeng, Q., Mo, C., Ali, N., Bai, B., et al. (2024b). Diagnostic
performance of machine learning in systemic infection following percutaneous
nephrolithotomy and identification of associated risk factors. Heliyon 10, e30956.
doi: 10.1016/j.heliyon.2024.e30956
Li, H., Zhou, J., Wang, Q., Zhu, Y., Zi, T., Qin, X., et al. (2024a). Study on the
predictive value of renal resistive index combined with b2-microglobulin in patients
with urosepsis complicated with acute kidney injury. J. Inflammation Res. 17, 9583–
9599. doi: 10.2147/jir.S492858

Mauk, M. G. (2018). Calling in the test: Smartphone-based urinary sepsis diagnostics.
EBioMedicine 37, 11–12. doi: 10.1016/j.ebiom.2018.10.047

Millán, J. L. (2006). Alkaline Phosphatases: Structure, substrate specificity and
functional relatedness to other members of a large superfamily of enzymes.
Purinergic Signal 2, 335–341. doi: 10.1007/s11302-005-5435-6

Molnar, C. (2019). Interpretab le Machine Learning: A Guide for Making Black Box
Models Explainable. Available online at: https://christophm.github.io/interpreta ble-
ml-book/.

Molnar, C. (2020). Interpreta ble machine learning (Morrisville, NC: Lulu. com)
(Accessed July 02, 2025).

Moore, A., and Bell, M. (2022). XGBoost, A novel explainable AI technique, in the
prediction of myocardial infarction: A UK biobank cohort study. Clin. Med. Insights
Cardiol. 16, 11795468221133611. doi: 10.1177/11795468221133611

Nachouki, M., Mohamed, E. A., Mehdi, R., and Abou Naaj, M. (2023). Student
course grade prediction using the random forest algorithm: Analysis of predictors’
importance. Trends Neurosci. Educ. 33, 100214. doi: 10.1016/j.tine.2023.100214

Neumann, A., Keller, T., Jocham, D., and Doehn, C. (2011). Human placental
alkaline phosphatase (hPLAP) is the most frequently elevated serum marker in
testicular cancer. Aktuelle Urol 42, 311–315. doi: 10.1055/s-0031-1271545

Ohbe, H., Satoh, K., Totoki, T., Tanikawa, A., Shirasaki, K., Kuribayashi, Y., et al.
(2024). Definitions, epidemiology, and outcomes of persistent/chronic critical illness: a
scoping review for translation to clinical practice. Crit. Care 28, 435. doi: 10.1186/
s13054-024-05215-4

Oweira, H., Schmidt, J., Mehrabi, A., Kulaksiz, H., Schneider, P., Schöb, O., et al.
(2018). Comparison of three prognostic models for predicting cancer-specific survival
among patients with gastrointestinal stromal tumors. Future Oncol. 14, 379–389.
doi: 10.2217/fon-2017-0450

Picher, M., Burch, L. H., Hirsh, A. J., Spychala, J., and Boucher, R. C. (2003). Ecto 5’-
nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing
ectoenzymes with distinct roles in human airways. J. Biol. Chem. 278, 13468–13479.
doi: 10.1074/jbc.M300569200

Poelstra, K., Bakker, W. W., Klok, P. A., Kamps, J. A., Hardonk, M. J., and Meijer, D.
K. (1997). Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am. J.
Pathol. 151, 1163–1169.

Porat, A., Bhutta, B. S., and Kesler, S. (2025). “Urosepsis,” in StatPearls (StatPearls
Publishing, Treasure Island (FL). Available online at: https://www.ncbi.nlm.nih.gov/
books/NBK482344/.

Ross, P. D., Kress, B. C., Parson, R. E., Wasnich, R. D., Armour, K. A., and Mizrahi, I.
A. (2000). Serum Bone alkaline phosphatase calcaneus Bone density predict fractures:
prospective study. Osteoporos Int. 11, 76–82. doi: 10.1007/s001980050009

Seely, K. A., Holthoff, J. H., Burns, S. T.,Wang, Z., Thakali, K.M., Gokden, N., et al. (2011).
Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney
injury. Am. J. Physiol. Renal Physiol. 301, F209–F217. doi: 10.1152/ajprenal.00687.2010

Shi, G., Liu, G., Gao, Q., Zhang, S., Wang, Q., Wu, L., et al. (2023). A random forest
algorithm-based prediction model for moderate to severe acute postoperative pain after
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1623109/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1623109/full#supplementary-material
https://doi.org/10.1097/00024382-200212000-00013
https://doi.org/10.1097/00024382-200212000-00013
https://doi.org/10.1080/13685538.2018.1512964
https://doi.org/10.1111/bju.16169
https://doi.org/10.1186/s13102-020-00217-5
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.4239/wjd.v14.i9.1403
https://doi.org/10.1097/01.ju.0000550105.63529.31
https://doi.org/10.1186/s12967-020-02620-5
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.4143/crt.2020.974
https://doi.org/10.1007/s00134-023-07190-w
https://doi.org/10.1016/s0009-9120(02)00330-2
https://doi.org/10.1038/sj.ki.5000440
https://doi.org/10.1038/sj.ki.5000440
https://doi.org/10.1080/07853890.2021.2004317
https://doi.org/10.1016/j.heliyon.2024.e30956
https://doi.org/10.2147/jir.S492858
https://doi.org/10.1016/j.ebiom.2018.10.047
https://doi.org/10.1007/s11302-005-5435-6
https://christophm.github.io/inter preta ble-ml-book/
https://christophm.github.io/inter preta ble-ml-book/
https://doi.org/10.1177/11795468221133611
https://doi.org/10.1016/j.tine.2023.100214
https://doi.org/10.1055/s-0031-1271545
https://doi.org/10.1186/s13054-024-05215-4
https://doi.org/10.1186/s13054-024-05215-4
https://doi.org/10.2217/fon-2017-0450
https://doi.org/10.1074/jbc.M300569200
https://www.ncbi.nlm.nih.gov/books/NBK482344/
https://www.ncbi.nlm.nih.gov/books/NBK482344/
https://doi.org/10.1007/s001980050009
https://doi.org/10.1152/ajprenal.00687.2010
https://doi.org/10.3389/fcimb.2025.1623109
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wei et al. 10.3389/fcimb.2025.1623109
orthopedic surgery under general anesthesia. BMC Anesthesiol 23, 361. doi: 10.1186/
s12871-023-02328-1

Siddique, A., and Kowdley, K. V. (2012). Approach to a patient with elevated serum
alkaline phosphatase. Clin. Liver Dis. 16, 199–229. doi: 10.1016/j.cld.2012.03.012

Su, M., Guo, J., Chen, H., and Huang, J. (2023). Developing a machine learning
prediction algorithm for early differentiation of urosepsis from urinary tract infection.
Clin. Chem. Lab. Med. 61, 521–529. doi: 10.1515/cclm-2022-1006

Sun, J., Ge, X., Wang, Y., Niu, L., Tang, L., and Pan, S. (2022a). USF2 knockdown
downregulates THBS1 to inhibit the TGF-b signaling pathway and reduce pyroptosis in sepsis-
induced acute kidney injury. Pharmacol. Res. 176, 105962. doi: 10.1016/j.phrs.2021.105962

Sun, Y., Zhang, Q., Yang, Q., Yao, M., Xu, F., and Chen, W. (2022b). Screening of
gene expression markers for corona virus disease 2019 through boruta_MCFS feature
selection. Front. Public Health 10. doi: 10.3389/fpubh.2022.901602
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