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Aida Gonzá lez-Dı́az1,2, Rocı́o España-Bonilla1, 

´1,2,3Laura Calatayud1,2, Jordi Niubó 1, Sara Martı , 
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Introduction: The COVID-19 pandemic has impacted global health and altered 
respiratory pathogens. While SARS-CoV-2 vaccines have mitigated COVID-19 severity, 
emerging variants remain challenging. Co-infection of Streptococcus pneumoniae 
with respiratory viruses is associated with increased disease severity, but its relationship 
with SARS-CoV-2 remains unclear. This study aims to analyze their co-occurrence, 
focusing on disease progression, colonization rates and clinical outcomes. 

Methods: To this end, three approaches were used. First, a laboratory-based 
analysis of invasive pneumococcal disease (IPD) in adults (2019-2023). Second, a 
retrospective analysis of COVID-19 clinical cases with pneumococcal isolates 
(March,2020–December,2023), including clinical and microbiological data such 
as patients’ comorbidities, episode severity, serotypes and resistance genes. 
Third, a retrospective analysis to assess pneumococcal colonization in SARS­
CoV-2 positive nasopharyngeal samples (May-October 2023; dual-target RT­
PCR). WGS and bioinformatics were performed on both bacterial (serotyping and 
resistance analysis) and viral genomes (lineage determination). Statistical 
comparisons (Chi-square, Fisher’s test), with significance set at p<0.05. 

Results: First, IPD incidence declined during the COVID-19 pandemic, with cases 
dropping by 70% in both age groups (18–64 and >64) from 2019 to 2021 and 
rebounding after 2021, concomitant with the relaxation of non-pharmaceutical 
measures, especially among older adults. Pneumococcal serotype distribution 
remained stable with dominance of serotypes 3 and 8. Serotype 12F disappeared 
during the lockdown and re-emerged in 2023 as a multidrug-resistant sub-lineage 
through multi-fragment recombination, derived from the former GPSC26. Second, 
SARS-CoV-2 and pneumococcal co-infection occurred in 66 hospitalized 
patients, mainly by serotype 3 (15%), with resistance to macrolides (26.3%) and 
tetracycline (22.8%). Third, pneumococcal colonization in SARS-CoV-2-infected 
patients was low (2.8%), especially in older adults (>64 years; 1.5%), with slightly 
higher rates in severe cases (4.7% vs 2.5%; p=0.404; IC95% 0.13-3.05) and young 
adults (4.8% vs 1.5%; p=0.04; IC95% 0.92-15.21). Compared to colonized patients, 
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those with co-infection had more comorbidities, more severe clinical 
presentations, higher hospitalization rates and lower vaccination rates. 

Discussion: This study highlights how non-pharmaceutical measures disrupt S. 
pneumoniae dynamics. Although pneumococcal colonization in SARS-CoV-2 
patients appears to be infrequent, our data suggest an increase in disease 
severity. Then, vaccination programs and their monitoring remain critical in the 
prevention of respiratory infections. 
KEYWORDS 

Streptococcus pneumoniae, serotypes, SARS-CoV-2, COVID-19, co-infection 
1 Introduction 

The coronavirus disease (COVID-19) pandemic emerged as one of 
the most profound global health crises of the modern era. Since its 
identification in late 2019, SARS-CoV-2 has led to over 400 million 
confirmed cases and approximately 6 million deaths worldwide 
(covid19.who.int/, last accessed 2025-02-25). The rapid development 
and deployment of SARS-CoV-2 vaccines in late 2020 marked a turning 
point in controlling severe disease and mortality, particularly in high-
income countries with extensive vaccination coverage (Rinott et al., 
2020). However, the ongoing emergence of SARS-CoV-2 variants, 
characterized by partial escape from vaccine-induced immunity, 
continues to challenge global efforts (Garcia-Beltran et al., 2021). 

In addition to its direct effects on morbidity and mortality, the 
pandemic has had substantial indirect consequences on the 
epidemiology of other infectious diseases. COVID-19 containment 
measures, including lockdowns, social distancing, mask-wearing, and 
enhanced hygiene practices, have significantly altered the transmission 
dynamics of other respiratory pathogens. Studies have reported marked 
declines in the incidence of bacterial agents causing respiratory 
infections, as well as seasonal viruses such as influenza and 
respiratory syncytial virus (Brueggemann et al., 2021; Doroshenko 
et al., 2021; Guisado-Gil et al., 2022). These reductions may reflect a 
combination of factors, including the COVID-19 containment 
measures and a potential underreporting due to the overwhelming 
focus on COVID-19 diagnostics and surveillance (Dirkx et al., 2021). 

The interplay between respiratory viruses and bacterial pathogens 
has been largely documented, particularly in the context of co-
infections. Streptococcus pneumoniae is the most common bacterial 
pathogen associated with community acquired respiratory tract 
infections and invasive diseases (IPD). The nasopharynx serves as 
the primary reservoir for pneumococcal colonization, especially in 
young children, although adults may also carry pneumococci at a lower 
frequency (Weiser et al., 2018). Pneumococcal infections are frequently 
preceded by viral infections, which can disrupt the epithelial barrier, 
alter lung physiology, and promote bacterial colonization. Influenza 
virus, for instance, is known to facilitate pneumococcal adherence, 
replication, and dissemination, leading to severe co-infections and poor 
02 
clinical outcomes (Kim et al., 1996; McCullers, 2014; Mina et al., 2014; 
Lewnard et al., 2019; Manna et al., 2022). Given these established 
relationships, it is plausible that SARS-CoV-2 could similarly influence 
pneumococcal colonization and infection. However, data on the 
relationship between SARS-CoV-2 and S. pneumoniae remains 
scarce. Studies analyzing the frequency of co-infection in hospitalized 
COVID-19 patients have reported variable rates depending on the 
diagnostic methodologies and study populations (Soto et al., 2021; 
Cohen et al., 2022). Notably, polymerase chain reaction (PCR) based 
methods have demonstrated higher sensitivity for detecting 
pneumococcal colonization compared to traditional culture 
techniques, which are often limited in patients receiving antibiotics 
(Zacharioudakis et al., 2021). In addition, the clinical impact of SARS­
CoV-2 and S. pneumoniae co-infection remain inconclusive, with some 
studies suggesting minimal impact on patient outcomes, while 
experimental data indicate potential immune modulation during co-
infection (Jochems et al., 2019; Rothe et al., 2021). 

The potential relationship between SARS-CoV-2 and S. 
pneumoniae underscores the importance of ongoing surveillance. 
Understanding the dynamics is critical not only for managing co-
infections but also for anticipating the broader implications of viral-
bacterial associations. In this study, we analyzed the correlations 
between SARS-CoV-2 and S. pneumoniae in disease and colonization. 
2 Materials and methods 

2.1 Study design 

To achieve the goals of this study, three different approaches were 
conducted at Hospital Universitari de Bellvitge (HUB), a teaching 
hospital located in the southern Barcelona area. The Microbiology 
Service receives samples  for diagnosis from primary care centers and 
from patients who come to the hospital (Supplementary Figure S1). 

The first approach was to analyze changes in invasive 
pneumococcal diseases (IPD) during the COVID-19 pandemic. 
All IPD episodes in adults (≥18 years old) from January 2019 to 
December 2023 were retrospectively collected and available 
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pneumococcal isolates were subjected to antibiotic susceptibility 
testing and WGS. IPD was defined as the isolation from a sterile 
body site in a patient with signs and symptoms of infection. To 
contextualize the monthly trends in IPD including the pandemic 
period, data from 2010 to 2023 was analyzed. 

The second approach was to investigate the relationship 
between pneumococcal disease and COVID-19. All patients with 
SARS-CoV-2 who had a S. pneumoniae isolate from a clinical 
sample between March 2020 and December 2023 were included 
(n = 66). Available pneumococcal isolates were sequenced (WGS, 
n= 57) and clinical charts were reviewed. 

Third approach was to assess S. pneumoniae colonization in 
patients with SARS-CoV-2. A random selection of SARS-CoV-2 
positive nasopharyngeal samples (routinely diagnostic procedures) of 
patients were collected between May and October 2023 (n = 461). A 
third of the samples were collected from patients attending primary care 
centers and the rest from hospital patients (only one sample per patient 
was included). COVID-19 disease was defined as the detection of SARS­
CoV-2 in a patient presenting symptoms of infection such as cough, 
fever, shortness of breath, sudden onset of anosmia, ageusia or 
dysgeusia. Patients that did not require further hospitalization were 
considered mild cases while those requiring hospital care were classified 
as severe. All samples were prospectively stored at -80°C for 
pneumococcal colonization detection by RT-PCR and viral genome 
sequencing. Clinical charts were reviewed for the positive pneumococcal 
colonization patients and representative negative control group. 
2.2 Characterization of pneumococcal 
isolates 

The identification of S. pneumoniae isolates was routinely 
performed using standard microbiological procedures (MALDI-

Biotyper, bile solubility and/or optochin susceptibility). Antibiotic 
susceptibility was determined by disk diffusion and E-test in 
accordance with EUCAST recommendations and criteria. 
2.3 Nasopharyngeal colonization analysis 

Pneumococcal colonization was studied using a dual-target RT­
PCR assay (lytA and  piaB genes) in nasopharyngeal samples. 
Colonization was confirmed when both targets were detected and 
the cycle threshold (Ct) values were similar (differences <3 Ct) 
(Simões et al., 2016; Miellet et al., 2023). 

Nasopharyngeal samples were considered positive for SARS­
CoV-2 if detected by RT-PCR with a Ct value <37 (Alinity m Resp-
4-plex assay) (S. T. Almeida et al., 2020). 
2.4 Bacterial genome sequencing and 
bioinformatic analysis 

For library preparation and sequencing, S. pneumoniae was 
cultured overnight on 5% sheep blood agar at 37°C with 5% CO2. 
Frontiers in Cellular and Infection Microbiology 03 
DNA was extracted using the QIAamp DNA Mini Kit (Qiagen, 
Germany) and quantified with the Qubit dsDNA HS Assay Kit 
(Thermo Fisher, USA). Illumina paired-end libraries (2x300 bp) 
were prepared using the DNA Prep kit and sequenced on the 
Illumina MiSeq Platform (Illumina, USA). 

For bioinformatic analysis, quality assessment and genome 
assembly were performed using the Bactopia pipeline. Reads quality 
control was conducted with Bactopia’s preprocessing module, and 
genome assembly was performed using the assembly module. The 
Bactopia MLST module was used for in silico MLST determination 
using PubMLST database (web PubMLST). In silico serotyping was 
performed with SeroBA (github.com/sanger-pathogens/seroba) 
(Supplementary Table S1). The reads were deposited in the 
European Nucleotide Archive (ENA), and the metadata is outlined 
in Supplementary Table S2. Antibiotic resistance due to mutations in 
resistance-related genes, such as pbp1a, pbp2b and pbp2x (b-lactams), 
parC, parE and  gyrA (quinolones), or folA and  folP (cotrimoxazole), 
was analyzed and compared with the reference genome (S. 
pneumoniae R6, NC_003098.1) using Geneious. Acquired resistance 
genes were identified using AMRfinder from Bactopia workflow. 

For in-depth analysis of serotype 12F recombination events, 14 
genomes from pneumococci isolated in our hospital between 2008 
and 2023 were selected. Recombinant blocks were detected by 
Gubbins using NZ_LS483450 as reference and default parameters. 
2.5 Viral genome sequencing and 
bioinformatic analysis 

Genomic sequencing of SARS-CoV-2 was performed following 
the ARTIC amplicon sequencing protocol (artic.network/ncov­
2019).Total nucleic acid extraction was performed with MagMAX 
Viral/Pathogen II Nucleic Acid Isolation Kit on a KingFisher Flex 
purification system (Applied Biosystems, USA). The Ct was 
determined using the TaqPath COVID-19 RT-PCR assay on a 
QuantStudio 5 (Applied Biosystems, USA), and only samples with a 
Ct value <30 were sequenced. RNA retrotranscription was carried 
out with LunaScript (New England BioLabs, USA), followed by 
amplification of the 30 kb viral genome using the xGen SARS-CoV­
2 ARTIC Amplicon Panel (v4.1), which generates 400 bp amplicons 
(IDT, USA). DNA quantification was performed using the Qubit 
dsDNA HS Assay Kit (Thermo Fisher, USA). For library 
preparation and sequencing, Illumina paired-end libraries (2x200 
bp) were prepared using the Illumina DNA Prep kit and sequenced 
on the Illumina MiSeq Platform (Illumina, USA). 

Bioinformatic analysis was conducted using the DRAGEN 
COVID Lineage App from BaseSpace (basespace.illumina.com). 
Pangolin was used to assign lineages to the COVID-19 sequences. 
Consensus genomes and demographic data were deposited at the 
GISAD web page (https://www.gisaid.org) for public access. 
2.6 Statistics 

Chi-square test and Fisher’s exact test were applied to assess the 
association between categorical variables, set at a < 0.05 (two-tailed) 
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for significance. Chi-square test was applied by default, while 
Fisher’s exact test was applied when the expected frequency in 
any cell was less than 5. Tests were performed using the chisq.test 
and fisher.test functions in R (version 4.3.2), respectively. To 
analyze changes in the serotype and clonal distributions of 
invasive isolates, three periods were considered: pre-pandemic 
(January 2019-March 2020), pandemic (April 2020-June 2022), 
and post-pandemic (July 2022-December 2023). 
3 Results 

3.1 Invasive pneumococcal disease 
decreased during the SARS-CoV-2 
pandemic and upsurged after relaxation of 
non-pharmaceutical measures 

From January 2019 to December 2023, a total of 355 IPD 
episodes were recorded. Of these, 150 episodes occurred in adult 
patients aged 18 to 64 years and 205 in those over 64 years old. The 
monthly number of IPD episodes detected from 2010 to 2023 is 
shown in Figure 1A. The seasonal fluctuation of IPD was 
interrupted during the pandemic, with a sharp decrease in the 
number of IPD episodes (from 105 episodes in 2019 to 44 in 2020 
and 31 in 2021). The lockdown due to the SARS-CoV-2 pandemic 
began in Spain in March 2020. Following this, the number of IPD 
episodes decreased, with no winter season peak during 2020-2021 
(n = 11). Subsequently, winter seasons were characterized by a 
limited recovery in IPD numbers during 2021-2022 (n = 30) and 
2022-2023 (n = 65). 

The decline and recovery of IPD cases varied by age group 
(Supplementary Figure S2). In the 18–64 age group, there was a 
sharp decline from 2019 to 2021, representing a decrease of 68.3%. 
Recovery began in 2022 but rebounded significantly in 2023 with a 
total number exceeding the pre-pandemic levels (+26.8%). For 
patients over 64 years old, the decline was even more evident and 
pronounced. Cases dropped from 2019 to 2021 (70.6% reduction). 
After limited recovery in 2022, the figure at the end of 2023 was 
similar to 2019 (–6.2%). 

To identify resilient serotypes during the lockdown (Figure 1B), 
we analyzed the serotype distribution of IPD episodes. We 
compared three periods: pre-pandemic (January 2019-March 
2020), pandemic (April 2020-June 2022), and post-pandemic 
(July 2022-December 2023). Overall, the serotype distribution 
remained stable across all three periods, with predominance of 
serotypes 3 and 8. Notably, although the numbers were low, 
serotype 12F disappeared during the lockdown, while serotype 9N 
emerged. The proportion of IPD cases covered by PCV15, PCV20 
and PCV21 in the three periods was: 32.8%, 60.8% and 64.0% in the 
pre-COVID period; 28.0%, 54.7% and 61.3% during the COVID-19; 
and  35 . 9% ,  62 . 8%  and  65 . 5%  i n  t h e  po s t -COVID  
period, respectively. 

Regarding the Global Pneumococcal Sequencing Cluster 
(GPSC) and Sequence Type (ST) distribution of the main 
Frontiers in Cellular and Infection Microbiology 04
serotypes, different patterns were observed. For example, GPSC3­
ST53 was predominant in serotype 8 isolates across all periods 
(Figure 2). Among serotype 3 isolates, GPSC12-ST180 was nearly as 
prevalent as GPSC83-ST260 before the pandemic, and it became 
clearly dominant in the post-pandemic period. Regarding serotype 
12F, a notable change was observed. Before the pandemic, this 
serotype consisted of GPSC26-ST989 (n = 3) and GPSC55-ST8060 
(n = 2). This serotype was not detected during the pandemic and re­
emerged in the post-pandemic period in association with a new sub-
lineage of GPSC26-ST3377 exhibiting a multidrug resistant 
phenotype (MDR, penicillin and macrolide resistance, see below). 
Among serotype 9N isolates, genetic diversification was observed. 
During the first two periods, including part of the pandemic, this 
serotype was exclusively composed of GPSC16-ST66. In the post-
pandemic, the number of cases increased, and this serotype was 
represented by three GPSCs: GPSC16-ST66 (n = 4), GPSC699­
ST19827 (n = 2), and GPSC137-ST3982 (n = 1). 
3.2 Characterization of pneumococcal 
strains from COVID-19 patients 

During the SARS-CoV-2 pandemic (March 2020 to December 
2023), 66 COVID-19 patients admitted to the hospital had 
concomitant pneumococcal infection (Supplementary Table S3). A 
total of 52 episodes were classified as non-invasive, while 14 were 
considered IPD. The most common serotypes (57/66 serotypes 
available) were 3 (17.5%), 11A (15.8%), 6C (8.8%), 23A (8.8%), and 
19F (5.3%). Despite the relatively low numbers of episodes per year, 
notable changes in the prevalence of certain serotypes coinfecting 
SARS-CoV-2 patients were observed. For example, serotype 3 was 
consistently present in 2020 (10.0%), 2021 (18.2%), and 2022 (30.4%), 
but it was not detected in 2023 (Supplementary Figure S3). In 
contrast, serotypes 11A and 6C were detected in all four years. 

Given the high use of antibiotics during the SARS-CoV-2 
pandemic, especially in the early stages, we analyzed resistance 
rates among the S. pneumoniae isolates from COVID-19 patients 
(Figure 3). All 57 sequenced isolates had penicillin MICs ≤ 2 mg/L 
(range ≤0.06–2 mg/L). Fifteen isolates (26.3%) were macrolide­

resistant, harboring erm(B) and/or mef(E) genes. Tetracycline-
resistance (n = 13, 22.8%) was associated with the presence of the 
tet(M) gene. The resistance rates for co-trimoxazole and 
levofloxacin were 15.8% and 5.3%, respectively. In both cases, the 
resistance was linked to point mutations in target genes. Figure 3 
displays the phylogenetic tree of pneumococci isolated from 
COVID-19 patients. 

The re-emergence of serotype 12F in 2023 was associated with a 
new ST, the ST3377, of the major GPSC26 lineage. This sub-lineage 
exhibited MDR phenotype, including non-susceptibility to 
penicillin, macrolides, clindamycin, and tetracycline. After a 
deeper analysis (Figure 4; Supplementary Table S4), a total of 17 
recombination blocks (RB) between ST989 and ST3377 were 
detected. Some of these RB included important genes such as 
pbp2x in RB5 that changed from allele 3 in ST989 to 20 in 
 frontiersin.org 

https://doi.org/10.3389/fcimb.2025.1624521
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Calvo-Silveria et al. 10.3389/fcimb.2025.1624521 
ST3377, pbp1a in RB6 which changed from allele 12 to 17 or pbp2b 
(allele 4 to new) in RB15. This new PBP type in ST3377 results in an 
increase of penicillin (1 mg/L) and amoxicillin (2 mg/L) MICs. 
RB15 also includes ddl gene explaining the ST change in this new 
sub-lineage. In addition, the different rearrangements of the Tn5252 
present in the reference genome include the loss of the cat gene 
(resistance to chloramphenicol) and the acquisition of the erm(B) 
which confers resistance to erythromycin and clindamycin. There 
were no differences in the structure of the capsular operon between 
strains of these two sub-lineages. This acquired resistance 
Frontiers in Cellular and Infection Microbiology 05 
represents a new hallmark of serotype 12F and warrants 
close surveillance. 
3.3 The rate of pneumococcal colonization 
in patients with COVID-19 disease is low 

A total of 461 nasopharyngeal swabs from patients with SARS­
CoV-2 infection, who attended primary care centers (n = 133) or 
the hospital (n = 328), were analyzed (Table 1). Hospitalized 
FIGURE 1 

(A) Monthly occurrence of IPD episodes in adult patients attended at Hospital Universitari de Bellvitge from 2010 to 2023. The boxed section 
highlights the period from 2019 to 2023. (B) Serotypes causing IPD before, during, and after the SARS-CoV-2 pandemic and lockdown. Bars 
represent the frequency of each serotype during the period analyzed (corresponding to the boxed section in panel (A). Squares below highlight the 
serotypes included in the different vaccine formulations. All vaccines have been approved by EMA and FDA. 
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patients were also tested for influenza viruses (A and B) and 
respiratory syncytial virus (RSV), but none tested positive, 
indicating no viral co-detection. Pneumococcal colonization was 
screened through a dual-targeted PCR (lytA plus piaB). Of the 461 
samples studied, 181 (39.3%) were from men and 273 (59.2%) from 
Frontiers in Cellular and Infection Microbiology 06
patients over 64 years of age. Pneumococcal colonization was 
detected in 13 patients (2.8%), 10 of whom presented mild 
COVID symptoms. In concordance with the circulating SARS-
CoV-2 variants in the period studied, the majority of infections, 
both in colonized and non-colonized patients, involved 
FIGURE 2 

Distribution of GPSC of major serotypes causing IPD by period. Pie charts represent the number of isolates for each Global Pneumococcal 
Sequence Cluster (GPSC) of the most prevalent serotypes. Each serotype (S) contains different GPSCs, each one represented by a distinct color 
within the pie charts. The size of the pie is proportional to the number of isolates. 
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recombinant XBB variants. Table 1 presents the analysis of 
pneumococcal colonization in patients with SARS-CoV-2 
infection. The colonization rate was similar in primary care 
(2.3%) and hospitalized (3.0%) patients. In terms of disease 
severity, colonization was more common in patients with severe 
COVID-19 (4.7%) compared to those with mild disease (2.5%) (p = 
0.404; IC 95% 0.13-3.05). By age group, the colonization rate was 
higher in young adults (18–64 years old, 4.8%) than in older people 
(>64 years old, 1.5%) (p = 0.04; IC 95% 0.92-15.21). Regarding 
differences in colonization among Omicron lineages, some slight 
variations were observed although they did not reach the statistical 
Frontiers in Cellular and Infection Microbiology 07 
significance. Further statistical analysis adjusting for confounding 
factors was not possible due to low colonization rates. 
3.4 Clinical characteristics of patients with 
pneumococcal colonization or infection in 
SARS-CoV-2 patients 

We compared the clinical characteristics of SARS-CoV-2 patients 
between two groups: patients with SARS-CoV-2 and pneumococcal 
colonization (n = 10, 3 clinical charts unavailable) versus patients 
FIGURE 3 

Phylogenetic tree of pneumococcal strains causing infection in COVID-19 patients. Each row represents a single isolate. The columns represent a 
heatmap with the presence/absence of either phenotypic (resistance/susceptibility) or genotypic traits analyzed in silico. The genomic analysis 
includes typing: serotype, Global Pneumococcal Sequencing Cluster (GPSC), Sequence Type (ST); AA changes at the transpeptidase domain of PBPs, 
quinolone resistance determining regions or DHFR; acquired antimicrobial resistance genes. Antibiotics are abbreviated as follows: PEN, penicillin; 
AMX, amoxicillin; CTX, ceftriaxone; LEV, levofloxacin; ERY, erythromycin; CLI, clindamycin; TET, tetracycline; SXT, sulfamethoxazole-trimethoprim; 
and CHL, chloramphenicol. 
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with SARS-CoV-2 and pneumococcal infection (n = 66) (Table 2). 
We also selected a control group of patients with only SARS-CoV-2 
infection (n = 26). In general, patients without pneumococcal 
colonization or infection had fewer underlying conditions and 
comorbidities compared to those with pneumococcal colonization. 
The clinical presentation of patients with pneumococcal infection was 
more severe, with a higher rate of pneumonia (65.2%) and respiratory 
failure (69.7%). These patients also required hospital admission more 
frequently (84.8%). 

The rate of pneumococcal vaccination was low in patients with 
pneumococcal infection. Almost all patients were appropriately 
vaccinated against SARS-CoV-2. However, as some pneumococcal 
co-infection episodes occurred before SARS-CoV-2 vaccines were 
available, the vaccination rate in this group was lower. To address 
this, we analyzed this group in more detail, differentiating between 
episodes occurring before SARS-CoV-2 vaccines were available (prior 
to February 2021) and those after vaccines became available (from 
February 2021 onward). Patients prior to February 2021 had more risk 
factors and comorbidities, with half of them having more than two 
comorbidities, compared to 15 out of 55 (27.3%) in the other group. 
Their clinical presentation was also more severe, and their 30-day 
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mortality rate was higher (27.3% vs 6.5%). Pneumococcal serotypes 
also varied between the groups: serotype 3 was nearly absent in the pre­
vaccine period, whereas it was the most prevalent after February 2021. 
There were only two cases of pneumococcal infection in PCV13­
vaccinated patients, with strains belonging to serotype 3 and 19F. 
4 Discussion 

In this manuscript, we explored the associations between SARS­
CoV-2 and S. pneumoniae over the three pandemic years. During the 
COVID-19 pandemic, IPD drastically decreased, likely due to non-
pharmaceutical interventions (NPIs), such as mask usage, social 
distancing, and lockdowns. These measures not only limited SARS­
CoV-2 transmission but also disrupted the circulation of other 
respiratory viruses and bacterial pathogens, including pneumococcus 
(Brueggemann et al., 2021). 

Respiratory viral infections are known to predispose individuals to 
bacterial infections by promoting bacterial shedding and disrupting the 
integrity of the respiratory epithelium (Howard, 2021; Mitsi et al., 2024). 
It has also been described that bacterial colonization in patients with 
FIGURE 4 

Schematic representation of genomic differences between serotype 12F ST989 and ST3377 of GPSC26. The grey circle represents the genome of 
NZ_LS483450 (ST989 serotype 12F), in pink the 17 recombination blocks detected by Gubbins. For each block, the start, the end and the total length 
are specified. For PBP2X, PBP1A and PBP2B amino acid changes involve in beta-lactam resistance are specified. The capsular locus is marked in 
yellow and antibiotic resistance genes in purple. Genome fragments not present in ST3377 are marked in light blue as DB (deletion block), on the 
other hand, genome acquisitions are represented in dark blue, as IB (insertion block). 
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viral infection could enhance the severity of the disease (Rodriguez-
Fernandez et al., 2023). Viral infection causes damages to the respiratory 
cells, facilitating the invasion and colonization by bacterial pathogens. 
Additionally, vascular permeability in the location is increased in 
response to damage, promoting the access of bacteria to the alveoli 
(Fazel et al., 2023). Our data indicate a low prevalence of pneumococcal 
colonization in patients with SARS-CoV-2 during the pandemic, similar 
to rates described in studies analyzing pneumococcal colonization in 
adults. This is also consistent with reports from other studies that 
showed low bacterial co-infections rates in COVID-19 patients. For 
example, a retrospective cohort study identified pneumococcal 
colonization in only 1.1% hospitalized COVID-19 patients (Coenen 
et al., 2021). Similarly, a recent study on COVID-19 pneumonia found a 
7.5% co-infection rate, underscoring that bacterial co-infections are 
infrequent (Strelkova et al., 2022). It seems that social distancing and the 
high use of antibiotics during the pandemic may have affected 
pneumococcal transmission as well as other respiratory pathogens. 
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Nevertheless, the colonization rate in SARS-CoV-2 infected patients 
should be revisited in a few years, once viral dynamics have stabilized. 

IPD cases progressively increased following the relaxation of NPIs. By 
December 2023, the total number of IPD episodes was the highest 
recorded in the last 13 years in our institution, coinciding with the 
resurgence of other respiratory viruses, such as RSV and influenza. 
During the 2022–2023 winter season, RSV predominantly affected the 
pediatric population, while adult IPD cases approached pre-pandemic 
levels. The subsequent 2023–2024 winter season saw a sharp increase in 
influenza virus, which was associated with a significant peak in IPD cases 
(Sender et al., 2021). These data highlight the close relationship between 
respiratory viruses and pneumococcal diseases (Manna et al., 2022). 
Nevertheless, the figure of IPD for adults over 65 was lower than in pre­
pandemic years. It is possible that some lessons learned, such as 
maintaining social distance from older adults or individuals with 
comorbidities in cases of respiratory illness, have persisted after the 
pandemic. However, in early 2023 there was a change in the official 
strategy for prevention of pneumococcal diseases in our area, introducing 
PCV20 for adults over 65 and PCV15 for children. Both factors could 
have contributed to this decline. The introduction of these new PCV is 
expected to decrease pneumococcal colonization across a broader group 
of serotypes but also in a new group of age, as older adults were previously 
vaccinated with polysaccharide vaccines that do not prevent colonization. 
The high fraction of serotypes covered by these and other available 
vaccines highlight the potential benefit of adult vaccination in reducing 
the burden of disease. Adult vaccination will likely offer additional 
benefits to this population. For instance, some studies suggested that 
pneumococcal vaccination may have broader effects, including a 
reduction in hospitalizations caused by endemic coronaviruses and 
outcomes related to COVID-19 in older adults (Mitsi et al., 2022). 
Also, pneumococcal colonization has been reported to diminish 
inflammatory response to viral infections, leading to more severe 
outcomes (Mitsi et al., 2024). However, this effect on disease severity 
has not yet been demonstrated in SARS-CoV-2 infections, but potentially 
it could be prevented by PCV vaccination. Nevertheless, the potential 
emergence of new pneumococcal lineages warrants further surveillance to 
understand their role in post-pandemic IPD trends. 

The pandemic highlighted  the crucial  role  of  vaccination programs  
in preventing infectious diseases, reducing most vaccinable serotypes. 
However, we detected a resurgence of some serotypes included in 
PCV7 and PCV13, such as serotype 19A. Furthermore, serotype 3 
levels remained high throughout the whole period, and serotypes 4 and 
18C showed a slight increase. Several factors could explain these trends. 
First, young adults who were not vaccinated during childhood are now 
reaching ages where they are more susceptible to pneumococcal 
infections. Second, older adults and people with comorbidities were 
mostly vaccinated with polysaccharide vaccine as mentioned before. 
Third, the subsequent introduction of new serotypes in the vaccine 
formulations aims to reduce IPD caused by those serotypes. However, 
their impact on colonization is expected to decrease, as some of the 
newly included serotypes have shown lower immunogenicity. 

It is interesting to note the genetic background of pneumococcal 
serotypes after the pandemic. First, the success of GPSC3-ST53 
(serotype 8), which confirms the high invasive disease potential of 
this lineage (Hanquet et al., 2022). Second, the genetic diversification of 
TABLE 1 Pneumococcal colonization among patients with SARS-CoV­
2 infection. 

Number of 
samples tested 

S. pneumoniae 
positivity 

Overall 461 13 (2.8%) 

Source 

Primary care 
133 3 (2.3%) 

Hospital 
328 10 (3.0%) 

Disease severity 

Mild 
397 10 (2.5%) 

Severe 
64 3 (4.7%) 

Age 

18-64 years 
188 9 (4.8%) 

>64 years 
273 4 (1.5%) 

SARS-CoV-2 variant 

XBB 
266 9 (3.4%) 

EG 
62 0 (0%) 

FL 
19 1 (5.3%) 

FG 
16 1 (6.3%) 

JG 
16 0 (0%) 

Other 
71 2 (2.4%) 
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serotype 9N. In the pre-pandemic and pandemic period, there was 
found exclusively GPSC16-ST66, but post-pandemic it diversified in 
different and new GPSCs: GPSC16-ST66, GPSC699-ST19827 and 
GPSC137-ST3982. This clonal diversification may reflect selective 
pressures or transmission changes following the pandemic. Third, the 
resurgence of 12F serotype linked to a MDR clone within the same 
GPSC26 and a new ST (from ST989 to ST3377). This new lineage 
originated after a multifragment recombination involving changes in 
different genome regions including PBPs. Although its current detection 
has been limited geographically, its identification in our data 
underscores the importance of maintaining robust genomic 
surveillance programs. Only 17 samples have been uploaded to 
PubMLST (pubmlst.org/, accessed June 4th 2025) and 15 to the GPS 
project (www.pneumogen.net/gps/, accessed June 4th 2025). 
Furthermore, 14 records appear in both databases, most of which 
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were isolated in Qatar, with no evidence of the presence of this 
lineage in Europe. Monitoring the spread and characteristics of such 
lineage is essential, as their emergence may necessitate revisions of 
current treatment guidelines and vaccine strategies. Further studies 
are also needed in order to stablish the putative behavior of this 
lineage regarding opsonophagocytic killing activity and biofilm 
formation as was observed in other recombinant strains 
(Aguinagalde et al., 2015) that could condition its invasiveness. 

As observed in IPD cases, serotype 3 was also commonly found in 
SARS-CoV-2 and S. pneumoniae co-infection episodes. On the other 
hand, serotype 11A, which was not predominant in IPD cases, 
appeared frequently in these co-infected patients. Serotype 3 isolates 
were associated with two major lineages previously described in Spain, 
GPSC83-ST1220 and GPSC12-ST180 (Calvo-Silveria et al., 2024). All 
serotype 11A isolates were b-lactam-resistant and belonged to the 
TABLE 2 Characteristics of patients with SARS-CoV-2 infection regarding pneumococcal colonization/infection. 

Pneumococcal infection 
(n=66), number of episodes (%) 

Pneumococcal colonization­
(n=10), number of episodes (%) 

Non-pneumococcal colonization 
(n=26), number of episodes (%) 

Age (years). 
mean (SD) 

68.9 (14) 53.5 (22.6) 53.2 (24) 

Female 14.9 (22.6) 7 (70) 13 (50) 

Underlying conditions 

Current or 
former smoker 

40 (60.6) 8 (80) 7 (26.92) 

None 
comorbidities 

10 (15.2) 3 (30) 14 (53.85) 

2 or  
more 
comorbidities 

47 (71.2) 6 (60) 7 (26.92) 

Clinical presentation 

Pneumonia 43 (65.2) 2 (20) 3 (11.54) 

Other 
respiratory 
infections 

23 (34.8) 8 (80) 23 (88.46) 

Severity and outcome 

Sepsis 13 (19.7) 0 (0) 0 (0) 

Respiratory 
failure 

46 (69.7) 3 (30) 2 (7.69) 

Hospital 
admission 

56 (84.8) 3 (30) 4 (15.38) 

ICU admission 15 (22.7) 0 (0) 1 (3.85) 

30­
day mortality 

11 (16.7) 0 (0) 0 (0) 

Vaccionation history 

SARS-CoV-2 37 (56.1) 10 (100) 22 (84.62) 

Influenza A 34 (51.5) 9 (90) 13 (50) 

PCV13 7 (10.6) 2 (20) 3 (11.54) 

PCV20 1 (1.5) 2 (20) 5 (19.23) 

PPV23 5 (7.6) 4 (40) 8 (30.77) 
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GPSC6-ST6521 lineage, a vaccine escape lineage (formerly serotypes 
9V and 14) detected in Spain and other European countries (González­
Dıáz et al., 2020). Similarly, MDR serotype 6C pneumococci were 
linked to GPSC47-ST386, as reported previously. 

A synergistic effect between SARS-CoV-2 and S. pneumoniae in 
lung inflammation has been demonstrated in mice, leading to increased 
lethality (Kanta Barman et al., 2022). In our study, despite the low 
frequency of pneumococcal colonization in SARS-CoV-2 patients, co-
infection with both microorganisms appears to lead to a worse outcome, 
particularly in patients not vaccinated against SARS-CoV-2. It should be 
noted that many of these episodes occurred at the beginning of the 
pandemic, when SARS-CoV-2 vaccines were not available. Then, our 
results may reflect the lack of immunity against SARS-CoV-2, the 
limited knowledge of the pathogen at the time, and the higher number 
of severe cases treated in the hospital during the first wave, which could 
have introduced a bias in the data. However, findings from a case series 
of  ICU-admitted patients  with IPD  and COVID-19 emphasized that  
vaccination against both pathogens remain the best strategy to mitigate 
severe disease outcomes (Almeida et al., 2022). 

Our study  has several  strengths and limitations. A major strength 
in the approach taken was to analyze the clinical association between 
SARS-CoV-2 and pneumococcus from a single center, which allowed 
for detailed analysis of both viral and bacterial lineages. This 
comprehensive perspective provides valuable insights into the 
dynamics of co-infections and disease progression during and after 
the pandemic. However, the study exclusively included adults, and we 
lacked data on pediatric populations, where the impact of RSV and 
pneumococcus may be more pronounced. Moreover, the low rate of 
pneumococcal colonization, observed in SARS-CoV-2 infected patients 
made it difficult to draw conclusions on the direct impact of SARS­
CoV-2 on IPD. Finally, we did not have data on previous SARS-CoV-2 
infections, which could influence disease severity and susceptibility to 
pneumococcal infections. 

To conclude, the COVID-19 pandemic significantly altered the 
epidemiology of IPD, with a sharp decline in cases likely driven by NPIs 
and reduced circulation of respiratory viruses. The low pneumococcal 
colonization rate observed in SARS-CoV-2-infected patients suggests 
that SARS-CoV-2 alone may not strongly predispose individuals to 
pneumococcal disease. However, the resurgence of IPD following the 
relaxation of NPIs, particularly during periods of increased RSV and 
influenza circulation, highlights the importance of understanding viral-
bacterial associations and maintaining vaccination programs. 
Continued surveillance of pneumococcal serotypes, colonization 
dynamics, and emerging lineages remains critical to inform 
prevention strategies. Further prospective and multicenter studies 
including other respiratory viruses are needed to provide a broader 
perspective on the interplay between viral and bacterial infections in the 
post-pandemic context, especially in adult population. 
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