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The escalating cancer burden in Sub-Saharan Africa (SSA), with projected

doubling of incidence and mortality by 2040, necessitates innovative, cost-

effective strategies for prevention, diagnosis, and treatment. While known

infectious triggers like HPV, hepatitis viruses, and H. pylori account for an

estimated 28.7% of cancers in SSA, the full scope of microbially-mediated

oncogenesis remains underexplored. We examine existing data and formulate

plausible hypotheses regarding the potential roles of additional infectious agents

in cancer development within SSA. We explore mechanisms through which

microbes may directly or indirectly contribute to oncogenesis, including the

action of viral oncogenes, induction of chronic inflammation, mutational

signatures, and the impact of immunosuppression, particularly in the context

of HIV. Potential microbial triggers warrant further investigation, such as viruses

(MMTV, CMV, polyomaviruses, SARS-CoV-2), bacteria (Fusobacterium

nucleatum, Cutibacterium acnes, Salmonella Typhi), fungi (Candida,

Aspergillus), parasites (Schistosoma japonicum and mansoni and Toxoplasma

gondii) and the complex interplay with the microbiome. Given the significant

challenges in establishing causation for microbial facilitators of cancer, with

traditional postulates showing limited utility, we propose a refined set of criteria

tailored to microbial oncogenesis, aiming to guide future research efforts. These

criteria incorporate elements of both Koch’s postulates and the Bradford Hill

framework, adapted to address the unique characteristics of microbial

interactions with human hosts. By leveraging existing knowledge and plausible

causal relationships, and by implementing advanced experimental tools such as

next-generation sequencing and multi-omics analyses, coupled with machine

learning approaches and collaborative, multidisciplinary research, we propose to

accelerate the identification of novel microbial links to cancer. This knowledge

may pave the way for targeted interventions such as new approaches for

screening and diagnosis, and strategies for prevention including vaccine
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development or modification of existing vaccines (or recommendations for

immunization timing and population targets). While acknowledging the

inherent complexities of studying polymicrobial interactions and the challenges

of translating in vitro findings to human populations, this work aims to provide a

framework for future research and intervention strategies to reduce the

escalating cancer burden and address global inequities in SSA. The ultimate

goal is to inform evidence-based public health policies and clinical practices that

will improve cancer outcomes in this vulnerable region.
KEYWORDS

infectious disease, criteria for microbial oncogenesis, cancer causation, sub-Saharan
Africa (SSA), oncovirus and cancer, infectious disease and cancer, microbiome
and cancer
Introduction

Cancer incidence and mortality in Sub Saharan Africa are

predicted to double by 2040 (Sharma et al., 2022). In 2020, annual

cancer incidence in Sub Saharan Africa (SSA) was estimated at 132

per 100,000 population (age standardized incidence rates) with a

mortality rate of 88.9 per 100,000 (Sharma et al., 2022). This equates

to 1.1 million new cases and 711,000 deaths from cancer in 2020. The

significant prevalence of HIV infection also leads to a higher cancer

burden in many parts of SSA with both increased incidence and

mortality observed (Casper et al., 2017; Yarchoan and Uldrick, 2018).

The rising burden of cancer is coupled with suboptimal access to

health care; diagnosis often comes too late for effective treatment or

after death (Akuoko et al., 2017; Espina et al., 2017; Mwamba et al.,

2023). When cancers are diagnosed early, potentially life-saving

therapeutics are frequently not available and access to care,

especially in rural and other impoverished, remote areas, is limited

with trained oncologists in very short supply (Grover et al., 2015; Ruff

et al., 2016; Mallum et al., 2024). Advances in chemotherapy and

radiation therapy in high income countries have markedly improved

five-year survival for many cancers (Siegel et al., 2021), but new

immunotherapies and chemotherapeutic drugs are extremely costly,

making them currently out of reach for the vast majority of people

living in SSA. Consequently, disparities in cancer burden are

increasing. While efforts are underway to bring immunotherapies

and advance precision medicine in Africa (Ruff et al., 2016), solutions

have not yet been identified to reduce costs and provide access to

most Africans. This drives a search for discoveries that could be

translated to low-cost, highly effective preventive, diagnostic and

therapeutic approaches.

One avenue for advancing cancer prevention, diagnosis and

screening, and therapy is to study microbial precipitators for cancer.

While not a mainstream cancer research focus, there are dramatic

examples of how understanding microbial links to cancers can be

transformative. For instance, determining that >90% of cervical cancer

cases, the top cause of cancer-related mortality among women in
02
Africa, is precipitated by infection with human papillomavirus (HPV),

led to the development and use of highly effective HPV vaccines,

which are essentially cancer vaccines (Chan et al., 2019; Lei et al.,

2020). It is now possible to prevent cervical cancer in Brazzaville just as

effectively as in San Francisco. However, there are still knowledge gaps

to fill regarding characteristics and scope of oncogenicity of HPV; for

instance, several prevalent oncogenic HPV serotypes (such as 35, 52

and 58) circulating in Africa are not included in the bivalent vaccines

currently used for national immunization programs in SSA

(Dehlendorff et al., 2021). HIV and HPV are also intrinsically

linked, where infection with one, increases infection rates for the

other. Moreover, increased cancer progression rates of HPV in the

context of HIV infection are significant (Liu et al., 2018; Marima et al.,

2021). Vaccine formulations with higher valency will be required to

optimize prevention of HPV and subsequently cervical cancer.

Optimized screening tests, including self-testing, for detecting HPV

in vaginal secretions are also advancing the capacity to save lives

through early detection and treatment of cervical cancer (Chan et al.,

2019; WHO, 2022). And, importantly, HPV has been shown to cause

other cancers, including those that occur in men; yet, currently, the

vaccine is routinely given to only girls and not boys, throughout most

of Africa.

The effectiveness of prevention of hepatocellular cancer via

hepatitis B immunization provides additional evidence for the

value of filling knowledge gaps on microbial facilitation of

cancers. Vaccines against hepatitis B virus and effective

therapeutics against hepatitis C have made attainable the

prevention of the vast majority of hepatocellular cancers that are

not solely related to chronic alcohol use with attendant cirrhosis

(Levrero and Zucman-Rossi, 2016; Virzì et al., 2018; Hwang et al.,

2019; Flores et al., 2022).

It is estimated that 28.7% (range: 18-53%; Figure 1) of cancers

occurring in sub-Saharan Africa are linked to a known infectious

trigger (Plummer et al., 2016; de Martel et al., 2020) with the main

contributor in this estimate being HPV-related cancers (15% of

cancers ranging from 10-38.3%) (Figure 1), including oral and
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throat, penile, and anal cancers in addition to cervical cancer, and

HBV HCV, contributing to hepatocellular carcinoma. In addition,

some lymphomas (Epstein-Barr virus) and head and neck cancers

(Epstein-Barr virus and HPV), gastric cancers (Helicobacter pylori),

bladder cancers (Schistosoma haemotobium), and Kaposi’s sarcoma

(Human Herpesvirus 8—HHV8, also referred to as Kaposi’s

Sarcoma Herpesvirus-KSHV), have known infectious mediators;

however, interventions have not been developed or are not widely

used for these other facilitators for cancer, thus far. Prevalence rates

for some of these infectious triggers are extremely high with H

pylori prevalence ranging to 50-70% in SSA or HPV prevalence

similarly showing reports up to 64% (Mbulawa et al., 2018; de

Martel et al., 2020; Asempah, 2021; Emmanuel et al., 2024).

However, for many cancers, there is lack of systematic

surveillance in SSA; thus, prevalence is likely substantially

underestimated (Omotoso et al., 2023). The pathogen attributable

proportion of cancers will likely become substantially higher than

estimated, as new links between microbes and oncogenesis, the

focus of this paper, are still being elucidated (de Martel et al., 2020;

Ngwa et al., 2022).
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In this review, we focus on plausible hypotheses to suggest

pathways for additional microbially mediated cancers. Recognizing

the immense potential to modify cancer disease burden through the

understanding of the role of microbial factors in triggering cancer

and/or facilitating its spread and translating that knowledge to new

products and/or strategies, we review available data on cancers for

which evidence suggests that there may be infectious mediators.

Beyond the scope of this paper (but a worthwhile exercise) is

detailing the many gaps in using existing knowledge of infection-

cancer relationships to develop tools (or optimally use existing

tools) or strategies for prevention of cancers; for instance, the

demonstrated relationship between H. pylori and gastric cancer

(Parsonnet et al., 1991) has not led to routinely available approaches

to prevent that cancer, nor has the known association of Epstein-

Barr virus with Burkitt and Hodgkin lymphoma, and

nasopharyngeal carcinoma (Pathmanathan et al., 1995; Brady

et al., 2007; Carbone and Gloghini, 2018; Su et al., 2023). Our

intent here is to provide a starting point to identify knowledge gaps

and define priorities for research on novel infectious mechanisms

for oncogenesis.
FIGURE 1

Pathogen attributable fractions of cancer incidence in Africa by country. The map was created with mapchart, using data from the International
Agency for Research on Cancer (IARC). Cancers due to HPV, HBV, HCV, and H. pylori in 2018 provide the bases for the calculations. Full details for
pathogen attributable fraction calculations and data can be found in the following references and within a tool available (and referenced) on the
IARC website (de Martel et al., 2020; IARC, 2020; Ngwa et al., 2022).
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How infections cause cancer

Viral oncogenes and proteins

Pathway alterations and expression of viral oncoproteins are

observed in multiple viruses that are directly carcinogenic (Burd,

2003; Young and Murray, 2003; Levrero and Zucman-Rossi, 2016;

Kuss-Duerkop et al., 2018; Virzì et al., 2018; Afzal et al.,

2022; Burton and Gewurz, 2022; Marongiu et al., 2022).

While other unidentified processes are likely, understanding

known mechanisms may be helpful for discovering previously

unrecognized microbial facilitators of oncogenesis. For example,

HPV oncogenesis is mediated by viral oncogenes, such as E6

(Oyervides-Muñoz et al., 2018); E6 recruits intracellular E3

ubiquitin ligase (also named E6AP), which targets p53 for

proteasomal degradation (Li et al., 2019). P53 is a tumor

suppressor gene which plays critical roles in pathways to prevent

DNA damage, marking cells for apoptosis or delaying cell cycle

progression in the presence of DNA damage. HPV infection,

therefore, inactivates p53 and leads to unregulated cell division,

cell growth, cell survival, and DNA damage promotion. E7, another

HPV oncogene, also interacts with the p53 pathway through

retinoblastoma tumor suppressor protein (pRb), resulting in

unregulated cell cycle progression. These oncogenes/proteins are

also known to drive other oncogenic pathways, including

telomerase regulation. The cancer cells depend on constitutive

expression of these proteins, making them prime targets for

therapeutic vaccines and biomarker detection (Burd, 2003;

Ghebre et al., 2017; Marima et al., 2021).

Oncogene expression tends to interfere with important cell

regulation or immortalization pathways. These can also be mediated

by host-microbe interactions through proteins which mimic host

proteins and interact with key signal pathways causing the

overexpression of oncogenes and suppression of tumor suppressor

proteins (Guven-Maiorov et al., 2019; Tempera and Lieberman, 2021).

For example, EBV produces peptides (BHRF1 and BALF-1) and

microRNAs which inhibit Bcl-2 and prevent apoptosis (Young and

Murray, 2003; Brady et al., 2007; Carbone and Gloghini, 2018; Burton

and Gewurz, 2022). Similarly, KSHV (HHV8) (for which

seroprevalence ranges between 30-90% in SSA) inhibits ORF16

which is required for apoptosis (Wan et al., 2024). Viral proteins

may also act synergistically with existing cancers by inducing the

Warburg effect, i.e. where cells switch to glycolysis fermentation to

generate energy instead of oxidative phosphorylation, allowing for the

usage of alternative metabolites and the switching to anaerobic

respiration (Liberti and Locasale, 2016). For example, HPV, KSHV

and Merkel cell polyomavirus (MCPyV) affect glycolysis and induce

increased glucose utilization in cancer cells, resulting in stress in healthy

surrounding cells. EBV infection can modify lipid and cholesterol

metabolism to induce anaerobic metabolism (Burton and Gewurz,

2022). Further mechanisms are reviewed elsewhere (Tempera and

Lieberman, 2021)

Direct integration of viruses can cause differential expression of

key proteins affecting the cell cycle, DNA repair mechanisms, and
Frontiers in Cellular and Infection Microbiology 04
apoptosis, each important for oncogenesis. For example, HTLV-1

integrates into CD4+ T-cells causing chromosomal instability,

mediated by its oncoprotein RNF8 (Zhi et al., 2020). Integration

of HBV can both cause genome instability, and also leads to chronic

inflammation due to sustained presence of HBV and its antigens

(Borgia et al., 2021; Jin et al., 2023). For HPV and MCPyV,

integration into epithelial cells (Yang and You, 2022; Karimzadeh

et al., 2023), allows for cell immortalization of these cells due to the

constant presence of the oncogenic driver (Elkhalifa et al., 2023).
Indirect and undefined mechanisms

Pathophysiology of some infectious diseases overlap with

oncogenic mechanisms in ways which could promote cancer

initiation and growth. Infection with HBV and HCV, for instance,

are associated with chronic infection which may lead to chronic

inflammation, thereby causing type 2 carcinogenic effects (Borgia

et al., 2021; Yang et al., 2021). These viruses are synergistically

carcinogenic with other factors such as aflatoxins and liver cirrhosis

due to alcohol usage (Borgia et al., 2021; Jin et al., 2023). The links

between HBV and HCV and hepatocellular carcinoma are well

established, but chronic HBV and HCV infections also may be

associated with other cancers, especially gastric adenocarcinomas.

For instance, a metanalysis of ten studies found that patients with

HBV infection had a higher risk (hazard risk =1.26;95% CI=1.08-

1.47)) for gastric cancer when compared with controls (without HBV

infection) (Chen et al., 2019; Yang et al., 2021; Yu et al., 2023b).

Hypothesized mechanisms awaiting confirmation include chronic

inflammation resulting in carcinogenesis, direct viral integration into

gastric epithelial cells, expression of viral proteins (like HBx which

interferes with cell signaling pathways, gene expression and

apoptosis) and immune response modulation (Yang et al., 2021).

Likewise, EBV may be associated with a subset of gastric

adenocarcinoma; chronic inflammation is one hypothesized

mechanism (Salnikov et al., 2024).
Immunosuppression

HIV causes cancer both by its integration into oncogenes, and,

also through an indirect mechanism of immune suppression, which

allows existing cancers to progress or oncoviruses to establish

infection. HIV/AIDS progression is accompanied by AIDS-

defining cancers, such as Non-Hodgkin lymphoma (NHL),

Kaposi sarcoma, and cervical cancer) (Beral et al., 1990;

Martıńez-Maza and Breen, 2002; De Martel et al., 2015; Bohlius

et al., 2016; Yarchoan and Uldrick, 2018), with cancer risk in people

living with HIV (PLWHIV) significantly elevated, ranging between

25-40%, despite widely accessed antiretroviral therapy (De Martel

et al., 2015). Lung cancer, Hodgkin lymphoma, hepatocellular

cancer, and anal cancers are associated with HIV infection despite

effective ART treatment, suggesting a possible direct oncogenic

effect of HIV beyond immune suppression (Khandwala et al., 2021;
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Navarro et al., 2021; Haas et al., 2022; McGee-Avila et al., 2024). For

Burkitt lymphoma, HIV may directly drive oncogenesis through its

immunomodulation and engagement of C-C motif chemokine

receptor 5 (CCR5) (Samson et al., 1996; Silverberg et al., 2007;

Bohlius et al., 2009; Martorelli et al., 2015; Shindiapina et al., 2020).

HIV appears to potentiate the oncogenic effect of some viruses to

increase risk for cancer. For example, the attributable fraction of

EBV-associated Hodgkin lymphoma in the general population is

20-50%, but in HIV-infected patients, 75%-100% of Hodgkin

lymphoma is attributable to EBV, possibly due to aberrant CD4

T-cell responses to EBV infection (Carbone and Gloghini, 2018;

Shindiapina et al., 2020; Navarro et al., 2021).

Other types of immunosuppression are similarly linked to

cancer progression (Haas, 2019; Herrera et al., 2019); for

example, advanced age leading to immune senescence and

immune suppression drugs are both highly associated with cancer

and cancer progression (Haas, 2019; Fu et al., 2023). In addition,

tumors facilitate their growth and metastasis by actively suppressing

the immune system in their direct microenvironment (Arner and

Rathmell, 2023; Tie et al., 2022).
Criteria for causation

Proving that a microbe facilitates cancer is not straightforward

and may vary by pathogen. The Bradford Hill criteria for causation

provide epidemiologic evidence for a causal relationship between an

exposure and cancer (Bradford Hill, 1965; Table 1). The criteria

were originally developed to examine environmental exposure (like

tobacco smoke, dyes, and other chemicals), but they fall short when

assessing potential microbial facilitators of cancer, since microbes,

as living organisms, interact with humans in dynamic ways that are

in contrast with human interactions with static substances

(Table 1B). Likewise, Koch’s postulates can be useful for

establishing the cause of a novel acute illness due to an infectious

disease, but is less relevant for diseases for which there are long

delays between exposure and disease expression

Given that study of microbial facilitators for cancer is an

emerging discipline, the absence of relevant causation criteria

impedes research focus and advances. Adapting and building

upon Bradford Hill criteria and Koch’s postulates, we propose a

set of criteria for hypothesis generation, to guide study, and to

confirm specific microbial oncogenesis (Table 2).
Potential microbial triggers for cancer
needing further investigation

A variety of microbes are hypothesized to trigger oncogenesis

with a number of criteria for causation met (including the plausibility

criterion) (Table 3), but each needs further investigation. We

recognize that our list of hypothesized and potential microbial

facilitators is likely incomplete—our intent is to describe those

microbial cancer pairs for which research has provided some

compelling clues. A few examples are provided below.
Frontiers in Cellular and Infection Microbiology 05
A virus originally found in mice

A retrovirus known as mouse mammary tumor virus (MMTV)

has been shown to cause mammary tumors in rodents; multiple

studies have shown that human mammary tumor virus (HMTV),

which is 90-95% homologous to MMTV is present more often in

human breast cancer tissue when compared with healthy breast tissue

(Lawson and Glenn, 2022; Parisi et al., 2022). Using our proposed

criteria for causation, HMTV/MMTV meets criterion 4 (with

oncogenesis demonstrated in an animal model), and partially meets

criterion 2 (Consistent detection of the microbe - virus, bacterium,

fungus, or parasite- in cancer tissues compared to healthy controls)

with consistent findings in some laboratories, but not across all

geographies. When detected, it is not clear whether the virus is part

of the causation pathway or whether breast cancer tissue is simply

conducive to colonization with the virus (Lawson and Glenn, 2022).

Infections with viruses like MMTV may induce signaling alterations

which causes negative effects only under certain conditions.

Microbiome characteristics might determine such a conducive
TABLE 1 Existing approaches for establishing causation of disease.

1A. Bradford Hill criteria for causation Designed to assess
whether environmental exposures or ingestions are
associated with specific diseases

1. Effect size (strength of association)

2. Reproducibility (consistency)

3. Specificity (between a factor and effect)

4. Temporality (effect has to occur after the exposure and after an expected
delay between cause and effect for cancer)

5. Dose-response relationship (biological gradient)

6. Plausibility (there should be a plausible mechanism for cause and effect
although this might be affected by state of current knowledge)

7. Coherence between epidemiologic and laboratory findings

8. Experimental evidence

9. Analogy (between observed association and other associations)

10. Deletion or reversibility effect (if the exposure is deleted then the effect
should be reduced or deleted)
1B Koch’s postulates
Designed to identify microbial causes for acute infec-
tious diseases of unknown cause

1. Microbe should be found in abundance in all organisms suffering from the
disease but not found in healthy organisms (not accounted for in chronic
infection or carriage)

2. Microorganism must be isolated from a diseased organism and grown in
pure culture (not relevant for microbes that do not grow in pure culture and
not relevant for viruses that utilize host cells for growth)

3. The cultured microorganism should cause disease when introduced into a
healthy organism

4. The microorganism must be re-isolated from the inoculated, diseased
experimental host and identified as identical with the original specific
causative agent.
Criteria as per Bradford-Hill’s and Koch’s original criteria (Bradford Hill, 1965; Fedak et al.,
2015; Opal, 2017).
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TABLE 2 Proposed microbial oncogenesis criteria incorporating Koch’s postulates and Bradford-Hill criteria.

Criteria Definition/details Tools

1. Epidemiologic Association (**) Consistent association of a microbe (or a combination
of microbes) with a specific cancer type within a
population (considering demographics and host factors)
of humans (or across all populations), especially when
compared to people within the same population(s)
without cancer (Mason et al., 2021)

Case-control and Cohort (retrospective and
longitudinal) studies
Histopathology, immunochemistry, PCR, Genomics
and mass spectrometry
Strong association when consistent findings across
different geographical regions and consistent risk ratios
in case-control or cohort studies

2. Histopathologic association (**) Consistent detection of the microbe (virus, bacterium,
fungus, or parasite) in cancer tissues compared to
healthy controls (Ziegler et al., 2021)

In Vitro assays (PCR, FACS, imaging)
Histopathology immunochemistry, PCR, Genomics
and mass spectrometry

3. Temporal association (**) Evidence that infection precedes onset of cancer (Bosch
et al., 1995; Walboomers et al., 1999)

Longitudinal (long term) studies

4. Experimental evidence of facilitation of oncogenesis
(**/***) +

Induction of cancer/precancerous changes upon
introduction of the isolated microbe into appropriate
models. Does oncogenic cellular transformation occur
when a microbe is introduced into an animal (ideally a
primate or other human-representative) model or tissue
mode (Ziegler et al., 2021).

3D biosystems (organoids) or animal models

5. Molecular and Multi-omics evidence for
interaction (***)

•Epigenetics (e.g. DNA methylation changes in H.
pylori or HPV E6 oncogene resulting in P53
degradation), as well as mutational signatures
•Mutation effects (stimulating cellular mutations
promoting cancer)
•Stimulating immune evasion mechanisms reducing
immunosurveillance for emerging cancer cells
Integration of microbial DNA into host genome

in vitro assays, organoids, multi-omics
assessments including:

a. Molecular Evidence For bacteria: Identification of toxins, effector proteins, or metabolites that alter cellular signaling
For viruses: Characterization of viral oncoproteins or insertional mutagenesis
For fungi: Demonstration of mycotoxins or immune-modulating molecules with carcinogenic potential
For parasites: Identification of chronic inflammatory responses or direct tissue damage mechanisms
Evidence of microbial interference with DNA repair, cell cycle regulation, apoptosis, or immune
surveillance (Dyson et al., 1989; Franco et al., 2005; Botelho et al., 2009; Zhu et al., 2021)

b. Genomic evidence:
c. Transcriptomic evidence
d. Proteomic evidence
e. Metabolomic evidence
f. Microbiome analyses

• Microbial DNA sequences or integration sites in tumor genome;
• Host genetic susceptibility factors that enhance oncogenic potential of specific microbes, including
demonstration of how microbial exposure can alter (or promote) known host genetic risk factors for
cancer.
• Demonstratable facilitation of cancer-associated mutational signatures (Péneau et al., 2022)
Expression of microbial genes or altered host gene expression profiles (Ego et al., 2005)
Detection of microbial proteins or altered host protein responses (Dyson et al., 1989; Celegato et al.,
2022)
Microbial metabolites or altered host metabolic pathways (Pérez Escriva et al., 2025)
Consistent dysbiosis patterns associated with specific cancers (Guo et al., 2021; Pourali et al., 2024)

6. Prevention (***) Does preventing the infection (or removing exposure to
the microbe) reduce cancer or evidence of oncogenesis
(Fukase et al., 2008; Yoon et al., 2014)

Clinical trials
Relevant animal models

For viruses: Reduced cancer incidence following vaccination (e.g., HPV, HBV)
For bacteria: Cancer prevention through antibiotic treatment or bacterial elimination
For fungi: Antifungal intervention effects on precancerous lesions
For parasites: Impact of antiparasitic treatment on cancer development
Prevention trials showing reduced cancer incidence after targeting the microbe

7. Dose Response relationship (**) Relationship of severity or chronicity of the presumed
offending infection with cancer initiation and severity
in human longitudinal studies or in experimental
models demonstrate the association of infectious dose
with development of cancer (Chen et al., 2006; Yang
et al., 2016)

Organoids, animal models, or clinico-
epidemiologic longitudinal studies

8. Plausibility (*) Are there plausible mechanisms for considering a
potential role for a microbe

Knowledge-based; i.e. understanding the
physiology of microbial interaction with humans
may suggest or support a role in carcinogenesis

(Continued)
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environment. Recent studies have correlated gut microbiome features

with breast cancer stages and progression, although a causative link

has also not been established (Lee et al., 2023; Sohail and Burns, 2023;

Viswanathan et al., 2023).
Cytomegalovirus

CMV is highly prevalent in SSA with a pooled prevalence of

81.9% (55–97%) (Bates and Brantsaeter, 2016). The potential

oncogenicity of CMV has long been a focus for study. CMV

proteins and nucleic acids have been found (meeting Criteria 5d

and 5e [Tables 2, 3] in some, but not all, studies) within glioblastoma

multiforme tumors suggesting that the virus may play a role in

facilitating oncogenic transformation or progression of glioblastomas

(Scheurer et al., 2008; Yang et al., 2022a; Mercado et al., 2024).

Human astrocytes infected with CMV have formed glioblastoma-like

cancers in mice models (Guyon et al., 2024) (Criterion 2) and

infection with CMV leads to poorer prognosis for glioblastoma

(Criterion 6); targeting CMV infected cells has shown potential for

glioblastoma therapeutics (Yang et al., 2022a; Mercado et al., 2024).

While the association has not been conclusively confirmed, potential

mechanisms include chronic inflammation, immune evasion or

modulation, and viral gene expression. A variety of characteristics

of CMV infection might contribute to cellular transformation to

cancer: induction of expression of pro-angiogenic factors, interaction

with oncogenic signaling pathways, such as the phosphatidylinositol

3-kinase (PI3K)/Akt pathway, which is often dysregulated in cancers,

and epigenetic changes like DNA methylation and histone changes,

which can contribute to tumorigenesis (Chan et al., 2010). Among the

cancers contributing to substantial burden in Africa, some studies

have suggested that CMV may have a role in breast, prostate and

colorectal cancers, among others, presumably with similar

mechanisms that have been hypothesized for a putative role with

glioblastomas (Yu et al., 2023a).
Polyomavirus

Polyomaviruses have been linked to colon cancers, with

JCPyV and BK polyoma viruses showing the strongest causal
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links (Gorish et al., 2019; Shoraka et al., 2020). Although the

majority of humans are latent carriers for these viruses and no

comprehensive SSA data was found, immunosuppression either

through disease or natural immune senescence can lead to

reactivation. Higher levels of JCPyV and BK are found in colon

cancer tissues (Criterion 2), as well as in solid B cell leukemia, when

compared with non-cancerous tissue, and have been identified in

many other cancers (Gorish et al., 2019; Loutfy et al., 2017).

Injection of T antigen derived from JCPyV in mice was shown to

cause a variety of cancers including neural and breast and

hepatocellular cancers (Criterion 4) (Zheng et al., 2022).

Similarly, Merkel Cell polyoma virus shows high prevalence in

skin cancer tissues (Klufah et al., 2021).
Fusobacterium nucleatum

A variety of studies have suggested that the oral anaerobic

bacterium F. nucleatum may have a role in initiating oncogenic

transformation in colonic and rectal cells (Kostic et al., 2013). While

more study is needed to confirm this potential association,

especially within African settings, there is evidence that colorectal

cancer cells when colonized with specific subclades of F. nucleatum,

may increase the potential for local tumor spread and metastasis

(Kostic et al., 2013; Rubinstein et al., 2013; Bullman et al., 2017; Ou

et al., 2022; Wang and Fang, 2022; Zepeda-Rivera et al., 2024). We

further discuss this possibility within the section on microbiomes.
Cutibacterium acnes

C. acnes (a skin commensal, implicated in superficial skin

infections, especially acne vulgaris) has been shown to colonize

the prostate, resulting in chronic inflammation, which appears to be

a pivotal factor for prostate cancer (Davidsson et al., 2021;

Goldstein and Mascitelli, 2024). Studies have demonstrated the

presence of C. acne in prostate cancer specimens in much higher

proportions than in non-cancerous prostate tissue (Criterion 2)

(Kakegawa et al., 2017). Furthermore, cohort epidemiologic studies

have shown that severe acne during adolescence is associated with a

higher likelihood of prostate cancer later in life (Criterion 1) (Zhang
TABLE 2 Continued

Criteria Definition/details Tools

9. Impact of co-Factors (*) Microbial carcinogenesis occurs (or is accelerated) in
an environment with promotive host factors, such as
genetic risk, immunodeficiencies, nutritional status,
and/or with environmental factors (including but not
limited to known carcinogens) (Kim et al., 2012;
Gargiulo Isacco et al., 2023)

Epidemiologic and laboratory studies in humans
and animal models
frontiersin
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**Highly suggestive or supportive information for association
*Further investigation required.
+For criterion 4, primate models or non-human primate models are rated *** while mouse models, or in vitro models are rated **. Organoid models are an evolving field and need further
assessment as to their confirmatory strength.
Context applies in all these criteria as new discoveries are being made, and new technologies are developed. This table is unable to provide all the nuances that may apply. For example, criteria
such as epidemiological data are associated with a level of significance.
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TABLE 3 Known and hypothesized links between infectious disease and cancer based on the proposed causation criteria.

Pathogen Cancer
associations

Level
of evidence

Criteria met References

Virus

Epstein-Barr virus Lymphomas,
nasopharyngeal,
head and
neck cancer

Confirmed 1, 2, 3, 4, 5, 7, 8, 9 (Young and Murray, 2003; Brady et al., 2007;
Carbone and Gloghini, 2018; Burton and Gewurz,
2022; Su et al., 2023)

Stomach cancer Medium 1, 2, 3, 5, (7, 8)
may be dependent on cofactors

(Young and Murray, 2003; Tavakoli et al., 2020;
Jeong et al., 2022; Salnikov et al., 2024)

Breast cancer,
squamous cell
carcinomas
(oral, conjunctiva)

Hypothesized (1) (Núñez-Acurio et al., 2020; Tavakoli et al., 2020;
Jeong et al., 2022; Julius et al., 2022;
Heawchaiyaphum et al., 2023; Salnikov
et al., 2024)

Hepatitis B Virus Hepatocellular
carcinoma

Confirmed 1, 2, 3, 4, 5, 6, 7, 8, 9 (Levrero and Zucman-Rossi, 2016; Zeisel et al.,
2021; Flores et al., 2022; Péneau et al., 2022; Cui
et al., 2023)

Hepatitis C Virus Hepatocellular
carcinoma

Confirmed 1, 2, 3, 4, (5), 6, 7, 9
mechanism partially understood

(Nash et al., 2010; Hwang et al., 2019; Koike and
Tsutsumi, 2021)

Non-
Hodgkin lymphoma

Strong 1, (2, 3, 4, 5), 6, (7), 8 (Tasleem and Sood, 2015; Alkrekshi et al., 2021)

HHV8 Kaposi sarcoma Confirmed 1, 2, 3, 4, 5, 8, 9 (Akula et al., 2001; Dollard et al., 2010; Dow et al.,
2013; Newton et al., 2018; Wan et al., 2024)

HIV** Cofactor (Kaposi
sarcoma,
cervical cancer)

Confirmed (as a
co-factor)

1, 3, 6, 7, 8, 9 (Liu et al., 2018; Looker et al., 2018; Yarchoan and
Uldrick, 2018; Atallah-Yunes et al., 2020)

Non-AIDS defining
(NHL, Hodgkin,
liver, lung, anal,
head and neck)

Medium (as a
co-factor)

1, likely indirect (Brune et al., 2016; Sigel et al., 2017; Yarchoan and
Uldrick, 2018; Khandwala et al., 2021; Navarro
et al., 2021; Haas et al., 2022; McGee-Avila
et al., 2024)

HPV Cervical, head and
neck, oral, throat,
cervical, penile, anal

Confirmed 1, 2, 3, 4, 5, 6, 7, 8, 9 (Williams et al., 2010; Picard et al., 2016; Hoppe-
Seyler et al., 2018; Oyervides-Muñoz et al., 2018;
ICO/IARC Information Centre on HPV and
Cancer, 2023; Jensen et al., 2024)

Prostate, esophageal,
colorectal and
breast cancer

Hypothesized (1, 2, 3), 8 (Ludmir et al., 2015; Hsu et al., 2022; Kudela et al.,
2022; Tsydenova et al., 2023)

Merkel cell
polyoma virus

Merkel
cell carcinoma

Confirmed 1, 2, 4, 5, 9, (Arora et al., 2012; Yang and You, 2022)

HTLV-1 Leukemia,
Lymphomas
Acute T-
cell Lymphoma

Strong 1, 2, 3, 4, 5, 8
ATL is rare in endemic areas, despite high
HTLV-1 prevalence. Potentially
cofactor dependent

(Bangham, 2023; Zhi et al., 2020)

Polyoma viruses Colon cancer Hypothesized (1, 2), 8 (Shoraka et al., 2020; Zheng et al., 2022)

Cytomegalovirus Glioblastoma Medium (1, 2) (4, 5) (8, 9) (Scheurer et al., 2008; Yang et al., 2022a; Guyon
et al., 2024; Mercado et al., 2024)

Mouse Mammary
Tumor Virus/
Human Mammary
Tumor Virus

Breast cancer Hypothesized (2), (8)
4 (in mouse models only; not HMTV)

(Lawson and Glenn, 2022; Parisi et al., 2022)

SV40 Mesothelioma,
glioblastoma

Hypothesized (1, 2), (8, 9)
4 (mice)

(Rotondo et al., 2019)

Human Herpes
Virus 6

Lymphomas/
glioblastoma

Hypothesized (1, 2), 8/
1, (2, 3), 8 ±

(Kiani et al., 2016; Gu et al., 2019; Wells et al.,
2019; Chen et al., 2023)

SARS-CoV2 – Hypothesized 8 (Jahankhani et al., 2023)

(Continued)
F
rontiers in Cellular an
d Infection Microbiol
ogy
 08
 frontiersin.org

https://doi.org/10.3389/fcimb.2025.1625818
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


van Dorsten and Breiman 10.3389/fcimb.2025.1625818
TABLE 3 Continued

Pathogen Cancer
associations

Level
of evidence

Criteria met References

Bacteria

Helicobactor pylori Gastric Confirmed 1, 2, 3, 4, 5, 6, 7, 8, 9 (Parsonnet et al., 1991; Franco et al., 2005;
Salvatori et al., 2023)

Lung/
Esophageal

Under
investigation

(1)/
1, 6,

(Islami and Kamangar, 2008; Mounika, 2013)

Fusobacterium
nucleatum

Colorectal Strong 1, 2, 4, 5, 8, (9) (Kostic et al., 2013; Ou et al., 2022; Wang and
Fang, 2022; Zepeda-Rivera et al., 2024)

Streptococcus
gallolyticus (S. bovis)

Colon cancer Strong 1, 2, 4, 5, 8, (9) (Abdulamir et al., 2011; Kreikemeyer et al., 2018;
Eldegla et al., 2021; Şahin et al., 2023; Taylor
et al., 2023)

Salmonella Typhi Gall bladder Medium 1, (4, 5), 8 (Nagaraja and Eslick, 2014; Sepe et al., 2020;
Upadhayay et al., 2022)

Chlamydia
trachomatis

Cervical cancer Medium
(co-factor)

1, (2), (4, 5), 8, 9 (Zhu et al., 2016; Challagundla et al., 2023;
Gargiulo Isacco et al., 2023)

Escherichia coli Colorectal cancer,
UTI leading to
bladder cancer,

Medium 1, 4, (5), (8, 9) (Abd-El-Raouf et al., 2020; Lichtenstern and
Lamichhane-Khadka, 2023)

Peptostreptococcus
anaerobius

Breast
cancer, colorectal

Medium (new) (1, 2), (4) ± (Tsoi et al., 2017; Long et al., 2019; Gu et al., 2023;
Hurst et al., 2024; Liu et al., 2024)

Microbiome
(dysbiosis)

Colorectal, breast,
pancreatic, cervical,
blood cancers

Co-factor,
therapy
modulating

1, 2, (4)
many confounders

(Francescone et al., 2014; Koay et al., 2018;
Kadosh et al., 2020; Ciernikova et al., 2021; Guo
et al., 2021; Akbar et al., 2022; Sohail and Burns,
2023; Pourali et al., 2024)

Cutibacterium acnes Prostate Hypothesized (1, 2), 8 (Davidsson et al., 2016, Davidsson et al., 2021;
Sayanjali et al., 2016; Zhang et al., 2018)

Bacteroides fragilis Colorectal Hypothesized (1, 2), 4, 5, (8) (Cheng et al., 2020; Scott et al., 2022; Dadgar-
Zankbar et al., 2023)

Mycoplasma Lung,
breast, ovarian

Hypothesized,
co-factor

(1, 2, 5, 8) (Tantengco et al., 2021; Yacoub et al., 2021; Pang
et al., 2023; Benedetti et al., 2024)

Parasites

Schistosoma
haematobium

Bladder cancer Confirmed 1, (2), 3, (4, 5), 6, 7, 8 (Botelho et al., 2009; Zaghloul et al., 2020)

Clonorchis sinensis Cholangiocarcinoma Confirmed 1, (2), 3, 4, 5, 6, 7, 8 (Shin et al., 2010; Wonid et al., 2019; Chang et al.,
2021; Ren et al., 2025)

Opisthorchis viverrin Cholangiocarcinoma Confirmed 1, (2), 3, 4, 5, 6, 7, 8 (Sripa et al., 2007, Sripa et al., 2012; Perakanya
et al., 2022)

Schistosoma mansoni Hepatocellular Medium
(co-factor)

(1, 2, 3, 4, 5, 6), 7, 8 (Toda et al., 2015; Roderfeld et al., 2020; von
Bülow et al., 2021)

Schistosoma
japonicum

Hepatocellular Medium
(co-factor)

(1, 2, 3, 4, 5, 6), 7, 8 (Liu et al., 2022; Kato et al., 2024; Sheng
et al., 2024)

Entamoeba
histolytica

Colorectal cancer Hypothesized (1, 2), 8 (Ankri, 2015; Goel et al., 2018; Haghighi
et al., 2022)

Trichomonas
vaginalis

Cervical, prostate Hypothesized (1, 2), 8 (Zhang et al., 2023)

Toxoplasma gondii Glioblastoma Hypothesized (1), (5), 8 (Zhou et al., 2019; Hodge et al., 2021; Abdollahi
et al., 2022; Jung et al., 2022)

Fasciola hepatica Liver
cirrhosis/
cholangiocarcinoma

Hypothesized (1), 8 (Machicado et al., 2016; Tanabe et al., 2024)
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et al., 2018). To demonstrate causation, future studies must evaluate

and reproducibly confirm other criteria for causation, as well as

validate the epidemiologic evidence. Investigations carried out thus

far, have yielded inconsistent results (Drott et al., 2010; Sayanjali

et al., 2016). Furthermore, existing data are from European studies

with a lack of data from Africa, where prostate cancer appears to

occur at an earlier age and can be more aggressive (Davidsson et al.,

2016; Janivara et al., 2024). That gap needs to be filled to drive

further research that could lead to preventive approaches, assuming

a triggering role was established.
Salmonella Typhi

S Typhi can colonize the gall bladder following symptomatic

typhoid fever or asymptomatic systemic infection, resulting in

chronic carriage in 1-4% of patients acutely infected. In SSA there

are 1.2 million acute typhoid fever cases annually; however, it is

unclear how many of these infections lead to chronic carriage (Kim

et al., 2024). Moreover, there are distinct genotypes in SSA that have

a higher propensity for invasive disease and antibiotic resistance —

both factors could influence potential for chronic infection

(Kingsley et al., 2009). Gall bladder colonization results in chronic

inflammation directly and by stimulated the formation of

gallstones. A meta-analysis of 17 studies suggested that chronic S
Frontiers in Cellular and Infection Microbiology 10
Typhi infection of the gall bladder is associated with gallbladder

cancer (Criterion 1) (Nagaraja and Eslick, 2014; Upadhayay et al.,

2022). S Typhi has a high prevalence in sub-Saharan Africa with a

substantial proportion of infections being undiagnosed or

untreated. This is coupled with the increasing incidence of

multidrug resistance S Typhi, and low vaccination levels (Kariuki

and Onsare, 2024; Khan et al., 2022).
SARS-CoV-2

While SARS-CoV-2 has not yet been linked to specific cancers

(Jahankhani et al., 2023), there has not been sufficient follow-up

period to observe an effect. However, this virus has distinct

infection-associated patterns which may contribute to being an

oncogenic virus. For instance, SARS-CoV-2 causes RAAS (renin-

angiotensin-aldosterone system) pathway dysregulation, induces

degradation of the tumor repressor retinoblastoma protein, via

nsp15 and P53 via nsp3, affects cell cycle through among others

nsp7, interferes with DNA methylation through NSP8, and

generates reactive oxygen species (ROS), all common pathways

involved in oncogenesis, making a link to cancer plausible

(Criterion 9) (Jahankhani et al., 2023). Evidence of prolonged,

persistence of replicating SARS CoV2 in tissues (Yang et al.,

2024) raises a potential for chronic inflammation which may also
TABLE 3 Continued

Pathogen Cancer
associations

Level
of evidence

Criteria met References

Parasites

Helminths (chronic
inflammation),
leukemia,
liver cancer

Hypothesized 8 (Oikonomopoulou et al., 2016; Pastille et al., 2017;
Sava et al., 2020; Berriel et al., 2021)

Fungi

Aspergillus flavus,
Aspergillus
parasiticus
(aflatoxin)

Liver Confirmed 1, (2), 3, 4, 5, 6, 7, 8, 9 (Zhu et al., 2021; Jin et al., 2023; Khan et al., 2024)

Lung Hypothesized (1), (5), 8 (Cui et al., 2015; Kang et al., 2020)

Candida albicans Oral, esophageal,
anogenital cancer

Hypothesized (1, 2), 8 (Di Cosola et al., 2021; Wang et al., 2023a, Wang
et al., 2023b; Malavika et al., 2025; Guo
et al., 2025)

Fusarium
species (mycotoxin)

Esophageal, renal,
liver, testicular,
lung cancer

Hypothesized 1 for esophageal, (Dragan et al., 2001; Ekwomadu et al., 2022; Khan
et al., 2024)
Criteria in parenthesis (-) are inconsistent across studies or show contradicting evidence.
± relatively new findings, or new link between pathogen and cancer
**HIV is often synergistic and required; however, many of these cancers have separate primary pathogenic causes (such as cervical cancer and HPV). Under non-AIDS defining cancers, we
mention those, which may be dependent on HIV associated inflammatory processes, and not necessarily immune suppression. Exposure to similar risk factors (as with HBV infection and
Hepatocellular cancer) may contribute to the increases a confounder in epidemiological risk; therefore we have classified HIV as a co-factor. confirmed even though it is not implicated directly
in these
Scientific judgment is required to evaluate the strength of the evidence for each criterion, which cannot be captured in categorizing these cancers. However, we propose to use these criteria to
determine which infectious disease may be investigated further and is likely to show an associative or causal link. We have classified as follows.
Confirmed= Meets most criteria including one (***) and shows reproducibility across labs, and trials. The confirmed diseases described fit all but 1 or 2 criteria. These also meet consistent
reproducibility: i.e. confirmation across independent laboratories, optimally using varied methodologies or models, replication in diverse human populations and geographic settings,
concordance between in vitro, animal, and human studies.
Strong evidence = meets >4 criteria among proposed microbial oncogenesis criteria (including one ***).
Medium evidence = 2 or 3 criteria met with other criteria not evaluated or not evaluated optimally, inconsistent results or not conclusive results. For example, CMV, as a trigger for glioblastoma,
has inconsistent results for criteria 1,2, and for criteria 4,5,8,9, the experimental evidence is not conclusive.
Hypothesized = meets plausibility criterion or one other criterion with either conflicting or suboptimal data within other criteria.
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increase a risk of cancer formation. Longitudinal cohorts, such as

the Rotterdam study, maintained over time may provide insight

into the role of infectious triggers including SARS-CoV2 in

oncogenesis (Ikram et al., 2020; Sijtsma et al., 2022).
Considering a role for fungi

Candida has been observed in colorectal cancer tissue samples

and is associated with decreased survival and metastatic disease in

colon cancer. Similarly, Blastomyces is has been detected in lung

cancer tumor tissues (Dohlman et al., 2022). However, for these and

other examples of fungal colonization, association but no direct

causal relationships have been established. Fungal colonization has

been suggested to drive carcinogenesis through immune

recruitment of TH2 cells in pancreatic and esophageal cancer.

Pathogenic infections of Candida species correlate with a higher

oral cancer incidence (Chung et al., 2017; Di Cosola et al., 2021).

These associations may partially be a consequence of the lower

levels of immunity in these individuals (increasing risk for

colonization) or could indicate synergistic relationships that

promote both cancer and fungal colonization.

Fungi play a demonstrable role in hepatocellular cancer,

however in a more indirect way, where they (Aspergillus flavus

and Aspergillus parasiticus mainly) infect food sources such as

maize and grains, imparting high levels of hepatotoxic aflatoxins

which in turn directly contribute to oncogenesis (Cui et al., 2015; Jin

et al., 2023; Yu et al., 2023b). This is of particular importance in

some regions of SSA (especially west Africa and parts of east Africa)

where food storage conditions combined with high heat and

humidity contribute to a high aflatoxin burden in staple foods

(Falade et al., 2022). Other mycotoxins have been studied such as

Ochratoxin A, produced by aspergillus or T-2 and Zearalenone,

both fusarium toxins; these link to nephropathies and potentially

neurological disorders such as Parkinsons and dementia (Khan

et al., 2024). However, these toxins were linked to various cancers

(esophageal, kidney, colon, urinary tract, gastrointestinal, uterine,

breast) in animal and in in vitro models (Claeys et al., 2020;

Ekwomadu et al., 2021, Ekwomadu et al., 2022; Khan et al.,

2024). For example, fumonisins have been linked to esophageal

cancer with recent studies suggesting that it affects PI3K/Akt

pathway in human esophageal cells (Yu et al., 2021). Nonetheless,

clear epidemiological evidence for these links has not been

established (Claeys et al., 2020; Ekwomadu et al., 2022).
The microbiome

In healthy individuals the gut microbiota, consisting of bacteria,

bacteriophages, viruses, archaea, and fungi, play a role in immune

regulation through presentation of short chain fatty amino acids

(SCFAs) (Mann et al., 2024). Firmicutes and Bifidobacteriaceae

species present these SCFA’s which are taken up by the intestinal

cells and regulate the pro-inflammatory cytokines, TNFa IL12 and

IL6. Moreover, the microbiome also trains the immune system and
Frontiers in Cellular and Infection Microbiology 11
inhibits the growth of pathogenic biota (such as Enterobacteriaceae)

and the development of pathobionts. Pathobionts are microbes that

under normal circumstances do not cause disease; however, in the

context of cancer or microbiome dysregulation, they become

pathogenic (Jochum and Stecher, 2020).

One such pathobiont is F. nucleatum, an oral commensal

anaerobic bacterium, which as mentioned above, may play an

important role in facilitating colorectal cancer incidence and

metastasis. F. nucleatum colonizes colorectal cancer cells through

Fap2, a galactose adhesion hemagglutinin. It produces virulence

factors such as FadA, which provides a scaffold for colonization

with other bacteria, contributing to dysbiosis, potentially inducing

oncogenesis in host cells. FadA and other virulence factors (e.g.

AvrA in Salmonella) bind to the E cadherin receptor, inducing the

Wnt signaling pathway, one of the major pathways implicated in

colorectal cancer oncogenesis and progression (Kostic et al., 2013;

Rubinstein et al., 2013; Bullman et al., 2017; Silva-Garcıá et al.,

2019). It may enhance colorectal cancer proliferation by

upregulation of the wnt signaling pathways and metastasis by

inducing the expression of CXCL1 and IL-8 which promotes

migration and upregulating CCL20 (Ou et al., 2022). F nucleatum

also induces immune evasion through binding of FapA to immune

cells. It is similarly potentially implicated in oral cancers where it

enhances proliferation and inhibits cell cycle control mechanisms

through p27 (Chen et al., 2022; Wang and Fang, 2022). Lastly it was

shown induce metastases by modulating mitogen-activated protein

kinase p38, which is involved in mesenchymal transition (Lin

et al., 2016).

While there has been a paucity of data characterizing

microbiomes in SSA, recent studies have revealed unique taxa and

diversity in both South African and Tanzanian samples (Nobels

et al., 2025). Click or tap here to enter text. Some investigations have

examined the role of the microbiome in cancer development in SSA,

linking cervical microbiome characteristics and cervical cancer, as

well as suggesting that changes to the gut microbiome after

urbanization may correlate with development of colon cancer

(Klein et al., 2020; Come et al., 2021; Yang et al., 2022b; Ramaboli

et al., 2024), However, most microbiome research in SSA relies on

time-intensive culture-based experiments, compared to the more

rapid sequence-based technology applied in higher income settings

(Paulo et al., 2023; Ayeni et al., 2024). Substantial knowledge gaps

remain regarding links between microbiome characteristics and

cancers in SSA, opening the door for prioritizing support for

pivotal research on the topic
Complex interplay between the
microbiome and cancer

Disturbances in microbiota may alter metabolic pathways and

disrupt homeostasis, leaving vulnerabilities to disease (Francescone

et al., 2014). The microbiome’s role in cancer development is

complex; both protective and pro-cancer effects, which may be

dependent on other external factors, have been demonstrated

(Kadosh et al., 2020; Akbar et al., 2022).
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Cancer associated mutations can also have different outcomes

depending on the microbiotic background. This has been shown in

p53 mutations, which can cause either oncogenesis or tumor

repression depending on the microenvironment. The presence of

gallic-acid-producing bacteria in the distal gut induced cancer in

mice, while its presence in the proximal gut provided protective

effects due to wnt signaling inhibition (Kadosh et al., 2020). Similar

supporting roles have been found in Kras and p53 mouse models,

which in the absence of microbiota in the lung could not cause lung

cancer (Jin et al., 2019).

Similarly, bacteria can acquire additional proteins which change

them into pathobionts, such as, E coli, when expressing colibactin.

This mutagen is found to trigger mutational signatures related to

oral squamous cell carcinoma (Boot et al., 2020). Similar mutational

signatures which are oncogenic have also been found in colorectal

cancer and could indicate a common mutagen in these groups of

cancers (Boot et al., 2020; Koh et al., 2021; Cornish et al., 2023).

Dysregulation of the microbiome may also impact treatment as

outcomes after hematopoietic stem cell transplantation depend

strongly on regulation of inflammation and barrier integrity. The

microbiome can modulate the effects of radiotherapy where

treatment of dysbiosis with vancomycin can enhance radiotherapy

efficacy in melanoma and lung cancer mice models (Ciernikova et al.,

2021; Viswanathan et al., 2023; Zhao et al., 2023). The latter may be a

cause of complacency which is discussed below. The role of the

microbiome in cancer was recently reviewed (Nobels et al., 2025).
The microbiome as an inconsequential
bystander

While some bacteria may play a causative role in cancer,

contributing to immune evasion and cancer progression,

dysregulation is often a consequence of opportunistic infections,

indicating inconsequential presence of bacteria within the

microbiome, rather than causation. There is a host of studies

where non-commensal or dysbiotic bacteria such as Salmonella or

Helicobacter bacteria are found in tumor tissue (Zhao et al., 2022;

Zhu et al., 2022; Schorr et al., 2023). An analysis determined that for

most solid tumors, 105 to 106 bacteria are present per palpable 1-

cm3 tumor, which represents 34 bacterial cells per 5000 cancer cells.

The levels of these bacteria are therefore generally low, which

complicates analyses. Even when presence is established, presence

is not sufficient to indicate causative or synergistic relationships.

Indeed, studying the interaction between microbiota and cancer

needs careful consideration as demonstrated by a recent re-analysis

of links between pancreatic cancer and the microbiome, initially

suggesting, then refuting an oncogenic role for microbiota (Guo

et al., 2021; Fletcher et al., 2023; Eckhoff et al., 2024; Pourali et al.,

2024). The authors argue that the low-biomass of human tissue

specimens increases the risk for errors, including distinguishing

between low-biomass microbial communities and contamination

introduced during sample collection, and errors made during

processing, and sequencing. Therefore, PCR confirmed presence

and characterizations of the microbiome, cannot not indicate that
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these organisms were viable in this tissue, nor can determine

whether they were causative or bystanders. To form a better

understanding of this complex interplay, standardized methods

are needed for generating and analyzing microbiome sequencing

data to enhance the reproducibility of results across different studies

(Aykut et al., 2019; Fletcher et al., 2023).

HIV has also been associated with significant changes in the

microbiome. Upon infection, there is rapid spread throughout the

lymph system of the gut through mechanisms of cell-to-cell

transmission. HIV uses virological synapses to spread throughout

the entire CD4 T cell network causing massive cell death and local

immune dysregulation. These also result in permanent disruptions

in the epithelium of the gut. Even when anti-retroviral therapy

(ART) is given early during the course of HIV infection, the gut

based immune system is not fully restored and the damage to the

epithelial damage causes long lasting dysbiosis and microbial

translocation (Zicari et al., 2019; Govindaraj et al., 2023).

Microbiota associated with HIV infection are similar to those

associated with other inflammatory diseases, such as

inflammatory bowel disease. The dysbiosis in HIV may contribute

to the continued systemic inflammation (with corollary impacts on

cancer risks) observed in HIV, which persists in patients on ART

(Serrano-Villar et al., 2017; Herrera et al., 2019).
Utilizing new approaches to identify
novel microbial links with cancer

As opposed to the 1980s, when the associations between HPV and

cervical cancer and H. pylori and gastritis and ulcers, initially, and

ultimately with gastric cancer (Warren and Marshall, 1983; Parsonnet

et al., 1991) were suggested using histopathology and other relatively

primitive (by current standards) tools available at the time, new

instruments and techniques will likely accelerate the process for

identifying previously unrecognized associations For instance, next-

generation sequencing (NGS) allows for comprehensive analysis of

microbial communities and the identification of novel pathogens in

cancer tissues. Assessing genetic material (metagenomics) recovered

directly from such as tumor tissue can potentially identify microbes

associated with cancers. Proteomics and metabolomics can identify

microbial proteins and metabolites in cancer tissues, providing

insights into triggers for carcinogenesis. Applying such experimental

approaches to longitudinal cohorts, overlying infection status and

cancer incidence over time in large populations can yield hypotheses

generation to be applied to more focused studies to identify new

microbial facilitators and potentiators of cancer.

In addition, prompting artificial intelligence (AI)/large language

models trained on all published literature can provide a systematic

approach for prioritizing the most likely carcinogenic mediators

and mechanisms for study, especially when financial resources are

limited. AI models could suggest novel microbial cancer linkages

that have not yet been studied or hypothesized, based on aligning

oncogenic pathways with microbial pathophysiologies. With such

approaches, we propose strict criteria such as ours to steer AI

findings. While some models, have advanced beyond pattern
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recognition to critical thinking, not all have this capacity. In

addition, findings models can be limited by CPU power and

availability. Thus, caution is needed in applying AI to the

complexities of microbial oncogenicity. AI may yield biased

conclusions, as it relies on currently available data, which is often

sourced from developed nations. Consequently, infectious triggers

for cancer, which are much more common in SSA than in areas

where most of the data currently exists (i.e. the “global north”)

might be overlooked. AI tools may massively accelerate discovery in

this field, but will need careful training and coding to correct for

biases, and until this is done, such models should be carefully

validated (Estiri et al., 2022; Mbunge and Batani, 2023; Mittermaier

et al., 2023; Lawsen, 2025; Shojaee et al., 2025).
Priority areas for discovery

Many of the microbes that have been shown to be oncogenic for

specific cancers may cause additional cancers beyond what has

already been demonstrated. HPV, implicated in a host of cancers,

including cervical, head and neck, anal and penile cancers, may also

be associated with prostate (Tsydenova et al., 2023), breast (Kudela

et al., 2022), and colorectal (Hsu et al., 2022) cancers. For example,

studies have found a predilection for immunohistochemistry-

associated HPV presence in prostate cancer tissue when

compared with healthy tissue (Zambrano et al., 2002; Lawson and

Glenn, 2020). Further research to determine whether there is a

facilitative role for HPV in prostate cancer could be considered a

priority since, existing tools to prevent HPV infection would be

used differently (in boys, perhaps with boosters later in adulthood)

and could have dramatic public health benefits, should it be

confirmed that a proportion of prostate cancer is triggered by

HPV infection and persistence.

Likewise, there are data suggesting that EBV may be associated

with breast cancer and gastric adenocarcinoma (Tavakoli et al.,

2020; Jeong et al., 2022; Agolli et al., 2023). Determining such

relationships could be pivotal for prioritizing EBV vaccine

development. In addition to its role as an established trigger for

gastric cancer, H. pylori, has been hypothesized to be linked to

lower esophageal adenocarcinoma (Islami and Kamangar, 2008).

Finding further cancer associations for H pylori, could increase the

application of resources to utilize the knowledge to develop

diagnostic and prevention tools.

Oncogenesis theories must consider “hit and run” cancer

mechanisms, where the oncogenic driver may have initiated

processes many years ago and now be undetectable; radiation and

known mutagen exposure years prior to cancer detection are classic

examples, but the concept also applies to microbial oncogenesis

(Smith and Saveria Campo, 1988; Tommasino, 2017) This is the

case for HPV and head and neck cancers, as well as b-HPV and

cutaneous cancers, and may also be implicated in the other oncogenic

infectious diseases mentioned in this paper (Ferreira et al., 2021,

Ferreira et al., 2023). Other causal criteria may be fulfilled, but it may

not be possible to find histopathological presence in tumor tissue nor

persistence of the viral genome (Ferreira et al., 2021). The
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determinant for causation, in a “hit and run” circumstance, may be

a pattern of dysregulation, as discussed in this review, that if present,

suggest an infectious trigger. Alternatively, microbes producing

similar disruption as observed with known microbial cancer pairs

(as with HPV and cervical cancer) may provide an indication despite

the offending microbe not being present (Irrazábal et al., 2014;

Muhammad et al., 2019).
Concluding vision

Discovery of novel microbial-based triggers for oncogenesis and

cancer severity will shine a light on feasible pathways to prevent

cancer incidence and mortality globally with greatest impact in low-

income settings. Such pathways could include vaccine development

or modification in use of existing vaccines, as well as new

approaches for screening and diagnosis, and other strategies for

prevention, and innovative therapies. Machine learning, combined

with advances in experimental tools, and multi-disciplinary global

collaborations, bringing expertise together across multiple disparate

fields of study for innovative approaches, provides the potential a

new era for scientific advances in the field of microbial oncogenesis

(Breiman et al., 2023). This opportunity should be prioritized

because of its consequential potential to lead to products and

strategies that will address the massive growing impact and global

inequities in cancer burden.
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