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Objective: To evaluate microbial distribution and antimicrobial resistance (AMR)

patterns in clinical isolates from 13 tertiary hospitals and one secondary hospital

in Tianjin (2021–2023) to inform precision-driven antimicrobial stewardship and

infection control interventions.

Methods: In this retrospective, multicenter study, we collected routine

diagnostic specimens—including sputum, fecal samples, secretions, blood, and

drainage fluids. Data were processed per standardized protocols (CARSS,

CHINET) and interpreted using current CLSI-M100 breakpoints. Statistical

analyses were performed with SPSS 20.0 (significance set at two‐tailed P < 0.05).

Results: Sputum specimens increased from 39.1% to 43.0%, while urine samples and

secretions declined. Klebsiella pneumoniae prevalence rose from 18.3% to 20.3%,

whereas Escherichia coli remained stable. E. colimaintained excellent susceptibility to

carbapenems and amikacin (≤2% resistance); notably, ceftazidime/avibactam

resistance declined from 7.2% to 3.4% (P=0.005) amid a significant increase in

cefepime resistance (24.4% to 29.6%, P <0.001). K. pneumoniae exhibited parallel

trends, with escalating resistance to b-lactam/b-lactamase inhibitor agents. In

Pseudomonas aeruginosa, aminoglycoside, and carbapenem profiles remained

stable, while ceftazidime/avibactam sensitivity markedly improved, suggesting shifts

in underlying resistance mechanisms. Acinetobacter baumannii showed enhanced
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susceptibility to aminoglycosides, b-lactam inhibitors, and fluoroquinolones;

however, carbapenem-resistant isolates continued to exhibit near-universal

resistance. Among gram-positive pathogens, methicillin-resistant Staphylococcus

aureus sustained near-universal b-lactam resistance with improved rifampicin

sensitivity, while glycopeptides and linezolid remained fully active. Enterococcus

faecalis demonstrated reduced ampicillin resistance, contrasting with E. faecium’s

near-pan-resistance to b-lactams and fluoroquinolones.

Conclusion: Evolving, species-specific AMR patterns in Tianjin hospitals highlight

the urgent need for real-time, regionally stratified surveillance and molecularly

informed stewardship strategies to guide targeted antimicrobial interventions

and improve clinical outcomes.
KEYWORDS

AMR, multicenter studies, tertiary care, Escherichia coli, infection control
Introduction

Antimicrobial resistance (AMR) in healthcare settings has

emerged as one of modern medicine’s most formidable challenges

(Jones, 2001). In hospitals, nosocomial infections by multidrug-

resistant organisms complicate patient management and lead to

prolonged hospital stays, increased mortality, and substantial

economic burdens (Gan et al., 2012; Ramirez et al., 2020). In

China, rising levels of antibiotic resistance have been extensively

documented by national surveillance programs such as CARSS and

CHINET (Wang, 2022). However, considerable regional variability

exists, and local data are crucial for tailoring empiric therapy and

optimizing infection control measures (Tolera et al., 2018).

Tianjin, one of China’s major metropolitan areas, has witnessed

significant clinical and demographic shifts over recent years that

may influence pathogen distribution and resistance patterns.

Despite the availability of nationwide data, there remains a

paucity of comprehensive, regional studies examining the

temporal dynamics of microbial profiles and corresponding

antibiotic resistance trends within Tianjin hospitals. Such analyses

are essential, as changes in specimen types, patient case mix, and

antibiotic prescribing practices can profoundly affect the local

epidemiology of infectious agents.

In this study, we retrospectively analyzed microbiological data

from 14 major hospitals in Tianjin over three years (2021–2023), 13 of

which are tertiary hospitals. Our objectives were to investigate the

evolving distribution of clinical specimens and pathogen species—

including key subgroups such as gram-negative and gram-positive

bacteria, Enterobacteriaceae, and non-fermenters—and to assess their

resistance profiles against commonly used antimicrobial agents. Special

emphasis was placed on tracking the resistance trends of predominant

pathogens such as Escherichia coli, Klebsiella pneumoniae,

Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-

resistant Staphylococcus aureus (MRSA).
02
By comparing resistance rates and microbial compositions over

time and across institutions, we aim to provide critical insights for

clinicians in Tianjin, facilitating the rational use of antibiotics and

strengthening local infection control strategies. In addition, our

study offers a valuable reference for regional and national AMR

surveillance efforts, ultimately contributing to developing more

precise antibiotic stewardship programs.
Methods

Study design and setting

This retrospective, multicenter study was conducted among 14

hospitals (13 tertiary and one secondary hospital) in Tianjin over

three years from 2021 to 2023. The study aimed to evaluate the

microbial distribution and AMR patterns in clinical isolates,

providing essential data to optimize antibiotic usage and infection

control measures in the region.
Ethical approval

This study was not required for ethical approval since it was

based on legally notifiable, anonymized surveillance data collected

for public health purposes. All data were handled strictly with data

confidentiality agreements and relevant institutional guidelines.
Data collection

Microbiological data were sourced from the clinical laboratories

of 14 Tianjin hospitals participating in the National AMR

Monitoring System (CARSS). Data spanning 2021 to 2023 were
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downloaded directly from CARSS. This cohort comprises one

specialized hospital and 13 comprehensive hospitals—please refer

to the author affiliations for the complete list. Each hospital

provided comprehensive records of routinely collected diagnostic

specimens and the corresponding bacterial identification and

antimicrobial susceptibility testing results. These data were

aggregated according to protocols prescribed by national

surveillance systems (e.g., CARSS and CHINET). All participating

centers adhered to standardized laboratory methods for bacterial

isolation, identification, and susceptibility testing.
Data analysis

Surveillance data spanning January 2021 to December 2023 were

collected under protocols compliant with institutional review board
Frontiers in Cellular and Infection Microbiology 03
guidelines and confidentiality agreements endorsed by the Anti-

Cancer Association. Data processing followed the big data analysis

standards recommended by the National Bacterial Resistance

Monitoring Network (Ju et al., 2023). Following the first-isolate-per-

patient principle, duplicate bacterial isolates from the same patient and

species were systematically excluded to prevent sampling bias. A

domestic, self-developed drug sensitivity big data statistical analysis

system, integrated with WHONET software, was used for

synchronous two-way data verification. Records were excluded if the

filling rate for a given drug susceptibility test was <70% or if the test

coverage for a single strain was <90%. Antimicrobial susceptibility

testing and interpretation followed the latest CLSI-M100

Antimicrobial Susceptibility Testing Standard breakpoints.

Recognizing that, despite a standardized network, slight variations

in laboratory protocols and patient populations across the participating

institutions might exist, we conducted extensive sensitivity analyses to

adjust for potential inter-center variability. These measures ensure that

any biases in the dataset are minimized, thus bolstering the robustness

and validity of our statistical conclusions. Furthermore, including one

specialized hospital alongside 13 comprehensive hospitals enhances the

representation of diverse clinical settings, which undoubtedly

contributes to the external validity of our study.

Statistical analyses were conducted using SPSS 20.0 (IBM

Corp.). Categorical variables, including resistance rates and

pathogen distributions, were analyzed using chi-square (c²) tests
or Fisher’s exact tests for small-sample comparisons, with two-

tailed P<0.05 considered statistically significant. Temporal trends in

resistance rates and inter-hospital variability were evaluated across

the study period. Subgroup analyses stratified pathogens into

clinically relevant categories: gram-negative bacteria, gram-

positive bacteria, Enterobacteriaceae, and non-fermenters,

enabling granular assessment of resistance dynamics. Data

visualizations, including statistical plots, were generated using R

software (version 4.2.1) with the ggplot2 package.
Results

Specimen distribution

Surveillance data demonstrated significant shifts in specimen

type distributions (Figure 1, Supplementary Table S1). The

proportion of sputum specimens increased substantially from

39.1% (19,074 isolates) in 2021 to 43.0% (28,832 isolates) in 2023,

while urine samples declined from 18.4% (8,991) to 17.1%, and

secretions decreased from 11.2% (5,436) to 8.8%. Blood

(5.0%→5.1%) and drainage fluids (3.1%→3.1%) maintained

stable representation across the study period.
Microbial distribution

Overall isolate composition
Between 2021 and 2023, the bacterial profile shifted noticeably. In

2021, the top pathogens were K. pneumoniae (18.3%), E. coli (15.5%),
FIGURE 1

Annual Top Five Specimen Types (2021–2023) This figure shows the
proportional distribution of the five most common specimen types,
revealing a significant increase in sputum specimens and a decline
in secretions over the three‑year period.
FIGURE 2

Trends in relative proportions of top five bacterial isolates (2021–
2023). This line chart depicts how the relative proportions of the top
five bacterial isolates have changed over three years. The top two—
Klebsiella pneumoniae increased steadily, while Escherichia coli
remained stable.
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P. aeruginosa (8.6%), A. baumannii (7.0%), and S. aureus (5.9%)

(Figure 2; Supplementary Table S2). By 2023,K. pneumoniae had risen

to 20.3% as the dominant isolate, A. baumannii increased modestly to

8.0%, E. coli remained stable, and S. aureus declined to 5.2%.

Gram-positive pathogens
gram-positive profiles remained largely stable with subtle shifts

(Supplementary Table S3; Figure 3A). S. aureus maintained

predominance, decreasing slightly from 21.1% (2,852 isolates) in

2021 to 20.3% (3,480) in 2023, while S. epidermidis declined from

17.6% to 16.9%. Enterococcus faecium increased from 15.1% (2,041)

to 17.6% (3,021). Enterococcus faecalis peaked at 15.2% in 2022

(2,112) before returning to 13.4% in 2023. Other gram-positive

cocci remained a minor, consistent group.

Gram-negative pathogens
Among the top five gram-negatives, K. pneumoniae

demonstrated a steady rise in prevalence from 25.3% (8,904) in

2021 to 27.3% (13,653) in 2023 (Supplementary Table S4;

Figure 3B). E. coli maintained a stable proportional representation

at approximately 21% despite rising absolute counts (7,551 to

10,466), while P. aeruginosa and A. baumannii exhibited minor

proportional fluctuations(11.9%→11.5% and 9.6%→10.8%,

respectively). Enterobacter cloacae consistently accounted for

approximately 6% of cases throughout the study period.

Enterobacteriaceae and non-fermenters
Within Enterobacteriaceae, K. pneumoniae’s share climbed

from 37.7% (8,904) in 2021 to 40.4% (13,653) in 2023, with E.

coli remaining secondary (~31%) (Supplementary Table S5;

Figure 3C). Minor taxa—E. cloacae, S. marcescens, and P.

mirabilis—showed minimal proportional shifts. Conversely, non-

fermenters consolidated into a duopoly; P. aeruginosa peaked at

40.3% in 2022, settling at 37.1%, while A. baumannii increased from

30.5% to 34.9% (Supplementary Table S6; Figure 3D). S. maltophilia
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remained consistently represented (14.9%→14.3%), with other

species collectively below 2%.
AMR patterns

Enterobacteriaceae, non-fermentative gram-negative bacteria,

and gram-positive cocci—to enable straightforward cross-species

comparisons and identify actionable insights. Enterobacteriaceae

exhibit b-lactamase-mediated resistance while supporting species-

specific interventions. Non-fermentative gram-negatives, often

implicated in device-related infections, primarily rely on efflux

pump and porin modifications, critical challenges in intensive care.

In contrast, gram-positive pathogens highlight differing mechanisms,

with MRSA’s b-lactam resistance versus enterococci’s adaptive

vancomycin tolerance reflecting distinct hospital and community

pressures. This framework, aligned with CLSI breakpoints andWHO

priority lists, remains clinically relevant for pathogens linked to over

80% of AMR-related mortality.
Escherichia coli
Carbapenems, amikacin, and tigecycline consistently exhibited

low resistance rates (atest whereas ceftazidime/avibactamie

resistance significantly declined from 7.2% to 3.4% (P=0.005)

compared to cefepime, which increased from 24.4% to 29.6%

(P<0.001). Among b-lactamase inhibitor combinations, resistance

for ticarcillin/clavulanate fell from 19.1% to 15.8% (P=0.015), while

that for amoxicillin/clavulanate fluctuated between 23.0–25.5%

(P=0.005). Third-generation cephalosporins showed increasing

resistance (ceftriaxone: 44.5% to 47.2%; cefotaxime: 43.6% to

46.5%), and fluoroquinolones remained alarmingly high (53.1–

56.0%), with levofloxacin rising slightly (54.4% to 56.0%,

P=0.040). Piperacillin/tazobactam and cefoperazone/sulbactam

retained moderate efficacy (≤9.2%) (Figure 4A, Supplementary

Table S7).
FIGURE 3

Taxonomic distribution of clinical pathogens (2021–2023). This composite figure presents the top five isolates for (A) gram-positive bacteria; (B)
gram-negative bacteria; (C) Enterobacteriaceae; (D) Non-fermentative bacteria.
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Klebsiella pneumoniae
Carbapenems, amikacin, and ceftazidime/avibactam remained

highly active (imipenem: 6.7–7.8%; meropenem: 5.3–6.3%;

ceftazidime/avibactam: 0.4–0.5%). In contrast, resistance increased

for piperacillin/tazobactam (18.2% to 20.4%) and ticarcillin/

clavulanate (20.8% to 26.3%, both P<0.001), while cefepime

surged from 15.6% to 20.0%. Cefotetan’s resistance declined

(6.8% to 4.8%), tigecycline efficacy lessened (8.0% to 10.3%), and

fluoroquinolone resistance remained steady (ciprofloxacin: 15.4–

16.1%, P=0.087) (Figure 4B, Supplementary Table S8).

Carbapenem-resistant Klebsiella pneumoniae

CRKP exhibited near-universal resistance to b-lactams and

carbapenems (imipenem: 94.3–94.8%; meropenem: 95.4–97.2%;

third-generation cephalosporins: ≥97%). Aminoglycoside utility

was limited, with amikacin’s sensitivity plateauing at 37–41%

(P=0.174) and gentamicin resistance rising from 69.8% to 74.8%

(P=0.037). Notably, cefotetan resistance dropped from 92.1% to

74.9% (P<0.001), boosting sensitivity threefold to 25.1%.

Tigecycline and trimethoprim-sulfamethoxazole resistance

significantly increased (31.2%→43.5% and 35%→53.1%,

respectively; P<0.001), while ceftazidime/avibactam data remained

limited (Figure 4C, Supplementary Table S9).

Pseudomonas aeruginosa
Aminoglycosides (amikacin 2.7–3.0%, tobramycin 3.9–4.6%,

gentamicin 5.0–6.6%) and carbapenems (imipenem 17.4–17.9%,

meropenem 19.5–20.0%) maintained stable resistance (P>0.05).

Remarkably, ceftazidime/avibactam resistance improved from

98.0% to 87.6% (P<0.001), increasing sensitivity from 2.0% to

12 .4%. Cefep ime fluc tua ted (10 .7–12 .5%, P=0 .034) ,

fluoroquinolones remained effective (ciprofloxacin: 9.8–11.3%,

P=0.053), and polymyxin B continued to perform well (resistance

2.0–7.5%) (Figure 5A, Supplementary Table S10).
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Carbapenem-resistant Pseudomonas aeruginosa

CRPA maintained high carbapenem resistance (imipenem:

93.6–94.6%, meropenem: 91.8–93.5%) and aztreonam (67.6–

70.2%). Aminoglycoside resistance varied moderately (amikacin

9.7–10.9%, tobramycin 11.0–14.0%), while fluoroquinolone

resistance worsened (ciprofloxacin: 25.2%→30.5%, P=0.037;

levofloxacin: 41.6%→47.2%, P=0.048). Conversely, ceftazidime/

avibactam reduced resistance by 23.5% (from 96.2% to 72.7%;

P=0.003), corresponding to an approximately 7-fold sensitivity

increase, reaching 27.3%. Polymyxin B remained active (8.0–

18.8%) (Figure 6B, Supplementary Table S11).

Acinetobacter baumannii
For A. baumannii, aminoglycosides improved—gentamicin

resistance declined from 33.9% to 28.9% (P<0.001), and amikacin

saw a slight decrease (8.1%→6.9%). b-lactamase inhibitor

combinations also recovered, with ampicillin/sulbactam resistance

dropping from 36.2% to 29.8% and piperacillin/tazobactam from

44.0% to 37.3% (P<0.001). Cefoperazone/sulbactam initially

decreased from 36.6% to 27.2% before stabilizing at 30.0%

(P<0.001). Fluoroquinolone resistance improved (ciprofloxacin:

39.8%→35.2%, levofloxacin: 39.6%→34.1%; P<0.001 for both),

minocycline declined from 26.3% to 16.3% (P<0.001), and

polymyxin B remained highly effective (1.2–3.5%). Cefoperazone/

sulbactam showed emerging potential, achieving 72.8% sensitivity

in 2022 (P<0.001) (Figure 6C, Supplementary Table S12).
Carbapenem-resistant Acinetobacter baumannii

CRAB isolates were nearly uniformly resistant to carbapenems

(imipenem: 99.1–99.6%; meropenem: 99.8–100%) and witnessed

increasing fluoroquinolone resistance (ciprofloxacin: 87.4–93.3%,

levofloxacin: 86.9–92.3%; P<0.001). Amikacin maintained

moderate activity (20.2–22.5%, P=0.285), while gentamicin

(≥86%) and tobramycin (≥74%) were largely ineffective.
FIGURE 4

AMR in Enterobacteriaceae. This figure illustrates resistance trends among Enterobacteriaceae. (A) E. coli. (B) Klebsiella pneumoniae. (C) CRKP. *
P<0.05, ** P<0.01, *** P<0.001. Red stars denote an increasing trend in resistance, while green stars indicate a declining trend.
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Polymyxin B remained the most effective option (2.9–7.7%),

minocycline resistance fell from 55.5% to 42.5% (P<0.001), and

tigecycline resistance increased from 31.3% to 37.0% (P=0.004)

(Figure 6D, Supplementary Table S13).

MRSA
MRSA maintained near-universal b-lactam resistance

(penicillin G: 99–99.8%; P=0.201). Rifampicin improved markedly

—resistance dropped from 7.7% to 3.7% (P=0.01)—while resistance

to levofloxacin increased from 20.2% to 30.7% (P<0.001) and TMP-

SMX from 8.9% to 13.6% (P=0.024). Gentamicin resistance nearly

doubled (10.6%→20.5%, P<0.001), whereas clindamycin and

erythromycin remained consistently high. In contrast, linezolid,

vancomycin, and teicoplanin maintained 100% susceptibility,

underscoring their status as therapeutic anchors (Figure 5A,

Supplementary Table S14).

Enterococcus faecalis and Enterococcus faecium
E. faecalis (Figure 5B, Supplementary Table S15) and E. faecium

(Figure 5C, Supplementary Table S16) displayed distinct resistance

trends despite shared treatment strategies. In E. faecalis, ampicillin

resistance significantly declined from 2.8% to 1.5% (P=0.001), and

vancomycin and teicoplanin remained virtually effective (<1%

resistance). However, fluoroquinolone resistance increased

(c iprofloxac in : 31 .9%→35.3%, P=0 .044 ; levofloxacin :

30.2%→34.7%, P=0.002), and linezolid resistance rose from 5.6%

to 7.5% (P=0.03), with gentamicin resistance remaining stable

(36.2–39%, P=0.119). Conversely, E. faecium demonstrated near-

pan-resistance to b-lactams (ampicillin: 88.0–89.5%, P=0.236) and

fluoroquinolones (ciprofloxacin: 89.6–91.7%; levofloxacin: 88.6–

90.6%), while its linezolid resistance remained low and relatively

stable over the three years (1.0%, 2.4%, and 1.3%). In E. faecium

isolates, glycopeptides maintained excellent efficacy with resistance

rates ≤0.9%, while these isolates exhibited moderate resistance

to aminoglycosides.
Frontiers in Cellular and Infection Microbiology 06
Discussion

Our retrospective multicenter study, encompassing data from

14 tertiary hospitals in Tianjin over 2021–2023, provides a

comprehensive snapshot of microbial distribution and antibiotic

resistance trends in this region. Overall, our findings reveal

significant shifts in specimen collection practices and the

dynamics of pathogen prevalence and antimicrobial susceptibility

patterns. These data are instrumental in tailoring local antibiotic

stewardship and infection control policies.
Post-pandemic specimen shifts and
pathogen trends

One of the most striking trends noted in our study is the

increasing proportion of sputum specimens, which rose from 39.1%

in 2021 to 43.0% in 2023. This redistribution highlights intensified

respiratory specimen surveillance, potentially indicating evolving

diagnostic practices for pulmonary infections or modified hospital

admission patterns during post-pandemic recovery phases

(Simpson et al., 2003; Shi et al., 2023; Kim et al., 2025). In

contrast, the proportions of other specimen types—such as fecal

samples and secretions—remained relatively stable or decreased

slightly, suggesting that improvements in collection protocols and

diagnostic criteria may influence the overall specimen profile. These

shifts underscore the need for the laboratory and clinical teams to

continuously optimize specimen processing and ensure that

diagnostic methods remain robust, particularly for high-risk

samples (Mahale et al., 2024; Yang et al., 2024).

Regarding pathogen distribution, our data confirm the

dominance of gram-negative bacteria in the clinical setting, with

Klebsiella pneumoniae and Escherichia coli consistently

representing the majority of isolates. Notably, the rising

proportions of K. pneumoniae (from 18.3% in 2021 to 20.3% in
FIGURE 5

Resistance trends in MRSA and Enterococcus species. (A) MRSA. (B) E. faecalis. (C) E. faecium. Levofloxacin resistance decreased from 90.6% in 2021
to 88.6% in 2022, then rose to 90.2% in 2023 (P = 0.048), and linezolid resistance rose to 2.4% in 2022 before falling to 1.3% in 2023 (P < 0.001).
Despite these significant trends, the 2021 and 2023 rates did not differ significantly, indicating overall stability in resistance.* P<0.05, ** P<0.01, ***
P<0.001. Red stars denote an increasing resistance trend for those antibiotics, while green stars indicate a declining trend.
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2023) and the stabilization of E. coli around 15–16% highlight a

concerning trend. These changes parallel global trends reported in

national surveillance networks such as CARSS and CHINET

(Ashour and El-Sharif, 2009; Wan et al., 2017; Wei et al., 2019),

although our data suggest that local epidemiology in Tianjin may

exhibit unique characteristics possibly influenced by regional

antibiotic usage practices and infection control measures.

Notably, the relative stability of gram-positive pathogens,

including Staphylococcus aureus and coagulase-negative

staphylococci, indicates that while these organisms remain

clinically significant, the major antimicrobial challenge in our

setting continues to stem from gram-negative organisms.
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Evolving resistance dynamics and
therapeutic implications

i. E. coli resistance: stable foundations, emerging
challenges

Our multicenter surveillance of E. coli reveals a dual pattern:

stable “therapeutic anchors” alongside emerging threats.

Carbapenems and amikacin maintain resistance rates at ≤2%,

confirming their role as first-line agents for critical infections

(Zhang et al., 2013). Notably, ceftazidime/avibactam resistance

dropped from 7.2% to 3.4%, highlighting its promise as a

carbapenem-sparing option against carbapenemase producers.
FIGURE 6

AMR Trends in Pseudomonas aeruginosa and Acinetobacter spp. (A) Carbapenem-susceptible P. aeruginosa. (B) CRPA. (C) Acinetobacter baumannii.
Although the overall resistance trend for cefotaxime was statistically significant (P<0.001), its rate spiked from 55.9% to 62.5% before declining to
55%, with no significant difference observed between 2021 and 2023. (D) CRAB. Cefoperazone/sulbactam resistance was 79%, 71.2%, and 81.1%, and
ceftazidime was 93.1%, 88.5%, and 94.4% for 2021, 2022, and 2023, respectively. Although the trends were significant (P<0.001), both agents
dropped initially before rebounding, leaving 2021 and 2023 rates statistically similar.* P<0.05, ** P<0.01, *** P<0.001. Red stars indicate an increasing
resistance trend for that antibiotic, while green stars indicate a declining trend.
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Cephalosporin resistance is highly agent-dependent. For

example, cefepime resistance increased significantly (from 24.4%

to 29.6%, P<0.001), likely due to plasmid-borne CMY-2 type AmpC

that hydrolyzes cefepime effectively, while cefotetan remains very

low (≤2.3%) owing to its 7−methoxy structure, which confers

stability against AmpC (Park et al., 2012). Similarly, incremental

resistance rises in third-generation cephalosporins (ceftriaxone and

cefotaxime) mirror global trends driven by CTX−M−15 Extended

−Spectrum Beta−Lactamase—whose hydrolytic efficiency is three

times higher than that of CTX−M−14—supporting current

Infectious Diseases Society of America guidelines against their

empirical use (Park et al., 2012; Taneja et al., 2012). Beta−lactam/

b−lactamase inhibitor combinations show mixed results: ticarcillin/

clavulanate resistance has declined, whereas amoxicillin/clavulanate

fluctuates, suggesting regional differences in beta−lactamase

variants (Taneja et al., 2012). Meanwhile, fluoroquinolone

resistance consistently exceeds 50%, precluding their use as

monotherapy (Park et al., 2012). We recommend screening for

bla_DHA−1, an AmpC subtype, and qnrS, a plasmid−mediated

fluoroquinolone resistance gene, to further characterize local

resistance mechanisms.

These findings lead to three strategic imperatives for

antimicrobial stewardship. First, integrating rapid molecular

diagnostics with carbapenems and amikacin can maximize

clinical efficacy while minimizing ecological impact. Second,

precision prescribing must account for intra-class differences; for

example, cefotetan’s sustained low resistance makes it preferable to

cefepime. Third, the improved profile of ceftazidime/avibactam

offers a viable strategy to reduce carbapenem overuse. Additional

data showing a modest decline in gentamicin resistance and the

maintained activity of piperacillin/tazobactam and cefoperazone/

sulbactam for moderate infections further underscore the need for

tailored data-driven therapy. In summary, tiered therapeutic

escalation—reserving novel agents for critical cases and using

conventional b-lactams in lower-acuity settings—combined with

evolving surveillance and rapid diagnostics will be essential to

preempt and counter emerging resistance mechanisms such as

AmpC hyperproduction.

ii. Klebsiella pneumoniae: conventional
susceptibility and the challenge of carbapenem
resistance

Our analysis marks a critical turning point in the management

of Klebsiella pneumoniae. Carbapenems such as meropenem and

imipenem continue to play a vital role in non-carbapenem-resistant

infections, with resistance rates hovering around 6–7%. Chinese

multicenter data from 2016 to 2020 show meropenem

susceptibilities of 94.2–96.1%, a testament to rapid real-time PCR

detection of bla_KPC/bla_NDM and restrictive prescribing

practices (Ju et al., 2023). In contrast, cefepime resistance has

increased by roughly 28%, driven mainly by plasmid-mediated

AmpC hyperproduction (Cho et al., 2015). Molecularly, the

transposon-mediated transfer of carbapenemase genes like

bla_OXA−48 is about five times less efficient than that of

bla_AmpC, which helps delay resistance spread (Bonnin et al.,
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2025). Additionally, AmpC-overexpressing strains—such as

Enterobacter cloacae—gain a competitive advantage during

cephalosporin exposure, promoting pathogen replacement in

clinical settings (Kalantar-Neyestanaki et al., 2015). Consequently,

carbapenem-sparing strategies should avoid excessive

cephalosporin use, favor non−cephalosporin agents (e.g.,

ampicillin-sulbactam), and incorporate quantitative PCR

monitoring of bla_CMY/TEM copy numbers.

With beta-lactam/inhibitor combinations, trends diverge:

ticarcillin/clavulanate resistance has risen due to inhibitor-

resistant TEM variants (Pitout and Laupland, 2008), while

amoxicillin/clavulanate remains stable; notably, cefotetan

resistance has dropped by 29%. Ceftazidime/avibactam continues

to show excellent activity (≤0.5% resistance) against key

carbapenemase producer s—even as t i gecyc l ine and

fluoroquinolone resistance signal a need for caution. These

findings support a rational therapeutic hierarchy: reserve

carbapenems and ceftazidime/avibactam for life-threatening

infections; use cefotetan and amikacin for moderate cases; and

consider piperacillin/tazobactam in settings with high local

susceptibility. Real-time resistance analytics and rapid diagnostics

are essential for dynamically adjusting treatment strategies as

further research unveils the molecular drivers behind

cephalosporin and glycylcycline resistance.

CRKP exemplifies the multidrug resistance crisis, with over 95%

resistance to both carbapenems and b-lactam/b-lactamase inhibitor

combinations—a direct consequence of the widespread

dissemination of bla_KPC and bla_NDM genes (Chen et al.,

2021; Ge et al., 2024). This near-near-pan-resistant profile

mirrors global trends and renders traditional agents such as

piperacillin/tazobactam and third-generation cephalosporins

largely ineffective (Lu et al., 2023). Despite this, cefotetan shows

promise; its resistance has dropped by approximately 19%, and

sensitivity has increased threefold to around 25%. This rebound,

akin to reversals seen in Enterobacter cloacae after reduced

cephalosporin use, suggests that lowering cephamycin pressure

may partially restore susceptibility. Meanwhile, aminoglycoside

efficacy is declining: gentamicin resistance continues to rise, and

amikacin sensitivity remains unacceptably low (37–41%).

Alarmingly, last-resort agents such as tigecycline and

trimethoprim-sulfamethoxazole are rapidly losing effectiveness,

emphasizing the need to restrict their use in vulnerable patients.

Clinically, these data call for a precision approach to

combination regimens. Cefotetan’s resurgence supports its use as

a backbone when combined with agents like high-dose tigecycline

or siderophore cephalosporins. Limited data on ceftazidime/

avibactam and declining tigecycline efficacy further underscore

the necessity of real-time resistance monitoring and rapid

molecular diagnostics—to reliably differentiate between KPC and

metallo-b-lactamase producers. While CRKP’s resistance is

formidable, strategic antibiotic cycling and focused stewardship

can reclaim older agents and slow resistance progression. In an

era of a stagnant antibiotic pipeline, global audits of antimicrobial

use are crucial for minimizing collateral damage from past practices

and ensuring that stewardship evolves with microbial adaptation.
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iii. P. aeruginosa: a dual reality of susceptibility
and resistance

Our data reveal a clear divergence based on carbapenem

susceptibility. In carbapenem-susceptible isolates, aminoglycosides

(amikacin and tobramycin) remain robust—with resistance

consistently below 4.6%—and carbapenems (imipenem at ~17.7%

and meropenem near 20%) retain efficacy, reflecting preserved

porin (OprD) function and moderated efflux activity (Quale et al.,

2006). In contrast, CRPA exhibits carbapenem resistance exceeding

91.8% due to OprD loss, MexAB-OprM hyperexpression, and

AmpC overproduction, rendering these agents ineffective (Shu

et al., 2017; Yang et al., 2025).

Cephalosporin profiles further distinguish these groups.

Carbapenem-susceptible strains show moderate cefepime

resistance (approximately 10–13%) and stable ceftazidime levels

(~14–15%). For CRPA, while aztreonam resistance remains high

(~68–70%), ceftazidime/avibactam resistance drops by roughly

23.5%—likely reflecting clonal shifts toward AmpC-derepressed,

metallo-b-lactamase(MBL)-negative strains—supporting its use as

salvage therapy when guided by rapid diagnostics (Kuai et al., 2023).

Fluoroquinolones also diverge; susceptible isolates maintain low

ciprofloxacin resistance (≤11%), whereas CRPA sees significant

increases (ciprofloxacin rising from about 25% to 31% and

levofloxacin from 42% to 47%), highlighting the risks of

sequential carbapenem–fluoroquinolone regimens that co-select

resistance. Aminoglycosides and polymyxins remain treatment

anchors. CRPA’s amikacin resistance stays under 11%, and

polymyxin B generally preserves ≥81% susceptibility despite

occasional spikes. These findings support combination strategies

over monotherapy to curb further resistance. In sum, P.

aeruginosa’s dual profiles demand agile, data-driven stewardship.

Tailoring regimens—with options like amikacin plus ceftazidime/

avibactam for MBL-negative CRPA and high-dose amikacin–

aztreonam for MBL-positive cases—alongside real-time resistance

monitoring is vital to outpace this organism’s adaptive evolution

(Mikhail et al., 2019; Timsit et al., 2022).

The significant divergence in ceftazidime/avibactam resistance

rates between our multicenter data (72.7% in 2023, n=22) and

CHINET national surveillance (19.6% in 2023) necessitates a

refined interpretation. While our study encompassed hospital-wide

isolates, the predominance of tertiary care centers likely introduced

systemic biases. Tertiary hospitals in Tianjin typically manage

complex cases requiring prolonged broad-spectrum antimicrobial

exposure and invasive interventions, fostering selective pressures

that favor multidrug-resistant clones—a phenomenon less

pronounced in CHINET’s broader hospital-level sampling.

Methodological distinctions further clarify this gap. CHINET’s

standardized protocols aggregate data across diverse care settings,

whereas our cohort ’s tertiary-heavy infrastructure may

disproportionately represent antimicrobial “hotspots.”

Additionally, the limited 2023 CRPA sample size (n=22)

amplifies stochastic variabil ity , necessitating cautious

extrapolation. Future work should stratify resistance patterns by

care intensity to resolve these discrepancies. Targeted analysis of

intensive care unit isolates within our 14-center cohort could
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validate whether resistance escalation correlates with care acuity

—a critical hypothesis given that intensive care unit environments

amplify antimicrobial selection pressures through concentrated b-
lactam/carbapenem use. Such stratification would also clarify

whether the observed 2023 resistance decline reflects true

epidemiological shifts or transient sampling variance. These

findings advocate for regional resistance surveillance systems

tailored to local care hierarchies. While CHINET’s national data

provide population-level benchmarks, our study highlights how

region-specific hospital profiles (e.g., tertiary center density) can

distort resistance landscapes, underscoring the need for granular,

care-setting-specific stewardship strategies.

iv. A. baumannii resistance: enduring challenges,
evolving solutions

The evolving resistance patterns of A. baumannii and CRAB in

this study reveal encouraging trends and persistent challenges. The

significant decline in aminoglycoside resistance—particularly

gentamicin (33.9% to 28.9%) and amikacin (8.1% to 6.9%)—

suggests the potential reversibility of resistance under optimized

antimicrobial stewardship. This aligns with evidence that cyclic

aminoglycoside “holidays” may reduce selective pressure in high-

burden settings.

The observed resurgence of b-lactam/b-lactamase inhibitor

combinations (BLICs) against A. baumannii—particularly

ampicillin/sulbactam (36.2%→29.8% resistance) and piperacillin/

tazobactam (44.0%→37.3%)—signals a paradigm shift in empiric

therapy selection for non-CRAB infections. This trend mirrors

findings from the MERINO-3 trial, where protocolized BLIC use

reduced carbapenem consumption by 34% without compromising

mortality in gram-negative bacteremia (Stewart et al., 2021).

Clinicians should prioritize BLICs over carbapenems for non-

severe A. baumannii infections in regions with resistance rates

<40%, aligning with IDSA-SHEA antimicrobial stewardship

guidelines (Barlam et al., 2016).

CRAB ’s persistently bleak carbapenem susceptibility

(imipenem: 99.1–99.6% resistance) necessitates aggressive

combination regimens. Our findings substantiate the therapeutic

promise of minocycline-polymyxin B combinations against CRAB,

evidenced by declining minocycline resistance (55.5%→42.5%) and

sustained polymyxin B susceptibility (≤7.7%). Mechanistically,

polymyxin B potentiates minocycline by efflux pump disruption

and enhanced intracellular accumulation, translating to synergistic

lethality in murine pneumonia models (Bowers et al., 2015).

However, rising tigecycline resistance (31.3%→37.0%) cautions

against overreliance on tetracycline derivatives, especially given A.

baumannii’s propensity for tet(X) gene-mediated efflux pump

upregulation (Chen et al., 2020). Instead, emerging agents like

cefiderocol—a siderophore cephalosporin achieving 63% CRAB

susceptibility in the CREDIBLE-CR study (Bassetti et al., 2021)—

should be integrated into salvage protocols where available.

The paradoxical fluoroquinolone resistance surge in CRAB

(ciprofloxacin: 87.4–93.3%) despite global usage declines

underscores the role of cross-resistance via gyrA mutations co-

selected by cephalosporins (Morgan-Linnell et al., 2009). This
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phenomenon, previously documented in a 2023 whole-genome

sequencing analysis of 1,200 CRAB isolates (Müller et al., 2023),

mandates strict avoidance of fluoroquinolones in CRAB-endemic

units. Instead, rapid diagnostic tools like the GenMark Dx ePlex®

BCID-GN panel should guide early targeted therapy, optimizing

therapy compared with conventional methods (McCarty

et al., 2023).

v. MRSA resistance evolution: precision
management and future challenges

MRSA remains uniformly resistant to b-lactams—penicillin G

resistance is ≥99% due to blaZ-mediated b-lactamase production—

confirming that these agents are globally obsolete (Lade and Kim,

2023). In contrast, non-b-lactam options reveal mixed trends.

Rifampicin resistance has significantly declined from 7.7% to 3.7%,

likely reflecting stewardship measures restricting its monotherapy

and promoting its use in biofilm-targeted combinations.

Meanwhile, resistance to fluoroquinolones and trimethoprim-

sulfamethoxazole is rising. Levofloxacin resistance increased from

20.2% to 30.7%, driven by accumulating grlA mutations and NorA

overexpression, while trimethoprim-sulfamethoxazole resistance

climbed from 8.9% to 13.6%, pointing to potential dfrA gene

spread in community strains (Hooper, 2000; Ambrose and Hall,

2021). Additionally, gentamicin resistance jumped from 10.6% to

20.5%, likely due to the clonal spread of aminoglycoside-modifying

enzymes, which undermines its role in combination regimens for

endocarditis (Garneau-Tsodikova and Labby, 2016).

In stark contrast, linezolid, vancomycin, and teicoplanin

maintain 100% susceptibility. Vancomycin’s enduring efficacy is

secured through optimized AUC/MIC (Area Under the Curve to

Minimum Inhibitory Concentration) dosing, and linezolid’s

stability reflects careful stewardship (Men et al., 2016). However,

emerging concerns—such as vancomycin-intermediate

Staphylococcus aureus and cfr(chloramphenicol-florfenicol

resistance)-mediated linezolid resistance—underscore the need for

proactive molecular surveillance (Weinstein and Fridkin, 2001;

Morales et al., 2010; Pfaller et al., 2017).

Clinically, these findings advocate for a recalibrated therapeutic

hierarchy. For invasive MRSA infections, vancomycin or

teicoplanin should serve as the backbone—with linezolid reserved

for central nervous system involvement or vancomycin intolerance

—while rifampicin can be leveraged as a synergistic adjunct in

prosthetic joint infections when used with bactericidal agents.

Given the rising resistance, fluoroquinolones and trimethoprim-

sulfamethoxazole should be limited to culture-guided outpatient

therapy, and gentamicin may retain niche utility in endocarditis

combinations with rigorous monitoring.

vi. Enterococcal infections: divergent profiles and
targeted therapy

Our data reveal divergent resistance trends between

Enterococcus faecalis and Enterococcus faecium. E. faecalis

maintains high ampicillin susceptibility (≤2.8% resistance),

reflecting its infrequent acquisition of b-lactamase genes (Murray,

1990). In stark contrast, E. faecium exhibits ≥88% ampicillin
Frontiers in Cellular and Infection Microbiology 10
resistance driven by PBP5 mutations, highlighting its hospital-

adapted genomic plasticity (Galloway-Peña et al., 2011;

Montealegre et al., 2017).

Fluoroquinolone resistance is rising in E. faecalis (ciprofloxacin

~32–35%; levofloxacin ~30–35%), but in E. faecium it reaches near-

pan-resistance (≥90%), mandating exclusion from empiric therapy.

Linezolid resistance in E. faecalis increased modestly from 5.6% to

7.5%, whereas in E. faecium, resistance remained low and relatively

stable (1.0% ~ 2.4%), underscoring the importance of culture-

directed therapy and molecular screening. Both species

demonstrate high-level aminoglycoside resistance (gentamicin

~36–39% in E. faecalis and ~32–35% in E. faecium), limiting their

synergistic role in severe infections and necessitating therapeutic

drug monitoring. Streptomycin resistance further narrows options,

favoring alternatives like daptomycin in high-resistance scenarios.

Glycopeptides remain reliable, with vancomycin and teicoplanin

resistance staying below 0.9% in both species, though sporadic

teicoplanin resistance calls for ongoing vigilance.

Clinically, E. faecalis infections can typically be managed with

ampicillin (or amoxicillin), reserving glycopeptides for beta-lactam

allergic or multidrug-resistant cases, while E. faecium requires

glycopeptides or daptomycin—with linezolid limited to confirmed

Vancomycin-resistant Enterococcus cases (O'Driscoll and Crank,

2015). Empiric fluoroquinolones should be avoided, favoring

nitrofurantoin or fosfomycin for urinary tract infections. Rapid

molecular diagnostics (e.g., vanA/B, cfr PCR) and therapeutic drug

monitoring are essential to optimize therapy and reduce toxicity

(Miller et al., 2014). With few new agents on the horizon,

preserving existing options through precision prescribing and

integrated resistance surveillance is critical to outpacing these

adaptable pathogens.
vii. Regional resistance divergence: reconciling
local and national surveillance

Antimicrobial resistance patterns identified in our multicenter

cohort in Tianjin revealed substantial deviations from national

surveillance benchmarks reported by CHINET between 2018 and

2022 (Yang et al., 2023). Specifically, our data demonstrated that

our MRSA isolates exhibited near-complete resistance to b-lactams

and increasing non-susceptibility to levofloxacin, TMP-SMX, and

gentamicin—findings that stand in contrast to CHINET’s

documented downward trends for these agents. Likewise,

Enterococcus faecalis and E. faecium in our cohort displayed

extensive multidrug resistance, with E. faecalis notably harboring

a broader spectrum of resistance and virulence determinants than

typically captured in national datasets.

Among Gram-negative organisms, resistance profiles in our

Escherichia coli isolates were characterized by high rates of non-

susceptibility to ampicillin, fluoroquinolones, and third-generation

cephalosporins, largely attributable to the rising prevalence of ESBL

producers. This contrasts with CHINET’s surveillance, which

reported modest declines in resistance to ceftriaxone and

carbapenems. Our Klebsiella pneumoniae isolates showed near-

universal resistance to ampicillin and a concerning upward trend in

carbapenem non-susceptibility—diverging from CHINET’s
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relatively stable carbapenem resistance and declining rates for

agents such as ciprofloxacin and ceftazidime-avibactam. For

Pseudomonas aeruginosa, our findings indicated elevated

resistance to carbapenems and fluoroquinolones, whereas

CHINET data suggested a downward trajectory across most

antipseudomonal agents. Most notably, Acinetobacter baumannii

in our cohort exhibited widespread resistance to b-lactams,

carbapenems, and fluoroquinolones, with only marginal

susceptibility to last-line agents such as colistin and tigecycline—

again, in contrast to the more stable resistance patterns

reported nationally.

Several factors likely account for the observed divergence in

resistance profiles. Our cohort, sourced primarily from tertiary care

centers, comprises patients with increased exposure to invasive

procedures, prolonged hospitalization, and intensive use of broad-

spectrum antimicrobials—conditions that amplify selective pressures

favoring resistant phenotypes, including metallo-b-lactamase–

producing P. aeruginosa. The specimen composition further

complicates interpretation: a disproportionately high number of

sputum samples in our dataset enriched for respiratory pathogens

with intrinsically elevated resistance, whereas CHINET’s broader

sampling scope may dilute such signals. Institutional prescribing

patterns also play a role; frequent use of carbapenems and

fluoroquinolones in high-acuity settings likely co-selects for

resistance mechanisms such as oprD porin loss and efflux pump

overexpression, contributing to inflated local resistance metrics.

Methodological considerations must also be acknowledged.

Although both datasets adhere to CLSI standards, decentralized

testing in our study may introduce subtle inter-laboratory variability.

Addressing these discrepancies requires a more granular

approach to resistance surveillance. Future efforts should stratify

data by hospital tier, care intensity, and specimen type to

disentangle true epidemiological trends from sampling bias.

Incorpora t ing ICU-spec ific ana lys es and molecu la r

characterization of resistance determinants (e.g., bla_VIM,

bla_IMP, bla_NDM) will be essential for contextualizing

phenotypic resistance within its genetic framework. Ultimately,

regional surveillance systems must evolve to reflect institutional

heterogeneity, ensuring that antimicrobial stewardship strategies

are not only pathogen-directed but structurally aligned with the

realities of clinical care.
Limitations and future directions

This study has several important limitations. First, the absence

of molecular resistance profiling—such as PCR detection of

carbapenemase genes (bla_KPC, bla_NDM, bla_OXA) or whole-

genome sequencing—limits mechanistic interpretation of key

trends, including the observed improvement in ceftazidime-

avibactam susceptibility among CRPA isolates. Future studies

should incorporate molecular diagnostics to clarify clonal

dynamics and resistance gene dissemination.

Second, the statistical analysis relied primarily on p-values,

without reporting effect sizes, confidence intervals, or corrections
Frontiers in Cellular and Infection Microbiology 11
for multiple comparisons. Given the volume of resistance metrics

evaluated, more rigorous statistical frameworks are needed to

enhance interpretability and reduce false positives.

Third, the retrospective design introduces selection bias and

lacks standardized clinical metadata (e.g., demographics,

comorbidities, prior antibiotic exposure), constraining the clinical

relevance of resistance patterns. Prospective studies with

harmonized data collection would enable subgroup analyses and

risk stratification.

Fourth, although the cohort includes 13 tertiary and one

secondary hospital, resistance data were not stratified by hospital

level. Institutional differences in patient acuity, stewardship

practices, and infection control may significantly influence

resistance dynamics. Future research should incorporate hospital-

level stratification to assess these effects.

Lastly, comparisons with national platforms such as CHINET

are limited by structural and methodological disparities. Our

tertiary-heavy sample may overrepresent high-risk populations,

while CHINET’s broader sampling may dilute resistance signals.

Stratified regional surveillance frameworks are needed to reconcile

these differences and support precision stewardship.
Conclusion

This multicenter retrospective study offers a comprehensive

overview of microbial distribution and antimicrobial resistance

across 14 hospitals in Tianjin from 2021 to 2023. Findings

highlight a growing predominance of Gram-negative pathogens—

particularly Klebsiella pneumoniae—and a notable shift toward

respiratory specimens. While carbapenems and aminoglycosides

retain efficacy against select organisms such as E. coli and P.

aeruginosa, rising resistance to cefepime, tigecycline, and

fluoroquinolones calls for reassessment of empirical regimens.

Encouraging reversals in susceptibility to ceftazidime-avibactam

and cefotetan suggest potential alternatives for managing

carbapenem-resistant infections.

However, limitations—including the absence of molecular

profiling, lack of clinical metadata, and unstratified hospital-level

analysis—underscore the need for more granular, mechanistically

informed surveillance. Future studies should adopt prospective

designs, integrate rapid molecular diagnostics, and stratify data by

care intensity and institutional tier to better inform clinical

decision-making. Ultimately, precision antimicrobial stewardship

must move beyond descriptive epidemiology. By combining real-

time resistance analytics with molecular insights and contextualized

care data, targeted interventions can be developed to curb resistance

and optimize outcomes across diverse healthcare settings.
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