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Utilization of machine
learning to predict antibiotic
resistant event outcomes in
acute myeloid leukemia
patients undergoing
induction chemotherapy
Stephanie McMahon, Samantha Franklin
and Jessica Galloway-Peña*

Laboratory of Jessica Galloway-Peña, Texas A&M University, Department of Veterinary Pathobiology,
Interdisciplinary Graduate Program in Genetics and Genomics, College Station, TX, United States
Introduction: Acute myeloid leukemia (AML) patients are highly susceptible to

infection. Moreover, prophylactic and empirical antibiotic treatment during

chemotherapy disrupts the gut microbiome, raising the risk for antibiotic-

resistant (AR) opportunistic pathogens. There is limited data on risk factors for

AR infections or colonization events in treated cancer patients, and no predictive

models exist. This study aims to combine metagenomic and antibiotic

administration data to develop a model predicting AR event outcomes.

Methods: Baseline stool microbiome, antibiotic administration, resistome, and

clinical metadata from 95 patients were utilized to build a Random Forest model

to predict AR infection and colonization events by serious AR threats.

Additionally, sparse canonical correlation analysis assessed correlations

between microbiome and resistome data, while Spearman correlation

networks identified direct associations with AR event outcomes and

secondary variables.

Results: AR-events were identified in 14 of the 95 included patients, with 8

developing AR infections and 9 identified as AR colonized. A Random Forest

model predicted AR event outcomes (AUC = 0.73), identifying bacterial taxa and

antibiotic resistance gene (ARG) classes as key variables of importance.

Methanobrevibacter smithii, Clostridium leptum, and Bacteroides dorei were

identified as key taxa associated with reduced risk of AR events, suggesting the

potential roles of commensals in maintaining gut microbial resilience during

chemotherapy. ARG classes, particularly those conferring resistance to

lincosamides, macrolides, and streptogramins, were negatively associated with

AR events.

Conclusion: These results underscore the value of integrating microbiome and

resistome features to reveal potential protective mechanisms and improve risk

prediction for AR outcomes in vulnerable patients.
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1 Introduction

Infections caused by multidrug-resistant organisms (MDROs)

represent a major public health challenge, emphasizing the urgent

need to understand the underlying factors contributing to

antimicrobial resistance (Caniça et al., 2015; Castro-Sánchez et al.,

2016; Palmore and Henderson, 2013). This understanding is

essential for reducing infection rates and preserving the

effectiveness of existing antimicrobial therapies (Caniça et al.,

2015; Castro-Sánchez et al., 2016; Palmore and Henderson,

2013). The growing prevalence of antibiotic-resistant bacteria

jeopardizes the effectiveness of commonly used antibiotics,

complicating the treatment of an increasing number of infections

and necessitating immediate action (Antimicrobial resistance,

2023; Walsh et al., 2023). The Centers for Disease Control and

Prevention (CDC) has identified several pathogens as “urgent,”

“serious,” and “concerning” antimicrobial-resistant (AR) threats in

their 2019 Antibiotic Resistance Threats report (CDC, 2019).

Among these, five pathogens are categorized as urgent threats,

including methicillin-resistant Staphylococcus aureus (MRSA),

multidrug-resistant Pseudomonas aeruginosa, vancomycin-

resistant Enterococcus (VRE), extended-spectrum beta-lactamase-

producing Enterobacteriaceae (ESBL), and carbapenem-resistant

Enterobacteriaceae (CRE) (CDC, 2019). If left unrestrained, AR

pathogens are projected to become the leading cause of death by

2050 (O’Neill, 2016).

Increasing evidence has underscored the essential role of the

microbiome in defending against colonization and infection by

antibiotic-resistant pathogens (Buffie and Pamer, 2013; Lewis et al.,

2015; Ubeda et al., 2013). In addition to the microbiome defending

against AR pathogens through colonization resistance, it also plays a

role in immunomodulatory functions that influence infections in

distant body sites (Belkaid and Hand, 2014; Latorre et al., 2015;

Lewis et al., 2015; Panwar et al., 2021; Pickard et al., 2017; Thaiss

et al., 2016). The widespread use of broad-spectrum antibiotics exerts

selective pressure on microbial populations, facilitating the emergence

of resistant strains (Chinemerem Nwobodo et al., 2022). Specifically,

antibiotic treatment can disrupt the gut microbiota, leading to reduced

microbial diversity, depletion of beneficial species, and the promotion

of antibiotic-resistant gene (ARG) proliferation (Becattini et al., 2016;

Gibson et al., 2015; Korpela et al., 2016; Modi et al., 2014). Moreover,

overuse of antibiotics is known to not only facilitate the growth of

MDROs, but also promote the horizontal transfer of resistance genes

among organisms within the microbiota (Korry et al., 2020). This

transfer can lead to the emergence of new multidrug-resistant

pathogens, potentially restricting treatment options for bacterial

infections. As a result, studies that explore the protective and

harmful roles of the microbiota, the resistome (the collection of

antibiotic resistance genes within the microbiota), and the specific

impacts of antibiotic treatments on microbial communities

contributing to the rise of antibiotic resistance are vital for

developing new strategies to combat antimicrobial resistance (Caniça

et al., 2015).

Patients with hematological malignancies are especially

vulnerable to a wide range of infections, particularly those caused
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by AR pathogens (Gedik et al., 2014). Life-threatening infections are

common, particularly in individuals who are immunocompromised

with chemotherapy-induced cytopenia (Rapoport et al., 2021).

Febrile neutropenia is especially prevalent in patients with acute

myeloid leukemia (AML), affecting roughly 80-90% of individuals

(Hansen et al., 2019; Taur and Pamer, 2016). To manage these risks,

fluoroquinolone prophylaxis is routinely used before and during

chemotherapy, and broad-spectrum empirical therapy is

administered upon the onset of neutropenic fever following

established standards of care (Boccia et al., 2022; Chemotherapy-

Induced Neutropenia and Febrile Neutropenia in the US: A Beast of

Burden That Needs to Be Tamed? | The Oncologist | Oxford

Academic, n.d.; X. Wang et al., 2024; Zimmer and Freifeld, 2019).

However, the prolonged use of antibiotics in these patients has been

shown to disrupt their gut microbiota, leading to the accumulation

of antimicrobial resistance genes (ARGs) (Aitken et al., 2021; Doan

et al., 2020; Galloway-Peña et al., 2016; J. Galloway-Peña et al., 2017;

Galloway-Peña et al., 2020; Iwan et al., 2024; Jutkina et al., 2016;

Nobel et al., 2015). Chemotherapy also exacerbates the risk of AR

infection by damaging the gut mucosa, increasing intestinal

permeability, and facilitating the translocation of potentially

resistant pathogens from the gut into the circulation, thereby

heightening the risk of difficult-to-treat systemic infections

(Sougiannis et al., 2021; Touchefeu et al., 2014).

The gut resistome is of particular significance in hospitalized

cancer patients, as it serves as a key reservoir of ARGs that should

no longer be overlooked when examining AR infectious

complications (Gibson et al., 2014; Shono et al., 2016). The gut

microbiome contains a large pool of ARGs, and these genes can be

transferred among bacterial species within the microbiota via

horizontal gene transfer, which presents potentially serious

consequences for infections originating from the microbiome as

well as transmission in the hospital environment (Forslund et al.,

2013; Gibson et al., 2015; Pehrsson et al., 2013). Bacteria may carry

ARGs that confer resistance to a single antibiotic or mobile genetic

elements (MGEs) that provide resistance to multiple antibiotics. As

the selection pressure for these bacteria increases, so does the

number of bacteria harboring ARGs or MGEs, amplifying the

resistome and resulting in more difficult-to-treat infections

(Nielsen et al., 2021). Common bacterial culprits in infections

among AML patients include the same key AR-threat pathogens

identified by the CDC (VRE, MRSA, ESBL-producing

Enterobacteriaceae, CRE, and multidrug-resistant P. aeruginosa)

(On et al., 2022; Rolston, 2014). Although it is well-documented

that cancer patients are frequently colonized and infected by AR

pathogens, there is still a paucity of comprehensive data regarding

the risk factors associated with AR infections and toxicities during

chemotherapy (McMahon et al., 2023; Nanayakkara et al., 2021).

This gap in knowledge underscores the need for further research to

better understand the complex dynamics of the microbiome and AR

infections in this vulnerable patient population.

In this study, we developed a machine learning model

integrating patient antibiotic administration records with baseline

fecal microbiome and resistome data. This model allowed us to

identify and rank predictors associated with AR events in AML
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1629422
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


McMahon et al. 10.3389/fcimb.2025.1629422
patients undergoing remission induction chemotherapy (IC).

Additionally, sparse canonical correlation analysis was used to

determine correlations between baseline ARGs and microbial

taxa. A final network analysis was performed to identify variable

connectivity with development of an AR event, and the

directionality in which those variables relate to the event.
2 Methods

2.1 Study design and participants

Longitudinal stool samples and clinical data were collected from

two cohorts of adult AML patients undergoing IC at MD Anderson

Cancer Center (MDACC) between September 2013 and February

2020, for a total of 154 patients. The first cohort, PA13-0339,

comprised 98 AML patients enrolled between September 2013

and August 2015, providing 566 stool samples collected as

previously described (Galloway-Peña et al., 2016, 2020; J. R.

Galloway-Peña et al., 2017) The second cohort, PA15-0780,

included 56 adult AML patients enrolled from January 2015 to

February 2020, contributing 216 stool samples. For this cohort, the

stool sample taken within approximately one week of the start of IC

was considered the baseline sample. Longitudinal samples were

collected twice a week for the first four weeks, weekly for weeks four

to eight, every other week for weeks eight to twelve, and then every

two weeks after, continuing until either 24 weeks or loss of follow-

up. Patients with missing baseline stool samples were excluded from

the study. Between both cohorts, the average and median time of

collection for a baseline sample was one day prior to chemotherapy

initiation. A histogram depicting the time from baseline stool

sample collection to initiation of chemotherapy is shown in

Supplementary Figure 1. Patients from these two cohorts were

only included in the analyses and model if they had complete

metadata and sequencing data, which included baseline stool

metagenomics, baseline gut resistome data, complete antibiotic

administration data for the entirety of the study period, and the

clinical factors of gender, chemotherapy type, and chemotherapy

intensity available. This left 95 total patients with all data available

to be included in the study.
2.2 16S rRNA sequencing and analyses of
the stool samples

Genomic DNA was extracted from longitudinal stool samples

using the QIAamp Fast DNA Stool Mini Kit (Qiagen), with

modifications to the standard protocol that included an additional

bead-beating lysis step. Each stool sample was placed in a tube

containing a 3.2-mm steel bead, approximately 150 mg of

zirconium beads, and lysis buffer. The samples were then

homogenized using a bead-beater at 3800 rpm for 8 minutes

(BioSpec) to facilitate DNA isolation. Amplicon libraries targeting

the 16S V4 region were generated, and Illumina MiSeq sequencing

was conducted on the fecal microbial DNA using a 2 × 250 bp
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paired-end protocol (Galloway-Peña et al., 2016, 2020; J. R.

Galloway-Peña et al., 2017). A no-template control was used

during the PCR, and a no-sample control for the extraction. The

resulting reads were merged, dereplicated, and length-filtered using

VSEARCH. Denoising and chimera detection were performed with

the UNOISE3 commands, and the unique sequences, also known as

zero-radius Amplicon Sequence Variants (ASVs), were

taxonomically classified using Mothur with the SILVA database

(version 138) (Edgar, 2016; Schloss et al., 2009). Alpha and beta

diversity metrics were calculated in QIIME 2. The 16S rRNA

sequences from the PA13 cohort have been previously published

and are available in the NCBI Sequence Read Archive under

Bioproject IDs PRJNA352060 and PRJNA526551 (Galloway-Peña

et al., 2016, 2020; J. R. Galloway-Peña et al., 2017). The 16S rRNA

sequences from the PA15 cohort are deposited in the NCBI

Sequence Read Archive under Bioproject number PRJNA1124986.
2.3 AR event identification

All longitudinal stool samples underwent 16S rRNA sequencing

to identify those with ≥ 3% of their 16S rRNA reads mapping to

genera associated with the CDC urgent threat antibiotic-resistant

(AR) pathogens, including vancomycin-resistant Enterococci

(VRE), carbapenem-resistant Enterobacteriaceae (CRE), extended-

spectrum beta-lactamase-producing Enterobacteriaceae (ESBL),

multidrug-resistant Pseudomonas aeruginosa (MDRP), and

methicillin-resistant Staphylococcus aureus (MRSA). The 3%

threshold was chosen as it was previously determined that

patients with less than 3% of 16S reads mapping to an AR-threat-

associated genera had very little likelihood of obtaining a positive

culture of an AR pathogen on selective and differential media

(McMahon et al., 2023). Stool samples with >3% of 16S rRNA

reads mapping to Enterobacteriaceae, Escherichia, Enterobacter,

Acinetobacter, Klebsiella, or Pseudomonas were then cultured on

CRE or ESBL selective media (Hardy Diagnostics Cat. No G323 and

G321). Samples with >3% reads of Enterococcus were plated on VRE

media (Chromagar Cat. No VR952), while those with

Staphylococcus reads were streaked on MRSA selective media

(Hardy Diagnostics Cat. No G307BX). Any colonies that grew on

the selective media were then sub-cultured onto BBL Trypticase Soy

Agar with 5% Sheep Blood (BD Biosciences) for isolation of

individual colonies, which were stored at -80°C.

Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight

Mass Spectrometry (MALDI-TOF) was used to identify bacterial

species from the purified colonies (Bruker MALDI Biotyper). After

species identification, antibiotic susceptibility testing (AST) was

performed using the VITEK2 system (Biomerieux). The AST-GN69

and AST-XN06 cards were used for Gram-negative bacteria, while

AST-GP75 was used for Gram-positive isolates. If any bacterial

isolate from a stool sample was confirmed to be CRE, ESBL-

producing Enterobacteriaceae, VRE, MDRP, or MRSA, the

patient was classified as having confirmed AR colonization (ARC).

In addition, any infectious bacterial isolates identified by the

clinical microbiology lab at MDACC during the study, while AML
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patients were enrolled, were stored at -80°C. The clinical

microbiology lab was responsible for determining the bacterial

species and antimicrobial susceptibilities of these isolates. If a

patient was diagnosed by the lab with a microbially defined

infection caused by CRE, ESBL-producing Enterobacteriaceae,

VRE, MDRP, or MRSA, the patient was classified as having a

confirmed AR infection (ARI). These two groups—patients with

confirmed ARC and those with ARI—were combined and classified

as having an “AR event” for this study.
2.4 Whole genome sequencing of
AR-event bacterial isolates and shotgun
metagenomic sequencing of baseline
samples

Following species identification, DNA was extracted from the

ARI or ARC bacterial isolates using the MasterPure Gram-positive

DNA purification kit (Lucigen). The extracted DNA was then used

to prepare sequencing libraries with the Illumina DNA

Tagmentation Library Prep kit (Illumina, San Diego, CA, USA).

To evaluate the quality of the prepared libraries, the Qubit

bioanalyzer and the Qubit dsDNA HS Assay Kit (Invitrogen,

Waltham, MA, USA) were utilized. Once assessed, the libraries

were pooled and sent to the North Texas Genome Center for

sequencing on the Illumina NovaSeq 6000 S4 flow cell, using a

150-base pair paired-end read protocol. Subsequent sequencing

data analysis was conducted on the Grace computing cluster at

Texas A&M University. The sequencing reads were down-sampled

to six million read pairs per sample using Seqtk (v1.3) before being

assembled with SPAdes (v3.14.1) under the “—isolate” parameter.

Annotation of the assembled sequences was performed using

the RAST toolkit-based pipeline on BV-BRC (https://

www.patricbrc.org/). The bacterial isolate sequencing data have

been archived in the NCBI Sequence Read Archive under

Bioproject ID PRJNA1129516.

For baseline fecal DNA extraction for metagenomic purposes, a

modified version of the Qiagen Blood and Tissue kit (Qiagen,

Valencia, CA, USA) was employed. Each sample, consisting of

150 mg of frozen fecal material, was combined with 500 µL of sterile

InhibitEx Buffer (Qiagen, Valencia, CA, USA), 150 mg of silicon

beads (Lysing Matrix B, MP Biomedical), and an appropriate

amount of 2.4 mm metal beads from a hard tissue grinding mix

(VWR, Radnor, PA, USA). The samples were placed in sterile tubes

and subjected to bead beating at 4.5 m/s for four minutes using the

MP Biomedical FastPrep-24 Classic system. The resulting

suspension was vortexed, heated to 95°C for seven minutes, and

centrifuged at 15,000 rpm for three minutes. DNA was extracted

from the supernatant by adding 20 µL of Proteinase K and Buffer

AL, followed by vortexing. After incubation at 70°C for 30 minutes,

200 µL of 100% ethanol was introduced, and the mixture was

inverted multiple times before being transferred to a DNeasy spin

column for purification. The extracted DNA was stored at -20°C for

further analysis.
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For shotgun metagenomic sequencing of baseline stool samples,

DNA libraries were prepared using the Illumina Nextera XT DNA

Library Prep kit (Illumina, San Diego, CA, USA). The quality of the

libraries was confirmed using the Qubit bioanalyzer (Invitrogen,

Waltham, MA, USA). Once validated, the libraries were pooled and

sequenced at the North Texas Genome Center using the Illumina

NovaSeq 6000 S4 platform, following the same protocol as the

bacterial isolates. Samples were down-sampled to 6 million read

pairs to normalize sequencing depth across subjects and reduce

potential batch-related artifacts. This depth is sufficient for reliable

class-level detection of ARGs in gut metagenomes, particularly

when using curated HMM-based classifiers (BugSeq). A no-

sample control was utilized for the extraction. Spike-in standards

were not used in this study. Batch effects were minimized using

consistent extraction protocols, library preparation methods, and

sequencing conditions. Assembly of shotgun metagenomic

sequences was performed using MEGAHIT (v1.2.8) and

metaSPAdes (v3.14.1). The relative abundance of bacterial taxa

was determined using MetaPhlAn2 (v2.8.1). The assembled

shotgun sequences were further binned and annotated through

the RAST Binning Service (RBS) on PATRIC. The finalized shotgun

metagenomic data have been deposited in the NCBI Sequence Read

Archive under Bioproject IDs PRJNA1129514 and PRJNA1128111.
2.5 Resistome analyses

Taxonomic binning of assembled sequences from shotgun

metagenomic data was performed using BugSeq (v4.0), following

previously established methods (Chandrakumar et al., 2022; Fan

et al., 2021; Gauthier et al., 2022). Contigs were aligned against a

curated reference sequence database using minimap2, and alignment

results were evaluated based on query coverage and average nucleotide

identity (ANI) thresholds to determine taxonomic classification.

Antimicrobial resistance (AMR) determinants were identified by

screening taxonomic bins with BugSeqs AMR analysis (v4.0).

Contigs were analyzed against a curated protein database containing

over 6,500 sequences associated with AMR, using both threshold

alignment and Hidden Markov Models to accurately classify gene

alleles and families. Additionally, taxon-specific models for phenotypic

AMR prediction, incorporating single-nucleotide variants, insertions,

deletions, and other genetic markers of resistance, were applied to over

50 bacterial species. The resulting taxonomic binning data and AMR

predictions were compiled into comprehensive reports for further

analysis. Antibiotic resistance genes (ARGs) in this study were

examined at the class level.
2.6 Machine learning/random forest model

A machine learning model was developed by incorporating

baseline microbiome species abundances via shotgun metagenomic

sequencing, antibiotic resistance gene (ARG) data, antibiotic

administration data, for time from baseline sample to chemotherapy
frontiersin.org
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start date, and binary clinical variables such as sex, chemotherapy type,

and chemotherapy intensity to predict AR-threat outcomes. Themodel

employed a Random Forest algorithm, which leverages multiple

decision trees to reach an outcome. This approach, an extension of

the bagging method, incorporates both bagging and feature

randomness to create a “forest” of decision trees. Several patients

were excluded from the study. Reasons for exclusion included: lack of

baseline stool sample, lack of antibiotic administration data, lack of

complete clinical metadata, and lack of resistome data. This left 95

patients with complete metadata to be included in the study (Table 1).

Of these, 14 patients experienced an AR event during induction

chemotherapy, defined either ARC or ARI events. Antibiotic

administration variables were only included in the model if they

were received by at least 10% of patients (9 or more patients).

Similarly, ARG classes from resistome data were only included if

they were present in at least 10% of patients. Baseline microbiome data

was filtered to an abundance of 0.001 and a prevalence of 10%.

To minimize dataset variability, overfitting, bias and to enhance

robustness, we ran four different models. For each model, analysis was

performed across 100 independent 80–20 stratified training-testing

splits. Model 1 contained 89 variables and featured ARG class by

presence/absence, presence/absence of antibiotic administrations

received ≥72 hours, and baseline species abundance from shotgun

metagenomic sequencing. Model 2 also contained 89 variables but

featured unique ARG counts by class, presence/absence of antibiotic

administrations received ≥72 hours, and baseline species abundance.

Model 3 contained 92 variables with ARG class by presence/absence,

presence/absence of any administration (regardless of duration), and

baseline species abundance. Finally, Model 4 also contained 92

variables, with unique ARG counts by class, presence/absence of any

antibiotic administration, and baseline species abundance. Antibiotic

administration was evaluated at a threshold of ≥72 hours of

administration or as the presence/absence of any administration,

regardless of duration, as both are biologically relevant for infectious

implications in this patient cohort. AML patients receiving IC may

receive empirical broad-spectrum antibiotic treatment, which might be

de-escalated upon return of negative cultures (~48hrs) or switched to a

separate antibiotic with the correct spectrum of activity if the pathogen

is found resistant to the prescribed antibiotic. Thus, presence/absence

would account for any antibiotic given empirically or otherwise,

whereas a model that considers antibiotic administration ≥72 hours

is relevant for antibiotics that were maintained/continued for an

infectious implication (AR or not) after return of culture or

continuation of symptomology.

The resulting outcomes of each iteration were then aggregated,

either as ROC curves or box plots for each model. Variable importance

scores for each of the 100 iterations were calculated and averaged. To

better amend the model’s performance, the top 20, 15, and 10 most

influential variables were selected for inclusion for each of the four

models. The model with the 15 most influential variables demonstrated

the best performance in comparison to 10 or 20 in all four models.

Each model using the top 15 most influential variables was then

executed 100 times, and the aggregated results were used to produce a

final AUC-ROC curve. The variable importance scores were calculated

as the raw sum of decreases in Gini impurity across all trees in the
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Random Forest and were not normalized. The Youden’s index was

calculated as sensitivity plus specificity minus one to summarize the

overall accuracy of the diagnostic test. A final model (Model 2) was

chosen based on the 1) highest AUC, 2) best balance of sensitivity and

specificity, and 3) a balanced Youden’s index. The final model was

optimized by increasing the value or mtry to increase the number of

variables randomly sampled in each try and increasing the node size to

increase the depth of each tree. We then used Shapely Additive

exPlanations (SHAP) to interpret the optimized machine

learning model.
2.7 Sparse canonical correlation analysis

Sparse canonical correlation analysis (sCCA) was utilized to

detect ARG class-microbial species associations by identifying

highly correlated linear combinations of variables while ensuring

sparsity through variable-specific weight constraints. A centered

log-ratio (CLR) transformation was applied to the microbial

abundance data, with zero values substituted by a pseudocount

calculated as min(relative abundance)/2. Sparse Canonical

Correlation Analysis (sCCA) was performed using the ‘PMA’

package (v. 1.2-2) in R, correlating the CLR-transformed gut

microbiome taxonomic composition with the ARG classes.

Hyperparameters were optimized using the CCA.permute

function (nperms = 100, niter = 5) prior to model fitting. To

enforce sparsity, a Lasso penalty was applied, with the “typex” and

“typez” parameters set to “standard” for the corresponding

canonical vector (Rashidi et al., 2022).
2.8 Network development and selection of
variables

To investigate the interactions between classes of ARGs by count of

unique genes within each class, antibiotic administration by presence/

absence, microbial taxa abundance at the species level, and AR events, a

network was constructed based on a correlation matrix derived from

the sample data. The matrix was created using Spearman’s rank

correlation test, with positive values indicating a positive correlation

to the AR event and negative values indicating a negative correlation

(Spearman, 1904). The resulting correlation matrix was imported into

Gephi, where the network was visualized using its built-in functions

(Bastian et al., 2009). Following the initial analysis, edges with a weight

below 0.2 were removed, resulting in the identification of 11 variables

associated with AR events. The nodes and edges were then uploaded to

generate the network.
3 Results

3.1 Patient characteristics

During their inpatient treatment, 14 patients experienced an AR

event. Of these, 8 patients were identified with antibiotic-resistant
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infections, with one patient exhibiting two distinct infections.

Among the infections, 37.5% were attributed to carbapenem-

resistant Pseudomonas aeruginosa, 12.5% to MRSA, and 62.5% to

ESBL Escherichia coli. Furthermore, 9 patients were identified as

being GI-colonized, with 22.2% of those colonized with VRE, 22.2%

with carbapenem-resistant and ESBL-producing E. cloacae, 22.2%
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with ESBL-producing Klebsiella pneumoniae, 33.3% with MRSA,

and 22.2% ESBL-producing E. coli. Of these 14 total AR event

patients, 3 patients had overlapping calls, where they had both ARC

and ARI (Supplementary Table 1). Analysis of clinical variables

demonstrated that sex, chemotherapy type, and chemotherapy

intensity did not show any significant differences between AR
TABLE 1 Characteristics of the patients included for AR event analysis.

Patient characteristics AR-event

Yes No P-value X2

Patient count, N (%) 14 (14.7) 81 (85.3)

Infection 8

Colonization 9

Cohort, N (%)

PA13-0339 6 (6.3) 56 (58.9)

PA15-0780 8 (8.4) 25 (26.3)

Sex, N (%) 0.592 0.288

Female 8 (57.1) 40 (49.4)

Male 6 (42.9) 41 (50.6)

Chemotherapy intensity, N (%) 0.66 0.193

High 9 (64.3) 47 (58.0)

Low 5 (35.7) 34 (42.0)

Chemotherapy type, N (%) 0.83 0.882

Fludarabine2 4 (28.6) 18 (22.2) 0.732 –

Non-Fludarabine (High)2 5 (35.8) 29 (35.8) >.99 –

Hypomethylators2 4 (28.6) 21 (25.9) >.99 –

Other (Low)2 1 (7.0) 13 (16.1) 0.685 –

Antibiotic administration1 0.843 8.815

Levofloxacin 8 (57.1) 63 (77.8) 0.101 2.692

Metronidazole2 3 (21.4) 10 (12.3) 0.4 –

Linezolid2 13 (92.9) 57 (70.4) 0.104 –

Meropenem 7 (50) 34 (42) 0.576 0.313

Cefepime 9 (64.3) 49 (60.5) 0.788 0.072

Amikacin 5 (35.7) 11 (13.6) 0.041 4.176

Trimethoprim-Sulfamethoxazole2 0 (0) 9 (11.1) 0.3475 –

Daptomycin 5 (35.7) 22 (27.2) 0.512 0.429

Piperacillin-Tazobactam 6 (42.9) 22 (27.2) 0.234 1.415

Cefpodoxime 5 (35.7) 23 (28.4) 0.579 0.308

Ciprofloxacin2 2 (14.3) 16 (19.8) >.99 –

Tigecycline2 4 (28.6) 13 (16.0) 0.269 –

Minocycline2 3 (21.4) 9 (11.1) 0.377 –

Ertapenem2 2 (14.3) 16 (19.8) >.99 –
1Antibiotic Administration is defined as any administration of the antibiotic.
2Fisher’s Exact test was used.
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event groups (Table 1). The only variable that showed a statistical

difference between the two groups was amikacin administration

(p=0.041) (Table 1). These results ultimately show that there are no

clinical confounding variables between the two AR event groups.
3.2 Development of model

To develop a model capable of predicting AR event outcomes, a

Random Forest-based approach was employed to determine the

optimal model configuration and identify the variables that most

significantly contributed to the model’s performance. The patient

data were randomly partitioned into a training set (80% of the

samples) and a testing set (20% of the samples). Each model was

trained over 100 independent iterations, each with 500 trees.

Variable importance scores were calculated for each feature, and

each model’s performance was assessed using the area under the

curve (AUC) and Youden’s index, which calculates the maximum

vertical distance between the curve of true positives and false

positive rates on an ROC curve. After running each model with

all variables (89–92 variables depending on the model), the top 15

variables for each model were selected based on their importance

scores and the models subsequently re-run with only the 15 retained

variables (80/20 split, 100 iterations, 500 trees each). The aggregated

results were used to produce a final AUC-ROC curve for each

model (Figure 1). Based on antibiotic administration data and

antibiotic-resistant gene (ARG) data from BUGSEQ, we

constructed four distinct model variations to assess which data

configuration produced the most robust results. Model 1

incorporated ARG class by presence/absence, presence/absence of

antibiotics administered ≥72 hours, and baseline taxa abundance by

species (AUC=0.667, Youden’s=0.879) (Figure 1A). Model 2

included ARG data by count of unique genes by class, presence/

absence of antibiotics administered for ≥72 hours, and baseline

species abundances (AUC=0.689, Youden’s=0.835) (Figure 1B).

Model 3 utilized ARG class presence/absence data, presence/

absence of any antibiotic administered (regardless of duration),

and baseline species abundance (AUC=0.666, Youden’s =0.871)

(Figure 1C). Model 4 comprised ARG data by count of unique genes

by class, presence/absence of any antibiotic administered,

and baseline abundance data by species (AUC=0.687,

Youden’s=0.855) (Figure 1D). Further clinical metrics and

confusion matrices for each model can be found in

Supplementary Tables 2 and 3, respectively.

We determined that Model 2 was the best choice among the

four models as it offers the strongest overall performance balance. It

has the highest AUC (0.689), indicating the best discrimination

between positive and negative cases. While its sensitivity (0.630) is

slightly lower than the others, it achieves the highest specificity

(0.643) among the models. Moreover, although models 1, 3, and 4

had higher sensitivity, their specificity was not much above 50%.

Having determined that Model 2 was the most balanced model, the

model was optimized, yielding an aggregate AUC value of 0.730 (CI:

0.0251), and a Youden’s index of 0.863 (Figure 2A). The aggregate

optimized model had a mean AUC value of 0.742, a median AUC
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value of 0.745, and a range from 0.505 to 0.969 for the 100 iterations

(Supplementary Figure 2).

Of the 15 variables utilized in this model, 13 were bacterial taxa,

with Methanobrevibacter smithii (mean variable importance score

(mVIS) of 0.717) and Blautia producta (mVIS of 0.630), being the

most contributory to the model. Two classes of ARGs were also

contributory to the model, those being genes predicted to encode

resistance to macrolides (mVIS of 0.573) and genes classified as

those predicted to encode resistance to lincosamides, macrolides,

and streptogramin (mVIS of 0.542). The additional 11 variables

consisted of bacterial taxa, with mean VIS scores ranging from

0.522 to 0.622 (Figure 2B).The SHAP method was used to explain

the contribution or importance of each of the 15 features on the

prediction of the model for AR events (Figure 2C). The

predominant clustering of SHAP values below zero for each

variable indicates that these features tend to have a negative

impact on the prediction of an AR event, supporting a non-event

classification. Specifically, higher values of ARG counts of genes

belonging to macrolide and lincosamide/macrolides/streptogramin

classes contributed negatively to the model. It also appeared that the

higher feature values of M. smithii, Clostridium leptum, and

Bacteroides dorei contributed negatively towards the model, which

were the top three features with the greatest effect on prediction,

according to the mean SHAP value. Conversely, it appeared that

higher feature values of baseline abundances of Bifidobacterium

longum, Ruminococcus gnavus, Eubacterium rectale, and

Parabacteriodes (unclassified), contributed positively to the model.
3.3 Sparse canonical correlation analysis

To better understand the relationship between baseline species

abundances and antibiotic resistance gene (ARGs) classes in

patients at baseline, a sCCA analysis was conducted to explore

the associations between these two groups. A heatmap was

generated using Pearson correlation coefficients (Supplementary

Figure 3). Notably, only 2 ARG classes and 10 taxa were found to be

correlated between baseline gut microbiota species and classes of

ARGs. Hierarchical clustering revealed four bacterial clusters, with

two that were particularly noteworthy. The first cluster included

Streptococcus thermophilus and Bacteroides thetaiotaomicron,

which were negatively correlated with genes encoding resistance

to glycopeptides and lincosamides/macrolide/streptogramins. In

contrast, the second cluster revealed that C. leptum and

Ruminococcus torques exhibited a positive correlation with genes

conferring resistance to glycopeptides and lincosamide/

macrolides/streptogramins.
3.4 Network development

Thus, to further comprehend how the variables relate to the

development of an AR event, a network analysis was conducted to

explore these correlations. After constructing a correlation matrix

with a minimum correlation threshold of 0.2, 11 variables were
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identified as linked to the development of an AR event and

visualized in a network (Figure 3; Supplementary Table 4). The

network analysis suggests that a patient’s baseline taxa might play a

critical role in protecting against an AR event, as all 11 variables

were negatively correlated with AR event occurrence.
4 Discussion

In this study, we utilized a novel machine learning approach to

predict antibiotic-resistant event outcomes in patients undergoing

induction chemotherapy for acute myeloid leukemia. The

developed Random Forest model integrated baseline fecal

microbiome composition, antibiotic administration data, and

resistome profiles, successfully identifying critical microbial taxa
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and antibiotic resistance gene classes associated with AR events.

Our best performing model, which incorporated ARG class count

data and antibiotics by presence or absence at ≥72 hours, yielded a

promising predictive performance with an AUC of 0.730.

Across our integrated analyses, M. smithii, C. leptum, and B.

dorei consistently emerged as key taxa associated with AR events

during induction chemotherapy, underscoring their potential roles

in shaping the gut ecosystem’s vulnerability to resistant pathogen

colonization or infection. M. smithii was the top-ranked feature in

the Random Forest model by both mVIS and SHAP values and

determined to be negatively associated with AR events in the

correlation network. This species commonly contributes to gut

microbial homeostasis through hydrogen consumption and

syntrophic interactions with fermentative bacteria, which can help

maintain community stability during antibiotic-induced
FIGURE 1

Receiver operating characteristic (ROC) curves depicting the performance of our four model methods. (A) depicts Model 1 (AUC=0.667) with ARG
class by presence vs absence, presence/absence of antibiotics at ≥72 hours’ worth of administrations, and baseline species abundance, (B) depicts
Model 2 (AUC=0.689) with unique ARG counts by class, presence/absence of antibiotics ≥72 hours of administrations, and baseline species
abundance, (C) depicts Model 3 (AUC=0.666) with ARG class by presence vs absence, antibiotic administration presence/absence of any
administration, and baseline species abundance, and (D) depicts Model 4 (AUC=0.687) with unique ARG counts by class, antibiotic presence/
absence of any administration, and baseline species abundance. The shaded grey area on the graph shows confidence intervals for all models. The
Youden’s Index, a metric that identifies the optimal threshold on a ROC curve, is indicated by the dot on the curve, followed by the specificity and
sensitivity values, respectively.
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perturbation (Adrian et al., 2023; Ghavami et al., 2018; Malat et al.,

2024). Prior studies have linked M. smithii to a more resilient gut

environment and a reduced risk of inflammatory or infectious

conditions, which are consistent with our findings of this species

having a negative correlation with antibiotic-resistant event

development (Chen et al., 2024; Cisek et al., 2024; Ghavami et al.,

2018). Interestingly, the sCCA, a method designed to reveal

coordinated variation between taxa and resistome features,

depicted M. smithii showing weak positive correlations with

several ARG classes, including those conferring resistance to

lincosamides, macrolides, and streptogramins, which were also

found to be negatively contributory to AR event prediction and
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correlated with AR events in the correlation network. This may

suggest that M. smithii persists in communities where ARGs are

present but well-regulated by stable microbial networks, preventing

overgrowth of pathogenic species despite the elevated resistance

gene abundance (Dongre et al., 2025; Nhu and Young, 2023).

C. leptum was also positively correlated with the ARG

abundance of genes conferring resistance to glycopeptides and the

lincosamides/macrolides/streptogramins via the sCCA, indicating

this species tends to co-occur with these resistance elements in the

gut ecosystem. Previous studies have similarly linked C. leptum to

dysbiotic gut environments and long-term ARG retention following

antibiotic exposure (Korpela et al., 2016; Nielsen et al., 2021). Yet
FIGURE 2

Analysis of the chosen model. (A) Aggregate ROC curve for Model 2 following optimization. The optimal cutoff point, determined by maximizing the
Youden’s index is indicated on the curve, followed by the specificity and sensitivity, respectively. The shaded grey area on the graph shows the
confidence interval for the model. (B) The top 15 variables used in the optimized model that had the highest contributions to model performance.
Variable important scores are calculated by the mean decrease in node impurity (Gini importance). Variables are color coordinated with bacterial
taxa in blue and ARG classes in orange. Most contributory variables are listed from most (bottom) to least contributory variables (top). (C) The SHAP
(Shapely Additive exPlanations) beeswarm plot summarized the impact of each feature of the model’s predictions across all samples and aggregated
runs. Each point represents a single sample’s SHAP value for a given feature, with the x-axis indicating the SHAP value (the effect of the feature on
the model output for that sample). Features are ranked on the y-axis by their overall importance (mean absolute SHAP value). Color represents the
original value of the feature for each sample (with lighter colors indicating higher values and darker colors indicating lower values). Points to the
right indicate that the feature increases the predicted probability of the outcome for those samples, while points to the left indicate a decrease. The
distribution and color gradient of the points reveal how high or low values of each feature influence the model’s predictions. The variables are listed
in order of most contributory to the model’s prediction across all samples to least from top to bottom.
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despite these associations with elevated ARG content, C. leptum was

shown to be negatively correlated with the development of an AR

event in the correlation network, and negatively contributory to the

Random Forest model via SHAP analyses. Rather than serving as a

direct risk factor, its presence may reflect a type of microbiome that,

while enriched for resistance genes, is still ecologically balanced

enough to prevent extensive growth or translocation of pathogenic

organisms (Grenda et al., 2022; Guo et al., 2020). This underscores

the ecological nuance in the gut microbiome, where a species might

contribute to resistance gene maintenance without necessarily

increasing infection risk. Moreover, the presence of ARGs does

not necessarily equate to virulence/pathogenesis of a pathogen, nor

does it mean those genes are expressed. This also highlights the

value of using multiple analytical approaches to uncover different

layers of interaction between microbes, resistance elements, and

clinical outcomes.

B. dorei was also identified as an important feature negatively

contributory in the Random Forest model and demonstrated a

negative correlation with AR event outcomes in the network

analysis, suggesting that its presence may help guard against

resistant pathogen colonization or infection. B. dorei is a prominent

commensal species that contributes to gut health by reinforcing

epithelial barrier integrity, producing immunomodulatory

metabolites, and participating in the exclusion of pathogenic

bacteria (Panwar et al., 2021; Pickard et al., 2017). These attributes

become particularly relevant during chemotherapy, when the gut

barrier is compromised, and antibiotic disruption leaves the

microbiome vulnerable. The fact that B. dorei was shown to be

negatively associated with the development of AR events suggests

that it may help maintain gastrointestinal integrity or colonization

resistance against pathogens under stress, possibly acting as part of a

protective microbial buffer against the emergence or expansion of

resistant organisms.
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Among all the antibiotic resistance gene classes we examined,

the group conferring resistance to lincosamides, macrolides, and

streptogramins stood out for their consistent and unexpected

association with reduced AR event risk. These genes showed up

across each different analysis, 1) they were among the top predictors

in the Random Forest model, suggesting a strong relationship with

AR event risk; 2) they showed covariation with specific microbial

taxa in the sCCA, indicating possible ecological linkage; and 3) they

demonstrated a negative correlation with AR events in the network

analysis. This last point is particularly unusual as resistance genes

from this class are typically associated with broad-spectrum

antibiotic use and worse clinical outcomes, especially in settings

involving high-risk pathogens (Khodabandeh et al., 2019). One

possibility as to why we are seeing these ARG classes negatively

associated with AR events is that they might represent intrinsic

resistances present among taxa that are part of stable microbial

communities that help resist pathogenic invasion (Crits-Christoph

et al., 2022; Moradi et al., 2022). Rather than signaling a harmful

shift, the presence of these genes might reflect a microbiome that’s

been shaped by past antibiotic exposure but remains functionally

resilient (Bhattarai et al., 2024; Fishbein et al., 2023). This highlights

an important point: the presence of resistance genes doesn’t always

equate to increased infection risk; it depends heavily on the

microbial community they’re part of and the ecological context in

which they persist.

Our predictive model represents an advancement beyond

existing approaches by simultaneously assessing the risk of both

antibiotic-resistant infection and gastrointestinal colonization. This

dual focus is relatively uncommon in current models, which often

concentrate solely on infection outcomes, specific types of

infections, or specific pathogens (Rich et al., 2022; Z. Wang et al.,

2024). Our model’s design encompasses pathogens deemed as

serious threats according to the CDC and various infection types,
FIGURE 3

Network showing correlations with AR Event. A graphical network with primary nodes connected to the AR event. Within the network, the nodes are
classified to denote bacterial species (blue), ARG classes (orange), with the event notated in the center (pink). The direction of connections is
indicated to be negative by a red line.
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moving beyond the typical focus on single-species predictions.

While our model yields a moderate AUC of 0.730, this

performance is comparable to or exceeds that of other recent

predictive models for ARI, where AUCs range from 0.57 to 0.75

(Liao et al., 2023; Rich et al., 2022). Additionally, the model

achieved a Youden Index of 0.863, reflecting a strong overall

balance between sensitivity and specificity. However, certain

limitations warrant discussion. First, it is possible that utilizing a

16S rRNA sequencing-based abundance threshold at the genus level

to determine which longitudinal stools to perform selective and

differential culturing on might have led to missed ARC events.

Moreover, it is also important to note that although combining

colonization and infection events may obscure biologically distinct

processes, this choice was made to not only better power analyses,

but because it is commonly believed that bloodstream infections

may stem from gastrointestinal colonization and translocation,

making it biologically relevant to include these categories

together. Second, while aggregating SHAP values across multiple

independently trained models enhances the robustness of feature

importance estimates, this approach can also amplify ambiguity,

particularly when the underlying data relationships are complex. In

this study, the variables utilized were microbial, which are known to

exhibit extensive feature interactions and nonlinear relationships.

Additionally, microbial taxa data are inherently zero-inflated, which

contributes to some of the ambiguity in the SHAP interpretation, as

reflected in the SHAP beeswarm plot where most data points are

colored purple, indicating low or absent abundance for most taxa.

These characteristics likely contribute to the observed ambiguity in

SHAP results, as the effect of individual taxa on model predictions

may vary depending on the presence and absence of other taxa and

may not follow simple monotonic patterns. Nevertheless, the results

in the SHAP plot are corroborated by those in the network plot,

supporting the overall validity of our findings. Lastly, while our

model demonstrates a notable improvement over existing tools, we

recognize that our small cohort size, number of events, and single

institution analyses are limiting the efficacy of our model. This

model is in its developmental stages and further studies will be

necessary to validate and refine this model in larger, multicenter

cohorts and extend the analysis to different high-risk populations to

enhance clinical applicability. Unfortunately, we have not been able

to validate our model on an independent cohort, due to the inability

to find a similar clinical cohort with the same sequencing and

clinical metadata available.

In conclusion, this study provides an improvement in the

predictive modeling of AR events in AML patients by integrating

comprehensive microbiome, resistome, and clinical data. Although,

in the early stages of model development, the performance of this

model suggests a possibility for clinical utility and highlights its

potential for future implementation in infection risk stratification

once the limitations are addressed. These findings not only offer

valuable predictors for clinical decision-making but also emphasize

the critical importance of microbiome preservation during

antibiotic therapy. Ongoing research and validation in diverse

clinical populations will be essential to refine and implement

these predictive tools effectively in clinical practice. Moreover,
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functional validation via metatranscriptomics, metabolomics, or

gnotobiotic models would be valuable to determine the role of the

predicted protective taxa, their metabolic products, and

contributory ARGs on AR event risk.
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