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Background: Leptin has been implicated in the prognosis of sepsis, yet its
mechanistic role remains unclear. This study aimed to develop leptin-
associated diagnostic and prognostic models for sepsis and identify potential
biomarkers using machine learning approaches.

Methods: Non-negative matrix factorization (NMF) was used to identify leptin-
related molecular subtypes of sepsis. Weighted gene co-expression network
analysis (WGCNA) determined relevant gene modules and hub genes.
Differentially expressed genes (DEGs) between sepsis patients and controls
were intersected with WGCNA results to refine key genes. Based on these
analyses, a prognostic classification model predicting 28-day mortality was
developed using the Least Absolute Shrinkage and Selection Operator and
Random Forest algorithms, while a time-to-event prognostic model was
constructed with Random Survival Forest and Gradient Boosting Machine.
Single-cell RNA sequencing was performed to assess expression patterns of
core genes across immune cell types. Expression validation was conducted using
gPCR and Western blotting.

Results: Three leptin-associated sepsis subtypes with distinct prognoses were
identified. The pink and salmon modules from WGCNA were significantly
associated with sepsis. Seventy core genes were selected from the DEGs and
WGCNA intersection. The prognostic classification model and the time-to-event
prognostic model demonstrated strong predictive performance in both the
training and external validation cohorts. TFRC and PILRA were consistently
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highlighted through machine learning, single-cell data, and experimental
validation as potential biomarkers.

Conclusion: We established leptin-related prognostic models for sepsis using
integrated machine learning. TFRC and PILRA may serve as promising
biomarkers, offering insights into sepsis heterogeneity and clinical management.
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Introduction

Sepsis is a systemic inflammatory response syndrome triggered
by infection, which can lead to organ dysfunction and even death in
severe cases (Jacobi, 2022). According to recent studies, the global
age-standardized incidence rate of sepsis is 677.5 cases per 100,000
population. The highest incidence rates are observed in sub-
Saharan Africa, Oceania, and South Asia. In high-income
countries, the case fatality rate of sepsis ranges from 15% to 25%,
whereas in low- and middle-income countries, it often exceeds 40%,
with the mortality rate of septic shock reaching as high as 50% (La
Via et al., 2024). In recent years, the acute-phase survival rate of
sepsis has improved globally; however, mortality remains
significant. A multicenter prospective study involving 44 intensive
care units (ICUs) across China reported an ICU mortality rate of
27.2% and an in-hospital mortality rate of 33.0% among sepsis
patients. For those with septic shock, the ICU mortality rate
increased to 39.0%, and the in-hospital mortality rate rose to
44.4% (Wang et al, 2020). Additionally, another study from
China found that the 30-day mortality rate for sepsis patients was
29.5%, while for patients with septic shock, it reached 37.3% (Liu
et al., 2022).

Early recognition of sepsis remains a major clinical challenge
owing to its heterogeneous manifestations and rapid progression.
Traditional scoring systems, such as the Sequential Organ Failure
Assessment (SOFA) (Qiu et al., 2023) and Acute Physiology and
Chronic Health Evaluation II (APACHE II) (Yuan et al., 2024), are
commonly used to assess disease severity and predict outcomes in
sepsis patients. However, these tools have limitations in predictive
accuracy and may not fully capture the complex pathophysiological
processes involved in sepsis. For instance, Zhang et al. developed a
28-day mortality prediction model using MIMIC-IV data,
identifying variables such as ICU stay, hemoglobin, albumin,
activated partial thromboplastin time, and total bilirubin,
achieving an area under the receiver operating characteristic
curve (AUC) of 0.904 (Zhang et al., 2024). Similarly, Xie et al.
established a model based on IL-6, lactate, and procalcitonin, with
AUCGCs of 0.849 and 0.828 in the training and validation cohorts,
respectively (Xie et al., 2023). These results highlight the need for
more precise and individualized prognostic tools in sepsis care.
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Machine learning (ML) techniques, particularly when applied
to high-dimensional sequencing data, provide more accurate and
detailed methods for prognostic prediction and have been applied
to a variety of diseases (Liao et al.,, 2025; Alshwayyat et al., 2025;
Lopez Gordo et al,, 2025). For instance, a study has demonstrated
that ML models, such as Random Survival Forest (RSF), can provide
superior prognostic performance for elderly sepsis patients
compared to traditional methods, with C-index values of 0.731,
outperforming SOFA, Simplified Acute Physiology Score II (SAPS
II) and Acute Physiology Score III (APS III) scoring systems (Zhang
et al., 2022). Leptin, a hormone predominantly secreted by
adipocytes, is integral to regulating energy balance, metabolism,
and immune responses (Obradovic et al., 2021). Beyond its role in
energy homeostasis, leptin acts as a cytokine, influencing
inflammation and immune cell activity (Abella et al, 2017).
Elevated leptin levels have been linked to adverse outcomes in
sepsis (Jacobsson et al., 2017), while low leptin levels may indicate
immune deficiency (Birlutiu and Boicean, 2021). Given its
significant role in sepsis, leptin is considered a potential
biomarker for prognosis. Therefore, in this study, we aim to
utilize ML techniques to develop mortality prediction and
prognostic models for sepsis, incorporating leptin and other
biomarkers to improve predictive accuracy.

Methods
Data processing

Transcriptomic data from human blood samples were obtained
from the Gene Expression Omnibus (GEO) and ArrayExpress
databases. Datasets containing samples from minors were
excluded. Additionally, datasets that did not report mortality
outcomes, lacked complete expression data, or included
duplicated entries were also excluded. The expression data were
obtained from public repositories and normalized according to the
platform specifications using the limma package (Ritchie et al,
2015). Probes without corresponding gene symbols were removed.
In cases where multiple probe sets mapped to the same gene
symbol, the average expression value was used. Batch effects were
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corrected using the ComBat algorithm from the sva R package. Each
dataset was treated as a batch, and expression matrices were merged
on the intersection of shared genes after collapsing duplicate probes
with limma. ComBat was applied in parametric empirical Bayes
mode with mean-variance adjustment and batch indicators only,
without additional covariates. The corrected expression matrix was
used for downstream analyses (Leck et al., 2012; Zhang et al,
2020a). Only genes common across all included datasets were
retained for model development and validation.

Non-negative matrix factorization

In this study, NMF was employed for unsupervised clustering
based on Leptin-related genes from the GeneCard database (Stelzer
et al., 2016), with the aim of identifying molecular subtypes of
sepsis. Gene expression data for key genes were extracted from the
GeneCard database, and the data were transposed to meet the input
format required for NMF analysis. NMF was performed using the
NMF package, with ranks ranging from 2 to 10 to explore different
potential clusters of sepsis patients. The Brunet method was applied
for matrix factorization.

Immune infiltration analysis

Single Sample Gene Set Enrichment Analysis (ssGSEA)
(Subramanian et al., 2005) was used to assess immune cell
infiltration in blood samples from septic patients. This method
estimates the enrichment of immune cell types in individual
samples based on predefined gene sets corresponding to various
immune cell types. The analysis was performed using the GSVA
package (Hinzelmann et al,, 2013), which calculates the enrichment
score for each immune cell type in each sample. The enrichment
score represents the relative abundance of each immune cell type
within the respective sample.

Weighted gene co-expression network
analysis

Using the WGCNA package (Langfelder and Horvath, 2008),
potential Leptin-related gene modules associated with sepsis were
identified. The data were preprocessed by filtering out genes with
low variance, retaining only those with variance greater than the
median. Missing values in the dataset were checked, and genes or
samples with excessive missing data were removed to ensure the
integrity of the analysis. Hierarchical clustering was performed on
the samples to detect potential outliers, with samples outside a
predefined cutoff being excluded. Gene modules were identified
using hierarchical clustering based on the Topological Overlap
Matrix (TOM). The optimal soft-thresholding power was
determined, with a scale-free topology criterion set at 0.9. The
TOM was then calculated, followed by hierarchical clustering of
genes to construct a dendrogram, which was used for module
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detection. Modules were identified using the dynamic tree cutting
method, with a minimum module size of 50 genes. The identified
modules were correlated with clinical traits, such as survival data,
using Pearson’s correlation. Significant modules were identified
based on the correlation between gene module membership
(MM) and gene trait significance (GS). Finally, the relationship
between gene expression and clinical traits was assessed by
visualizing MM and GS values through scatter plots. Genes most
closely related to significant modules were retained for further
analysis, including the identification of potential biomarkers
associated with sepsis and mortality.

Functional enrichment analysis

To explore the biological functions and pathways associated
with the identified gene modules and genes, Gene Ontology (GO)
(The Gene Ontology Consortium, 2019) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) functional
enrichment analyses were conducted. GO analysis classifies genes
into three main categories: biological process, molecular function,
and cellular component. KEGG pathway enrichment analysis was
then performed to identify the biological pathways involved.

Differentially expressed genes

DEGs were identified by applying a fold change (FC) cutoff of
0.8 and a p-value threshold of 0.05. The limma package (Ritchie
etal, 2015) was used to perform the differential expression analysis,
with p-values adjusted for multiple testing using the Benjamini-
Hochberg method.

Prognostic classification models for 28-day
mortality prediction

In this study, multiple machine learning algorithms were
employed to construct prognostic classification models for
predicting 28-day mortality in sepsis. These included
combinations such as Lasso Regression + Random Forest (RF),
Generalized Linear Model Boosting (GLMB) + RF, Lasso
Regression + Gradient Boosting Machine (GBM), RF, GBM, and
combinations of Stepwise Logistic Regression (SLR) with RF,
among others. These models were trained on internal datasets
and validated externally. Variable selection was performed using
methods such as Lasso Regression and Elastic Net (EN). The
performance of the models was evaluated using several metrics,
including Receiver Operating Characteristic (ROC) curves,
confusion matrix (CM), and decision curve analyses, to assess
predictive accuracy, classification performance, and clinical utility.
ROC curves assessed model discrimination, the CM evaluated
classification capability, and DCA measured the potential clinical
benefit for predicting 28-day mortality and informing
decision-making.

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1630446
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Liu et al.

Time-to-event prognostic models for
sepsis

In this study, various machine learning algorithms were
employed to construct prognostic models for sepsis, including
combinations of Random Survival Forest (RSF), Lasso Regression,
Stepwise Cox Regression (StepCox), Gradient Boosting Machine
(GBM), CoxBoost, Elastic Net (Enet), Ridge Regression, and others.
The models were trained and evaluated using external validation
datasets. To assess model performance, the concordance index (c-
index) was calculated to evaluate the discriminatory power of the
models in predicting patient outcomes. Additionally, time-
dependent receiver operating characteristic (ROC) curves were
employed to assess the predictive accuracy of the models over
time, particularly for 28-day mortality prediction. The area under
the curve (AUC) of the time-dependent ROC was computed to
measure the ability of the models to classify patients correctly at
various time points, providing a more comprehensive evaluation of

their performance.

Single-cell RNA sequencing data
processing

Single-cell RNA sequencing data for this study were retrieved
from the GEO database under accession number GSE167363 (Qiu
et al, 2021), encompassing transcriptomic profiles of peripheral
blood mononuclear cells (PBMCs) derived from healthy individuals
and patients with gram-negative sepsis (both survivors and non-
survivors). Raw count matrices generated via the 10X Genomics
platform were imported and processed using the Seurat (Butler
et al, 2018; Slovin et al., 2021) framework in R. To retain high-
confidence single-cell profiles, we applied stringent quality control
filters: cells with fewer than 1,000 total RNA molecules, fewer than
200 or more than 10,000 detected genes, over 20% mitochondrial
gene expression, or over 20% ribosomal gene content were
excluded. This filtering strategy helped eliminate potential
artifacts such as dead cells, doublets, or empty droplets. The
resulting curated dataset was stored for subsequent integrative
and functional analyses. Following rigorous quality assessment,
gene expression values were normalized using the LogNormalize
approach in the Seurat package, wherein each gene count was scaled
relative to the total expression per cell and log-transformed after
multiplication by a scale factor of 10,000. To capture transcriptional
heterogeneity, highly variable genes (HVGs) were selected using the
variance-stabilizing transformation (vst) method, retaining the top
2,000 genes. These features were subsequently standardized to zero
mean and unit variance prior to dimensionality reduction. Principal
component analysis (PCA) was carried out on the HVGs, and inter-
sample variation was mitigated using Harmony (Korsunsky et al,
2019), leveraging sample identity as the integration variable. The
corrected principal components were then used to generate a t-
distributed stochastic neighbor embedding (t-SNE) projection for
visualization. Clustering was performed using a graph-based shared
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nearest neighbor (SNN) approach, with resolution tuning informed
by hierarchical visualization through clustree. Final clustering was
executed at a resolution of 1.2. Cell type annotation combined
automated classification via SingleR (Zhao et al, 2020)—using
reference transcriptomes of human immune cells—with manual
refinement based on canonical marker gene expression patterns.

Sample collection and ethics statement

A total of nine peripheral blood samples were obtained from
Sichuan Provincial People’s Hospital, comprising three healthy
controls, three sepsis patients who survived beyond 28 days, and
three sepsis patients who died within 28 days of hospital admission.
All samples were collected at the time of admission, prior to the
initiation of any therapeutic intervention. Peripheral blood
mononuclear cells (PBMCs) were isolated from freshly drawn
blood using Ficoll-Paque density gradient centrifugation. The
study protocol was approved by the Medical Ethics Committee of
Sichuan Provincial People’s Hospital (Approval No. 2023-581), and
written informed consent was obtained from all participants or
their legal guardians.

Real-time quantitative PCR

Total RNA was extracted from PBMCs using Trizol reagent
(Invitrogen, Carlsbad, CA, USA). cDNA synthesis was performed
using the ReverTra Ace qPCR RT Kit (TOYOBO, Osaka, Japan)
according to the manufacturer’s instructions. For real-time
quantitative PCR detecting system (RQ-PCR) analysis, TransStart
Tip Green qPCR SuperMix (TransGen Biotech, Beijing, China) was
used. Gene expression was normalized to GAPDH, and relative
expression was calculated using the AACt method. The primers are
listed in Supplementary Table 1.

Western blot

PBMCs were lysed in RIPA buffer (Beyotime Biotechnology,
Shanghai, China) containing 1 mM PMSF. Protein concentrations
were measured using a BCA assay kit (Beyotime Biotechnology,
Shanghai, China). Equal protein aliquots (30-50 [1g) were separated
by 8-12% SDS-PAGE and transferred to PVDF membranes
(Servicebio, Wuhan, China). The membranes were blocked with
5% non-fat milk in TBST for 1 hour at room temperature, followed
by overnight incubation at 4 °C with primary antibodies: PILRA
(1:1,000), TFRC (1:1,000), and GAPDH (1:3,000) for loading
control. After washing with TBST three times, membranes were
incubated with HRP-conjugated goat anti-rabbit or anti-mouse
secondary antibodies (1:3,000; Servicebio, Wuhan, China) for 1
hour at room temperature. Protein bands were visualized using ECL
reagent (Servicebio) and analyzed with Image] software. GAPDH
was used as a loading control.
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Statistical analysis

The analysis in this study was performed using R software
(version 4.3.1). Spearman’s rank correlation coefficient was used to
evaluate correlations between variables. To assess survival
differences among groups, Kaplan-Meier survival curves were
generated and compared using the log-rank test. The optimal
threshold for survival analysis was determined using the
surv_cutpoint function, which identifies the cutoff point that
maximizes the survival differences. For statistical comparisons, an
independent t-test or Mann-Whitney U test was applied for two-
group analyses, depending on data distribution, while one-way
ANOVA or Kruskal-Wallis test was employed for comparisons
among multiple groups. A P-value of less than 0.05 (two-sided) was
considered statistically significant.

Results

NMF based clustering reveals immune
infiltration and clinical characteristics in
septic patients

The basic information of the datasets used in this study is
provided in Supplementary Table 2. The code used in this study is
provided in Supplementary Data Sheet S1. Genes associated with
Leptin were retrieved from the GeneCards database
(Supplementary Table 3). Using these genes, NMF was performed
on sequencing data from GSE65682. As shown in Figure 1A, the
consensus matrix divided the samples into three distinct clusters.
To determine the optimal number of clusters, an NMF rank survey
was conducted (Figure 1B). Various evaluation metrics, including
cophenetic, dispersion, evar, residuals, RSS (Residual Sum of
Squares), silhouette, and sparseness, were assessed across
factorization ranks from 2 to 10. The NMF rank survey revealed
that three clusters provided the best fit according to multiple
metrics, indicating the clearest separation between the clusters.
PCA further supported the distinct separation of the three
clusters (Figure 1C). Prognostic analysis showed significant
differences among the clusters, with Cluster 1 exhibiting the best
prognosis, while Cluster 3 had the worst outcome (Figure 1D).
Furthermore, immune infiltration differences between the clusters
were compared. With the exception of Gamma.delta. T.cells,
significant statistical differences in immune cell infiltration were
observed between the three clusters (Figure 1E). In the analysis of
clinical characteristics in relation to the clusters, several clinical
variables were evaluated for their distribution across the clusters
(Figures 1F-]). Age did not differ significantly between clusters, with
similar age distributions observed across the three groups. The
gender distribution was balanced across the clusters, with no
significant differences in the male-to-female ratio within each
cluster. For thrombocytopenia, there were no notable differences
across the three groups, with both low and normal platelet levels
present in all clusters. The proportion of patients with ICU-
acquired infections was similar across the clusters, with no
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significant variation. Additionally, the prevalence of diabetes
mellitus was evenly distributed across all clusters, showing no
significant differences.

WGCNA

Prior to performing WGCNA, the expression matrix derived
from the GSE65682 dataset was confirmed to be of high quality,
with no apparent outliers or missing values. A soft-thresholding
power of B = 9 was selected, as it was the minimal value at which the
scale-free topology model began to stabilize, as illustrated in
Figure 2A. This threshold was subsequently used to generate the
TOM and conduct preliminary module detection. Modules
displaying similar gene expression profiles were further combined
based on their eigengenes, yielding seven distinct gene modules
(Figure 2B). Among them, the pink and salmon modules
demonstrated particularly strong correlations, as shown in
Figure 2C. Further analysis revealed significant associations
between MM and GS within these modules (Figures 2D, E).

Functional enrichment analysis of pink and
salmon modules

Functional enrichment analysis revealed distinct biological roles
for genes in the pink and salmon modules (Figures 2F, G). Genes in
the pink module were mainly involved in immune-related
processes, including leukocyte migration, chemotaxis, and
phagocytosis. They were enriched in components such as
secretory granule membranes and focal adhesions, and showed
functions related to GTPase regulation and kinase activity. KEGG
pathways indicated involvement in phagocytosis, chemokine
signaling, and immune cell migration. In contrast, genes in the
salmon module were associated with cell cycle-related processes
like chromosome segregation and nuclear division. These genes
were enriched in vesicle lumen and lysosome components, with
functions including DNA helicase activity and microtubule binding.
KEGG enrichment highlighted pathways such as DNA replication,
cell cycle, and mismatch repair, suggesting roles in cell proliferation
and genomic stability.

Identification and functional analysis of
hub genes

To reduce technical variation among datasets, the ComBat
algorithm was employed for batch effect correction. As shown in
Figure 3A, prior to adjustment, samples from GSE54514,
GSE65682, and GSE95233 clustered separately in the PCA plot,
indicating substantial batch effects. After correction (Figure 3B), the
datasets were well integrated, with samples from different cohorts
intermixed, confirming effective removal of batch effects. Following
integration, a total of 745 DEGs were identified based on predefined
criteria (Figure 3C). These DEGs were intersected with gene sets
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FIGURE 1

Identification and characterization of leptin-related molecular subtypes in sepsis. (A) Consensus clustering heatmap based on leptin-related gene
expression profiles, identifying three stable molecular subtypes (C1, C2, C3). (B) Determination of optimal cluster number using non-negative matrix
factorization (NMF) with multiple evaluation metrics, including cophenetic, dispersion, and silhouette scores. (C) Three-dimensional principal
component analysis (3D PCA) showing clear separation among the three identified clusters. (D) Kaplan—Meier survival curves indicating significant
differences in 28-day survival among the three clusters. (E) Boxplot showing expression levels of leptin-related genes across the three clusters;
differences suggest subtype-specific molecular features. (F) Comparison of age distribution across clusters, with no significant difference observed.
(G-J) Distribution of clinical features across clusters, including (G) sex, (H) thrombocytopenia status, (I) ICU-acquired infection, and (J) presence of
diabetes mellitus, indicating potential clinical relevance of molecular subtypes.

from the pink and salmon modules derived from WGCNA,
resulting in 70 overlapping hub genes (Supplementary Table 4).
Chromosomal mapping showed that these hub genes were
distributed across most chromosomes, excluding chromosomes 4,
12, 18, and the Y chromosome (Figures 3D, E). Functional
enrichment analysis revealed that these hub genes are primarily
involved in immune-related biological processes such as bacterial
defense, cell-cell adhesion, and response to Gram-negative bacteria
(Figure 3F). GO analysis also highlighted their localization to
secretory granule lumens and involvement in kinase regulation
and lipopolysaccharide binding. KEGG pathway analysis
(Figure 3G) showed enrichment in pathways including axon
guidance, lysosome, efferocytosis, and folate biosynthesis,
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Cluster Cluster

suggesting potential roles in immune modulation and cellular
clearance mechanisms in sepsis.

Construction and validation of a machine
learning—based prognostic classification
model for 28-day mortality in sepsis

A variety of machine learning algorithms were utilized to
construct a prognostic classification model aimed at predicting
28-day mortality in sepsis. The GSE65682 dataset was designated
as the training cohort, while E-MTAB-4451, E-MTAB-5273, E-
MTAB-7581, and GSE63042 served as independent validation
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Co-expression network construction and enrichment analysis of leptin-related genes. (A) Determination of the soft-thresholding power (B) to
achieve scale-free network topology, based on analyses of scale independence and mean connectivity. (B) Gene clustering dendrogram with
corresponding module color assignments generated through WGCNA. (C) Correlation heatmap displaying associations between gene modules and
clinical traits. (D) Relationship between module membership and gene significance in the pink module. (E) Relationship between module
membership and gene significance in the salmon module. (F) Gene Ontology (GO) and KEGG pathway enrichment analysis results for genes in the
pink module. (G) GO and KEGG enrichment analysis for genes in the salmon module.

cohorts. In total, 113 models—including both individual and
ensemble algorithm strategies—were assessed, and their respective
AUC values are presented in Figure 4A. Among these, the Lasso
combined with Random Forest (RF) approach achieved the highest
mean AUC across datasets and was therefore selected to construct
the final predictive model (Supplementary Table 5) and compute
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the corresponding risk scores. The performance of the established
risk score model was then evaluated in both the training and
external validation sets using receiver operating characteristic
(ROC) curves, confusion matrices, and clinical decision curve
analysis (DCA) (Figures 4B-F). In the training set (GSE65682,
Figure 4B), the model exhibited strong discriminatory capacity with
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FIGURE 3

Batch effect correction, differential expression, and functional annotation of hub genes. (A) Principal component analysis (PCA) plot illustrating gene
expression distribution prior to batch effect correction. (B) PCA plot after batch effect adjustment, showing improved sample clustering. (C) Volcano
plot displaying differentially expressed genes (DEGs) between sepsis and healthy control groups. (D) Genomic chromosomal distribution of the 70
identified hub genes. (E) Manhattan plot representing the positional distribution and significance of the 70 hub genes. (F) Gene Ontology (GO)
enrichment analysis of the 70 hub genes. (G) KEGG pathway enrichment analysis of the 70 hub genes.

an AUC of 0.94, along with high sensitivity, specificity, and net
clinical benefit. In external datasets including E-MTAB-5273
(Figure 4C), E-MTAB-7581 (Figure 4D), GSE63042 (Figure 4E),
and E-MTAB-4451 (Figure 4F), the model retained stable and
reliable performance, with AUC values ranging from 0.74 to 0.83.
The confusion matrices demonstrated balanced classification
accuracy, while the DCA curves suggested superior clinical utility
of the model compared to conventional reference strategies across a
wide range of threshold probabilities. Besides, ROC curve analysis
in the GSE65682 cohort demonstrated that the proposed model
outperformed traditional clinical variables in predictive
performance (Supplementary Figure 1A).
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Development and evaluation of a time-to-
event prognostic model for sepsis

Multiple machine learning algorithms were applied to develop a
prognostic model for sepsis patients. The GSE65682 dataset was used
as the training cohort, while GSE54514 and GSE95233 served as
external validation sets. A total of 98 models, constructed using
either single algorithms or algorithmic combinations, were evaluated
based on their concordance index (C-index) across datasets
(Figure 4A). Among them, the RSF + GBM combination achieved
the highest average C-index and was selected to build the final
prognostic model (Supplementary Table 5) and compute individual
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FIGURE 4

Construction and external validation of a diagnostic model for predicting 28-day mortality in sepsis. (A) AUC values of diagnostic models developed
using different machine learning algorithms. (B—F) Combined presentation of ROC curves, confusion matrices, and decision curve analysis (DCA) for
external validation across five independent datasets: (B) GSE65682, (C) E-MTAB-5273, (D) E-MTAB-7581, (E) GSE63042, and (F) E-MTAB-4451.

risk scores (Figure 5A). As shown in Figures 5B, C, patients classified
into the high-risk group had significantly worse survival outcomes
compared to those in the low-risk group, with the exception of the
GSE54514 dataset (Figure 5D). Furthermore, time-dependent ROC
curves demonstrated that the risk score maintained strong prognostic
accuracy across multiple time points. Finally, the model’s predictive
performance was benchmarked against previously published
prognostic models (Liang et al., 2022; Zheng et al., 2022; Chen et al,,
2023; Lin et al., 2023; Liu et al,, 2023; Chen et al., 2024) (Figure 5E). In
the GSE65682 dataset, the proposed model outperformed all others,
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and in the remaining two cohorts, it consistently ranked among the
top-performing models. Besides, C-index comparisons at 7, 14, and 28
days consistently demonstrated that the prognostic model achieved
superior discriminative ability compared with conventional clinical
variables (Supplementary Figures 1B). Moreover, both univariate and
multivariate Cox regression analyses confirmed that the model-derived
risk score was an independent prognostic factor for sepsis outcomes
(Supplementary Figures 1C, D). Among them, five features—TFRC,
PILRA, DEFA4, KRT23, and BEX1—are shared between the diagnostic
and prognostic models.
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FIGURE 5

Development and validation of a prognostic model for sepsis. (A) Concordance index (C-index) values of prognostic models constructed using
various machine learning algorithms. (B—D) Kaplan—Meier survival analysis and time-dependent ROC curves evaluating model performance in the
following datasets: (B) GSE65682, (C) GSE54514, and (D) GSE95233. (E) Comparative analysis of the proposed model and previously published
prognostic signatures, based on C-index values across all three datasets.

Sing[e-ce[[ tra nscriptomic proﬁ[ing reveals separate visualizations for the sepsis and control groups provided in

cellular heterogeneity and gene expression Figure 6B. Clustering based on Harmony-corrected principal
signatures in sepsis components (PC) (with PC 13 selected; Supplementary Figures 2B,

C) identified 23 transcriptionally distinct clusters (Figure 6C), which

After rigorous quality filtering to remove doublets, apoptotic =~ Were annotated using the SingleR package and grouped into six major
cells, and empty droplets, high-confidence single-cell transcriptomic ~ immune cell types: Monocyte, NK_cell, Neutrophils, Platelets,
data were obtained (Supplementary Figure 2A). To correct sample- ~ Erythroblast, and B_cell (Supplementary Figure 2D). Within the
derived variability, the Harmony algorithm was applied, resulting in ~ monocyte lineage, three subsets were identified (Supplementary
improved integration of cells across conditions (Figure 6A), with ~ Figure 2E): classical, intermediate, and non-classical (Wong et al,
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Single-cell transcriptomic analysis of key gene expression in sepsis. (A) t-SNE visualization of all 12 samples, demonstrating overall cell distribution.
(B) t-SNE plots comparing cell distributions between control and sepsis groups. (C) Identification of 23 distinct cell clusters based on transcriptomic
profiles. (D) Annotation of eight major cell types across all samples. (E) Feature plots showing the expression patterns of TFRC, PILRA, DEFA4, KRT23,
and BEX1 within the eight annotated cell types. (F) Group-wise comparison of the five hub genes between sepsis and control samples. (G)
Differential expression of TFRC, PILRA, DEFA4, KRT23, and BEX1 across the eight immune cell types.

2011; Thomas et al., 2017; Li et al., 2024). In total, eight immune cell
populations were delineated, including Monocytes (subdivided into
NK cells,
Neutrophils, Platelets, Erythroblasts, and B cells (Figure 6D).
Among the five candidate genes (TFRC, PILRA, DEFA4, KRT23,
and BEX1), TFRC and PILRA displayed significantly higher
expression in monocyte subsets compared with other immune cell
types, whereas DEFA4, KRT23, and BEX1 showed minimal or
negligible expression across all populations. Feature plots in

classical, intermediate, and non-classical subsets),

Figure 6E confirmed their cell-type-specific expression patterns,
and both TFRC and PILRA were differentially expressed between
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the sepsis and control groups (Figure 6F). Notably, in the sepsis
group, TFRC and PILRA also exhibited significant variation in
expression across the eight immune cell types, whereas no such
differences were observed for the remaining genes (Figure 6G).

Expression profiles of TFRC and PILRA in
healthy controls and sepsis patients

Validation in PBMCs from healthy controls, sepsis survivors,
and non-survivors confirmed that TFRC expression progressively
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increased, whereas PILRA decreased across these groups (qPCR,
Figure 7A; WB, Figures 7B, C). Analysis of the GSE154401 dataset
showed that leptin antibody treatment of T cells significantly
elevated TFRC, while PILRA exhibited a non-significant
reduction (Figure 7D). Consistently, in GSE57065 and
GSE131761, TFRC was upregulated and PILRA was
downregulated in sepsis compared with controls (Figures 7E, F).

Discussion

In this study, leptin-associated genes were identified through
the integration of multiple computational approaches, including
WGCNA, differential expression analysis, and NMF. Based on these
candidate genes, two predictive models were developed: a
prognostic model to estimate patient survival outcomes, and a
diagnostic model specifically designed to predict 28-day mortality
in sepsis. Both models demonstrated favorable predictive
performance across internal and external validation cohorts.
Among the genes incorporated into model development, TFRC
and PILRA were consistently shared by both models and were
selected for further investigation. Single-cell RNA sequencing data
revealed their distinct expression profiles within specific immune
cell populations. In addition, validation using patient-derived
peripheral blood samples confirmed that TFRC and PILRA were
significantly differentially expressed between septic individuals and
healthy controls. These results support their potential utility as
molecular indicators for disease classification and risk assessment

10.3389/fcimb.2025.1630446

In recent years, numerous machine learning-based diagnostic
models for sepsis have been proposed, many achieving high AUC
values in training cohorts but showing limited generalizability in
external datasets. For instance, Zhang et al. combined WGCNA and
multiple classification algorithms to develop a diagnostic model
based on 22 core genes (Zhang et al, 2025). While the model
achieved an AUC of 0.999 in the training dataset, its performance
dropped to 0.763 in the external validation cohort, reflecting
potential overfitting and sensitivity to sample heterogeneity. Moor
et al. developed a deep learning model trained on electronic health
records from five countries, achieving an average AUC of 0.84
across multiple institutions and enabling sepsis detection
approximately 3.7 hours earlier than clinical diagnosis (Moor
et al, 2023). However, the model relied heavily on structured
EHR data and lacked mechanistic biological insights. By contrast,
our LASSO + RF-based diagnostic model, constructed using 14
transcriptomic features, achieved an AUC of 0.999 in the training
dataset and maintained reasonable performance in four
independent validation cohorts (AUCs ranging from 0.630 to
0.739). Unlike models relying solely on clinical variables or
lacking external validation, our model is grounded in molecular
expression profiles, offering both biological interpretability and
cross-platform robustness, which enhances its potential for early,
accurate identification of sepsis in diverse patient populations.

In addition to the representative prognostic models already
compared in this study, several other recent models deserve
attention. (Sweeney et al., 2018). developed three transcriptome-
based mortality risk scores using 12 datasets, achieving AUCs

in sepsis. between 0.77 and 0.89 in five external validation cohorts. Their
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strength lies in extensive cross-dataset validation, though the
models employed relatively simple linear approaches and lacked
nonlinear interaction modeling. (Chenoweth et al., 2024). identified
eight prognostic genes through meta-analysis across international
cohorts. Their logistic regression-based model yielded an AUC of
0.812, outperforming qSOFA in predicting 28-day mortality, yet
still limited in modeling complex gene-gene interactions. In
comparison, our prognostic model integrates 12 genes and
leverages a RSF+ GBM ensemble learning strategy to better
capture nonlinear relationships. This combination yielded high
predictive performance in both training and external datasets.
Overall, compared to existing models, ours features broader
pathway integration and more powerful algorithmic modeling,
offering enhanced risk stratification capabilities in the context of
sepsis’s multifactorial pathophysiology.

TFRC (transferrin receptor, CD71) is a transmembrane
glycoprotein that mediates cellular iron uptake and is widely
expressed in proliferating immune cells (Jabara et al., 2016). By
binding to transferrin, TFRC facilitates the internalization of iron
ions, thereby supporting lymphocyte proliferation and immune
function (Jabara et al, 2016). Mutations in the TFRC gene can
lead to combined immunodeficiency with T and B cell defects and
hypogammaglobulinemia, underscoring its essential role in
immune competence (Jabara et al, 2016). In contrast, PILRA
(paired immunoglobulin-like type 2 receptor alpha) is an
inhibitory receptor expressed on myeloid cells. It contains an
intracellular ITIM domain, which recruits phosphatases such as
SHP-1 to deliver negative signals (Mousseau et al., 2000). Through
this mechanism, PILRA downregulates the activation of monocyte/
macrophage and NK cell populations, contributing to immune
homeostasis and limiting excessive inflammation (Mousseau
et al, 2000). In animal models, mice deficient in PILRA show
enhanced production of pro-inflammatory cytokines such as IL-13
and IL-6 following inflammatory stimulation, resulting in
exacerbated tissue injury. These findings suggest a negative
regulatory role for PILRA in immune responses (Sun et al., 2014).

The immunopathology of sepsis is characterized by a disruption
of immune homeostasis. Emerging evidence suggests that altered
expression of TFRC and PILRA may be involved in this
dysregulation. Proteomic analyses have shown that TFRC levels
are significantly elevated in the peripheral blood of sepsis patients
compared to healthy controls, and particularly higher among
nonsurvivors (Li et al, 2022). These findings indicate a strong
association between elevated TFRC and poor prognosis,
highlighting its diagnostic and prognostic value in sepsis (Li et al,
2022). Moreover, mechanistic studies have revealed that TFRC may
influence disease progression by regulating ferroptosis, a form of
iron-dependent cell death, which contributes to tissue damage
during sepsis (Wang and Bian, 2025). In comparison, research on
PILRA in the context of sepsis is limited. However, transcriptomic
clustering analyses have identified PILRA as a marker
distinguishing immune subtypes of sepsis, suggesting that its
expression may modulate the magnitude and trajectory of
inflammatory responses (Zhang et al., 2020b). Taken together,
TFRC and PILRA appear to mediate distinct but complementary
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immunometabolic processes—iron regulation and innate immune
modulation—that may jointly contribute to sepsis pathogenesis.

Our single-cell RNA sequencing data, together with
independently collected samples from sepsis patients and healthy
controls, revealed that TFRC is upregulated, while PILRA is
downregulated in PBMCs. This pattern is consistent with
previous findings and supports their potential utility as sepsis
biomarkers. Elevated TFRC likely reflects heightened immune cell
proliferation and may correlate with disease severity (Li et al., 2022),
whereas reduced PILRA suggests attenuation of inhibitory signaling
and a possible hyperinflammatory state. Therapeutically, both
molecules present as promising targets for immune modulation.
Strategies aimed at limiting TFRC-mediated iron uptake—such as
iron chelation or ferroptosis inhibition—may mitigate
inflammation and tissue injury in sepsis (Wang and Bian, 2025).
Meanwhile, modulation of PILRA signaling, via agonists or
antagonists, could serve dual purposes: dampening early
hyperinflammation or reversing late-phase immunosuppression.
In conclusion, TFRC and PILRA, supported by both
transcriptomic data and existing literature, show promise as
immunobiological markers and therapeutic targets in sepsis and
warrant further investigation.

Despite the promising results, several limitations should be
acknowledged. First, all models were derived from publicly available
transcriptomic datasets, without inclusion of an independent,
prospectively collected cohort, which may limit generalizability to
broader clinical populations. Although external validation was
performed across multiple datasets, most lacked detailed clinical
annotations, restricting the integration of routine variables such as
SOFA scores or lactate that could enhance bedside applicability.
Second, experimental validation was limited to PBMC samples
from a small cohort, and although consistent patterns were
observed across two independent datasets (GSE57065 and
GSE131761), mechanistic experiments such as functional
perturbations (e.g., gene knockdown or leptin stimulation assays)
were not performed. Third, while scRNA-seq analysis enabled
immune cell annotation and highlighted the transcriptional
heterogeneity of monocytes, the resolution remains limited and
does not provide spatial context. Finally, the diagnostic and
prognostic models demonstrated some variability in predictive
performance across datasets, likely reflecting batch effects,
demographic differences, or technical inconsistencies. Future
work should focus on prospective multi-center validation,
integration of multi-omics and harmonized clinical data, and
experimental studies to elucidate causal mechanisms and
strengthen the translational potential of these findings.

Conclusion

Machine learning approaches identified leptin-associated
molecular subtypes and facilitated the development of prognostic
models for sepsis. TFRC and PILRA were highlighted as potential
biomarkers, supported by multi-level validation. These findings
underscore the potential of leptin-related pathways as important
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correlates of immune dysregulation in sepsis, although further
mechanistic studies are warranted to confirm causality.
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