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Background: Leptin has been implicated in the prognosis of sepsis, yet its

mechanistic role remains unclear. This study aimed to develop leptin-

associated diagnostic and prognostic models for sepsis and identify potential

biomarkers using machine learning approaches.

Methods: Non-negative matrix factorization (NMF) was used to identify leptin-

related molecular subtypes of sepsis. Weighted gene co-expression network

analysis (WGCNA) determined relevant gene modules and hub genes.

Differentially expressed genes (DEGs) between sepsis patients and controls

were intersected with WGCNA results to refine key genes. Based on these

analyses, a prognostic classification model predicting 28-day mortality was

developed using the Least Absolute Shrinkage and Selection Operator and

Random Forest algorithms, while a time-to-event prognostic model was

constructed with Random Survival Forest and Gradient Boosting Machine.

Single-cell RNA sequencing was performed to assess expression patterns of

core genes across immune cell types. Expression validation was conducted using

qPCR and Western blotting.

Results: Three leptin-associated sepsis subtypes with distinct prognoses were

identified. The pink and salmon modules from WGCNA were significantly

associated with sepsis. Seventy core genes were selected from the DEGs and

WGCNA intersection. The prognostic classification model and the time-to-event

prognostic model demonstrated strong predictive performance in both the

training and external validation cohorts. TFRC and PILRA were consistently
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highlighted through machine learning, single-cell data, and experimental

validation as potential biomarkers.

Conclusion: We established leptin-related prognostic models for sepsis using

integrated machine learning. TFRC and PILRA may serve as promising

biomarkers, offering insights into sepsis heterogeneity and clinical management.
KEYWORDS
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Introduction

Sepsis is a systemic inflammatory response syndrome triggered

by infection, which can lead to organ dysfunction and even death in

severe cases (Jacobi, 2022). According to recent studies, the global

age-standardized incidence rate of sepsis is 677.5 cases per 100,000

population. The highest incidence rates are observed in sub-

Saharan Africa, Oceania, and South Asia. In high-income

countries, the case fatality rate of sepsis ranges from 15% to 25%,

whereas in low- and middle-income countries, it often exceeds 40%,

with the mortality rate of septic shock reaching as high as 50% (La

Via et al., 2024). In recent years, the acute-phase survival rate of

sepsis has improved globally; however, mortality remains

significant. A multicenter prospective study involving 44 intensive

care units (ICUs) across China reported an ICU mortality rate of

27.2% and an in-hospital mortality rate of 33.0% among sepsis

patients. For those with septic shock, the ICU mortality rate

increased to 39.0%, and the in-hospital mortality rate rose to

44.4% (Wang et al., 2020). Additionally, another study from

China found that the 30-day mortality rate for sepsis patients was

29.5%, while for patients with septic shock, it reached 37.3% (Liu

et al., 2022).

Early recognition of sepsis remains a major clinical challenge

owing to its heterogeneous manifestations and rapid progression.

Traditional scoring systems, such as the Sequential Organ Failure

Assessment (SOFA) (Qiu et al., 2023) and Acute Physiology and

Chronic Health Evaluation II (APACHE II) (Yuan et al., 2024), are

commonly used to assess disease severity and predict outcomes in

sepsis patients. However, these tools have limitations in predictive

accuracy and may not fully capture the complex pathophysiological

processes involved in sepsis. For instance, Zhang et al. developed a

28-day mortality prediction model using MIMIC-IV data,

identifying variables such as ICU stay, hemoglobin, albumin,

activated partial thromboplastin time, and total bilirubin,

achieving an area under the receiver operating characteristic

curve (AUC) of 0.904 (Zhang et al., 2024). Similarly, Xie et al.

established a model based on IL-6, lactate, and procalcitonin, with

AUCs of 0.849 and 0.828 in the training and validation cohorts,

respectively (Xie et al., 2023). These results highlight the need for

more precise and individualized prognostic tools in sepsis care.
02
Machine learning (ML) techniques, particularly when applied

to high-dimensional sequencing data, provide more accurate and

detailed methods for prognostic prediction and have been applied

to a variety of diseases (Liao et al., 2025; Alshwayyat et al., 2025;

López Gordo et al., 2025). For instance, a study has demonstrated

that MLmodels, such as Random Survival Forest (RSF), can provide

superior prognostic performance for elderly sepsis patients

compared to traditional methods, with C-index values of 0.731,

outperforming SOFA, Simplified Acute Physiology Score II (SAPS

II) and Acute Physiology Score III (APS III) scoring systems (Zhang

et al., 2022). Leptin, a hormone predominantly secreted by

adipocytes, is integral to regulating energy balance, metabolism,

and immune responses (Obradovic et al., 2021). Beyond its role in

energy homeostasis, leptin acts as a cytokine, influencing

inflammation and immune cell activity (Abella et al., 2017).

Elevated leptin levels have been linked to adverse outcomes in

sepsis (Jacobsson et al., 2017), while low leptin levels may indicate

immune deficiency (Birlutiu and Boicean, 2021). Given its

significant role in sepsis, leptin is considered a potential

biomarker for prognosis. Therefore, in this study, we aim to

utilize ML techniques to develop mortality prediction and

prognostic models for sepsis, incorporating leptin and other

biomarkers to improve predictive accuracy.
Methods

Data processing

Transcriptomic data from human blood samples were obtained

from the Gene Expression Omnibus (GEO) and ArrayExpress

databases. Datasets containing samples from minors were

excluded. Additionally, datasets that did not report mortality

outcomes, lacked complete expression data, or included

duplicated entries were also excluded. The expression data were

obtained from public repositories and normalized according to the

platform specifications using the limma package (Ritchie et al.,

2015). Probes without corresponding gene symbols were removed.

In cases where multiple probe sets mapped to the same gene

symbol, the average expression value was used. Batch effects were
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corrected using the ComBat algorithm from the sva R package. Each

dataset was treated as a batch, and expression matrices were merged

on the intersection of shared genes after collapsing duplicate probes

with limma. ComBat was applied in parametric empirical Bayes

mode with mean–variance adjustment and batch indicators only,

without additional covariates. The corrected expression matrix was

used for downstream analyses (Leek et al., 2012; Zhang et al.,

2020a). Only genes common across all included datasets were

retained for model development and validation.
Non-negative matrix factorization

In this study, NMF was employed for unsupervised clustering

based on Leptin-related genes from the GeneCard database (Stelzer

et al., 2016), with the aim of identifying molecular subtypes of

sepsis. Gene expression data for key genes were extracted from the

GeneCard database, and the data were transposed to meet the input

format required for NMF analysis. NMF was performed using the

NMF package, with ranks ranging from 2 to 10 to explore different

potential clusters of sepsis patients. The Brunet method was applied

for matrix factorization.
Immune infiltration analysis

Single Sample Gene Set Enrichment Analysis (ssGSEA)

(Subramanian et al., 2005) was used to assess immune cell

infiltration in blood samples from septic patients. This method

estimates the enrichment of immune cell types in individual

samples based on predefined gene sets corresponding to various

immune cell types. The analysis was performed using the GSVA

package (Hänzelmann et al., 2013), which calculates the enrichment

score for each immune cell type in each sample. The enrichment

score represents the relative abundance of each immune cell type

within the respective sample.
Weighted gene co-expression network
analysis

Using the WGCNA package (Langfelder and Horvath, 2008),

potential Leptin-related gene modules associated with sepsis were

identified. The data were preprocessed by filtering out genes with

low variance, retaining only those with variance greater than the

median. Missing values in the dataset were checked, and genes or

samples with excessive missing data were removed to ensure the

integrity of the analysis. Hierarchical clustering was performed on

the samples to detect potential outliers, with samples outside a

predefined cutoff being excluded. Gene modules were identified

using hierarchical clustering based on the Topological Overlap

Matrix (TOM). The optimal soft-thresholding power was

determined, with a scale-free topology criterion set at 0.9. The

TOM was then calculated, followed by hierarchical clustering of

genes to construct a dendrogram, which was used for module
Frontiers in Cellular and Infection Microbiology 03
detection. Modules were identified using the dynamic tree cutting

method, with a minimum module size of 50 genes. The identified

modules were correlated with clinical traits, such as survival data,

using Pearson’s correlation. Significant modules were identified

based on the correlation between gene module membership

(MM) and gene trait significance (GS). Finally, the relationship

between gene expression and clinical traits was assessed by

visualizing MM and GS values through scatter plots. Genes most

closely related to significant modules were retained for further

analysis, including the identification of potential biomarkers

associated with sepsis and mortality.
Functional enrichment analysis

To explore the biological functions and pathways associated

with the identified gene modules and genes, Gene Ontology (GO)

(The Gene Ontology Consortium, 2019) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) functional

enrichment analyses were conducted. GO analysis classifies genes

into three main categories: biological process, molecular function,

and cellular component. KEGG pathway enrichment analysis was

then performed to identify the biological pathways involved.
Differentially expressed genes

DEGs were identified by applying a fold change (FC) cutoff of

0.8 and a p-value threshold of 0.05. The limma package (Ritchie

et al., 2015) was used to perform the differential expression analysis,

with p-values adjusted for multiple testing using the Benjamini-

Hochberg method.
Prognostic classification models for 28-day
mortality prediction

In this study, multiple machine learning algorithms were

employed to construct prognostic classification models for

predicting 28-day mortality in sepsis. These included

combinations such as Lasso Regression + Random Forest (RF),

Generalized Linear Model Boosting (GLMB) + RF, Lasso

Regression + Gradient Boosting Machine (GBM), RF, GBM, and

combinations of Stepwise Logistic Regression (SLR) with RF,

among others. These models were trained on internal datasets

and validated externally. Variable selection was performed using

methods such as Lasso Regression and Elastic Net (EN). The

performance of the models was evaluated using several metrics,

including Receiver Operating Characteristic (ROC) curves,

confusion matrix (CM), and decision curve analyses, to assess

predictive accuracy, classification performance, and clinical utility.

ROC curves assessed model discrimination, the CM evaluated

classification capability, and DCA measured the potential clinical

benefit for predicting 28-day mortality and informing

decision-making.
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Time-to-event prognostic models for
sepsis

In this study, various machine learning algorithms were

employed to construct prognostic models for sepsis, including

combinations of Random Survival Forest (RSF), Lasso Regression,

Stepwise Cox Regression (StepCox), Gradient Boosting Machine

(GBM), CoxBoost, Elastic Net (Enet), Ridge Regression, and others.

The models were trained and evaluated using external validation

datasets. To assess model performance, the concordance index (c-

index) was calculated to evaluate the discriminatory power of the

models in predicting patient outcomes. Additionally, time-

dependent receiver operating characteristic (ROC) curves were

employed to assess the predictive accuracy of the models over

time, particularly for 28-day mortality prediction. The area under

the curve (AUC) of the time-dependent ROC was computed to

measure the ability of the models to classify patients correctly at

various time points, providing a more comprehensive evaluation of

their performance.
Single-cell RNA sequencing data
processing

Single-cell RNA sequencing data for this study were retrieved

from the GEO database under accession number GSE167363 (Qiu

et al., 2021), encompassing transcriptomic profiles of peripheral

blood mononuclear cells (PBMCs) derived from healthy individuals

and patients with gram-negative sepsis (both survivors and non-

survivors). Raw count matrices generated via the 10X Genomics

platform were imported and processed using the Seurat (Butler

et al., 2018; Slovin et al., 2021) framework in R. To retain high-

confidence single-cell profiles, we applied stringent quality control

filters: cells with fewer than 1,000 total RNA molecules, fewer than

200 or more than 10,000 detected genes, over 20% mitochondrial

gene expression, or over 20% ribosomal gene content were

excluded. This filtering strategy helped eliminate potential

artifacts such as dead cells, doublets, or empty droplets. The

resulting curated dataset was stored for subsequent integrative

and functional analyses. Following rigorous quality assessment,

gene expression values were normalized using the LogNormalize

approach in the Seurat package, wherein each gene count was scaled

relative to the total expression per cell and log-transformed after

multiplication by a scale factor of 10,000. To capture transcriptional

heterogeneity, highly variable genes (HVGs) were selected using the

variance-stabilizing transformation (vst) method, retaining the top

2,000 genes. These features were subsequently standardized to zero

mean and unit variance prior to dimensionality reduction. Principal

component analysis (PCA) was carried out on the HVGs, and inter-

sample variation was mitigated using Harmony (Korsunsky et al.,

2019), leveraging sample identity as the integration variable. The

corrected principal components were then used to generate a t-

distributed stochastic neighbor embedding (t-SNE) projection for

visualization. Clustering was performed using a graph-based shared
Frontiers in Cellular and Infection Microbiology 04
nearest neighbor (SNN) approach, with resolution tuning informed

by hierarchical visualization through clustree. Final clustering was

executed at a resolution of 1.2. Cell type annotation combined

automated classification via SingleR (Zhao et al., 2020)—using

reference transcriptomes of human immune cells—with manual

refinement based on canonical marker gene expression patterns.
Sample collection and ethics statement

A total of nine peripheral blood samples were obtained from

Sichuan Provincial People’s Hospital, comprising three healthy

controls, three sepsis patients who survived beyond 28 days, and

three sepsis patients who died within 28 days of hospital admission.

All samples were collected at the time of admission, prior to the

initiation of any therapeutic intervention. Peripheral blood

mononuclear cells (PBMCs) were isolated from freshly drawn

blood using Ficoll-Paque density gradient centrifugation. The

study protocol was approved by the Medical Ethics Committee of

Sichuan Provincial People’s Hospital (Approval No. 2023-581), and

written informed consent was obtained from all participants or

their legal guardians.
Real-time quantitative PCR

Total RNA was extracted from PBMCs using Trizol reagent

(Invitrogen, Carlsbad, CA, USA). cDNA synthesis was performed

using the ReverTra Ace qPCR RT Kit (TOYOBO, Osaka, Japan)

according to the manufacturer’s instructions. For real-time

quantitative PCR detecting system (RQ-PCR) analysis, TransStart

Tip Green qPCR SuperMix (TransGen Biotech, Beijing, China) was

used. Gene expression was normalized to GAPDH, and relative

expression was calculated using the DDCt method. The primers are

listed in Supplementary Table 1.
Western blot

PBMCs were lysed in RIPA buffer (Beyotime Biotechnology,

Shanghai, China) containing 1 mM PMSF. Protein concentrations

were measured using a BCA assay kit (Beyotime Biotechnology,

Shanghai, China). Equal protein aliquots (30–50 mg) were separated
by 8–12% SDS-PAGE and transferred to PVDF membranes

(Servicebio, Wuhan, China). The membranes were blocked with

5% non-fat milk in TBST for 1 hour at room temperature, followed

by overnight incubation at 4 °C with primary antibodies: PILRA

(1:1,000), TFRC (1:1,000), and GAPDH (1:3,000) for loading

control. After washing with TBST three times, membranes were

incubated with HRP-conjugated goat anti-rabbit or anti-mouse

secondary antibodies (1:3,000; Servicebio, Wuhan, China) for 1

hour at room temperature. Protein bands were visualized using ECL

reagent (Servicebio) and analyzed with ImageJ software. GAPDH

was used as a loading control.
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Statistical analysis

The analysis in this study was performed using R software

(version 4.3.1). Spearman’s rank correlation coefficient was used to

evaluate correlations between variables. To assess survival

differences among groups, Kaplan-Meier survival curves were

generated and compared using the log-rank test. The optimal

threshold for survival analysis was determined using the

surv_cutpoint function, which identifies the cutoff point that

maximizes the survival differences. For statistical comparisons, an

independent t-test or Mann–Whitney U test was applied for two-

group analyses, depending on data distribution, while one-way

ANOVA or Kruskal–Wallis test was employed for comparisons

among multiple groups. A P-value of less than 0.05 (two-sided) was

considered statistically significant.
Results

NMF based clustering reveals immune
infiltration and clinical characteristics in
septic patients

The basic information of the datasets used in this study is

provided in Supplementary Table 2. The code used in this study is

provided in Supplementary Data Sheet S1. Genes associated with

Lept in were retr ieved from the GeneCards database

(Supplementary Table 3). Using these genes, NMF was performed

on sequencing data from GSE65682. As shown in Figure 1A, the

consensus matrix divided the samples into three distinct clusters.

To determine the optimal number of clusters, an NMF rank survey

was conducted (Figure 1B). Various evaluation metrics, including

cophenetic, dispersion, evar, residuals, RSS (Residual Sum of

Squares), silhouette, and sparseness, were assessed across

factorization ranks from 2 to 10. The NMF rank survey revealed

that three clusters provided the best fit according to multiple

metrics, indicating the clearest separation between the clusters.

PCA further supported the distinct separation of the three

clusters (Figure 1C). Prognostic analysis showed significant

differences among the clusters, with Cluster 1 exhibiting the best

prognosis, while Cluster 3 had the worst outcome (Figure 1D).

Furthermore, immune infiltration differences between the clusters

were compared. With the exception of Gamma.delta. T.cells,

significant statistical differences in immune cell infiltration were

observed between the three clusters (Figure 1E). In the analysis of

clinical characteristics in relation to the clusters, several clinical

variables were evaluated for their distribution across the clusters

(Figures 1F-J). Age did not differ significantly between clusters, with

similar age distributions observed across the three groups. The

gender distribution was balanced across the clusters, with no

significant differences in the male-to-female ratio within each

cluster. For thrombocytopenia, there were no notable differences

across the three groups, with both low and normal platelet levels

present in all clusters. The proportion of patients with ICU-

acquired infections was similar across the clusters, with no
Frontiers in Cellular and Infection Microbiology 05
significant variation. Additionally, the prevalence of diabetes

mellitus was evenly distributed across all clusters, showing no

significant differences.
WGCNA

Prior to performing WGCNA, the expression matrix derived

from the GSE65682 dataset was confirmed to be of high quality,

with no apparent outliers or missing values. A soft-thresholding

power of b = 9 was selected, as it was the minimal value at which the

scale-free topology model began to stabilize, as illustrated in

Figure 2A. This threshold was subsequently used to generate the

TOM and conduct preliminary module detection. Modules

displaying similar gene expression profiles were further combined

based on their eigengenes, yielding seven distinct gene modules

(Figure 2B). Among them, the pink and salmon modules

demonstrated particularly strong correlations, as shown in

Figure 2C. Further analysis revealed significant associations

between MM and GS within these modules (Figures 2D, E).
Functional enrichment analysis of pink and
salmon modules

Functional enrichment analysis revealed distinct biological roles

for genes in the pink and salmon modules (Figures 2F, G). Genes in

the pink module were mainly involved in immune-related

processes, including leukocyte migration, chemotaxis, and

phagocytosis. They were enriched in components such as

secretory granule membranes and focal adhesions, and showed

functions related to GTPase regulation and kinase activity. KEGG

pathways indicated involvement in phagocytosis, chemokine

signaling, and immune cell migration. In contrast, genes in the

salmon module were associated with cell cycle–related processes

like chromosome segregation and nuclear division. These genes

were enriched in vesicle lumen and lysosome components, with

functions including DNA helicase activity and microtubule binding.

KEGG enrichment highlighted pathways such as DNA replication,

cell cycle, and mismatch repair, suggesting roles in cell proliferation

and genomic stability.
Identification and functional analysis of
hub genes

To reduce technical variation among datasets, the ComBat

algorithm was employed for batch effect correction. As shown in

Figure 3A, prior to adjustment, samples from GSE54514,

GSE65682, and GSE95233 clustered separately in the PCA plot,

indicating substantial batch effects. After correction (Figure 3B), the

datasets were well integrated, with samples from different cohorts

intermixed, confirming effective removal of batch effects. Following

integration, a total of 745 DEGs were identified based on predefined

criteria (Figure 3C). These DEGs were intersected with gene sets
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from the pink and salmon modules derived from WGCNA,

resulting in 70 overlapping hub genes (Supplementary Table 4).

Chromosomal mapping showed that these hub genes were

distributed across most chromosomes, excluding chromosomes 4,

12, 18, and the Y chromosome (Figures 3D, E). Functional

enrichment analysis revealed that these hub genes are primarily

involved in immune-related biological processes such as bacterial

defense, cell–cell adhesion, and response to Gram-negative bacteria

(Figure 3F). GO analysis also highlighted their localization to

secretory granule lumens and involvement in kinase regulation

and lipopolysaccharide binding. KEGG pathway analysis

(Figure 3G) showed enrichment in pathways including axon

guidance, lysosome, efferocytosis, and folate biosynthesis,
Frontiers in Cellular and Infection Microbiology 06
suggesting potential roles in immune modulation and cellular

clearance mechanisms in sepsis.
Construction and validation of a machine
learning–based prognostic classification
model for 28-day mortality in sepsis

A variety of machine learning algorithms were utilized to

construct a prognostic classification model aimed at predicting

28-day mortality in sepsis. The GSE65682 dataset was designated

as the training cohort, while E-MTAB-4451, E-MTAB-5273, E-

MTAB-7581, and GSE63042 served as independent validation
FIGURE 1

Identification and characterization of leptin-related molecular subtypes in sepsis. (A) Consensus clustering heatmap based on leptin-related gene
expression profiles, identifying three stable molecular subtypes (C1, C2, C3). (B) Determination of optimal cluster number using non-negative matrix
factorization (NMF) with multiple evaluation metrics, including cophenetic, dispersion, and silhouette scores. (C) Three-dimensional principal
component analysis (3D PCA) showing clear separation among the three identified clusters. (D) Kaplan–Meier survival curves indicating significant
differences in 28-day survival among the three clusters. (E) Boxplot showing expression levels of leptin-related genes across the three clusters;
differences suggest subtype-specific molecular features. (F) Comparison of age distribution across clusters, with no significant difference observed.
(G–J) Distribution of clinical features across clusters, including (G) sex, (H) thrombocytopenia status, (I) ICU-acquired infection, and (J) presence of
diabetes mellitus, indicating potential clinical relevance of molecular subtypes.
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cohorts. In total, 113 models—including both individual and

ensemble algorithm strategies—were assessed, and their respective

AUC values are presented in Figure 4A. Among these, the Lasso

combined with Random Forest (RF) approach achieved the highest

mean AUC across datasets and was therefore selected to construct

the final predictive model (Supplementary Table 5) and compute
Frontiers in Cellular and Infection Microbiology 07
the corresponding risk scores. The performance of the established

risk score model was then evaluated in both the training and

external validation sets using receiver operating characteristic

(ROC) curves, confusion matrices, and clinical decision curve

analysis (DCA) (Figures 4B–F). In the training set (GSE65682,

Figure 4B), the model exhibited strong discriminatory capacity with
FIGURE 2

Co-expression network construction and enrichment analysis of leptin-related genes. (A) Determination of the soft-thresholding power (b) to
achieve scale-free network topology, based on analyses of scale independence and mean connectivity. (B) Gene clustering dendrogram with
corresponding module color assignments generated through WGCNA. (C) Correlation heatmap displaying associations between gene modules and
clinical traits. (D) Relationship between module membership and gene significance in the pink module. (E) Relationship between module
membership and gene significance in the salmon module. (F) Gene Ontology (GO) and KEGG pathway enrichment analysis results for genes in the
pink module. (G) GO and KEGG enrichment analysis for genes in the salmon module.
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an AUC of 0.94, along with high sensitivity, specificity, and net

clinical benefit. In external datasets including E-MTAB-5273

(Figure 4C), E-MTAB-7581 (Figure 4D), GSE63042 (Figure 4E),

and E-MTAB-4451 (Figure 4F), the model retained stable and

reliable performance, with AUC values ranging from 0.74 to 0.83.

The confusion matrices demonstrated balanced classification

accuracy, while the DCA curves suggested superior clinical utility

of the model compared to conventional reference strategies across a

wide range of threshold probabilities. Besides, ROC curve analysis

in the GSE65682 cohort demonstrated that the proposed model

outperformed traditional clinical variables in predictive

performance (Supplementary Figure 1A).
Frontiers in Cellular and Infection Microbiology 08
Development and evaluation of a time-to-
event prognostic model for sepsis

Multiple machine learning algorithms were applied to develop a

prognostic model for sepsis patients. The GSE65682 dataset was used

as the training cohort, while GSE54514 and GSE95233 served as

external validation sets. A total of 98 models, constructed using

either single algorithms or algorithmic combinations, were evaluated

based on their concordance index (C-index) across datasets

(Figure 4A). Among them, the RSF + GBM combination achieved

the highest average C-index and was selected to build the final

prognostic model (Supplementary Table 5) and compute individual
FIGURE 3

Batch effect correction, differential expression, and functional annotation of hub genes. (A) Principal component analysis (PCA) plot illustrating gene
expression distribution prior to batch effect correction. (B) PCA plot after batch effect adjustment, showing improved sample clustering. (C) Volcano
plot displaying differentially expressed genes (DEGs) between sepsis and healthy control groups. (D) Genomic chromosomal distribution of the 70
identified hub genes. (E) Manhattan plot representing the positional distribution and significance of the 70 hub genes. (F) Gene Ontology (GO)
enrichment analysis of the 70 hub genes. (G) KEGG pathway enrichment analysis of the 70 hub genes.
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risk scores (Figure 5A). As shown in Figures 5B, C, patients classified

into the high-risk group had significantly worse survival outcomes

compared to those in the low-risk group, with the exception of the

GSE54514 dataset (Figure 5D). Furthermore, time-dependent ROC

curves demonstrated that the risk score maintained strong prognostic

accuracy across multiple time points. Finally, the model’s predictive

performance was benchmarked against previously published

prognostic models (Liang et al., 2022; Zheng et al., 2022; Chen et al.,

2023; Lin et al., 2023; Liu et al., 2023; Chen et al., 2024) (Figure 5E). In

the GSE65682 dataset, the proposed model outperformed all others,
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and in the remaining two cohorts, it consistently ranked among the

top-performing models. Besides, C-index comparisons at 7, 14, and 28

days consistently demonstrated that the prognostic model achieved

superior discriminative ability compared with conventional clinical

variables (Supplementary Figures 1B). Moreover, both univariate and

multivariate Cox regression analyses confirmed that the model-derived

risk score was an independent prognostic factor for sepsis outcomes

(Supplementary Figures 1C, D). Among them, five features—TFRC,

PILRA, DEFA4, KRT23, and BEX1—are shared between the diagnostic

and prognostic models.
FIGURE 4

Construction and external validation of a diagnostic model for predicting 28-day mortality in sepsis. (A) AUC values of diagnostic models developed
using different machine learning algorithms. (B–F) Combined presentation of ROC curves, confusion matrices, and decision curve analysis (DCA) for
external validation across five independent datasets: (B) GSE65682, (C) E-MTAB-5273, (D) E-MTAB-7581, (E) GSE63042, and (F) E-MTAB-4451.
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Single-cell transcriptomic profiling reveals
cellular heterogeneity and gene expression
signatures in sepsis

After rigorous quality filtering to remove doublets, apoptotic

cells, and empty droplets, high-confidence single-cell transcriptomic

data were obtained (Supplementary Figure 2A). To correct sample-

derived variability, the Harmony algorithm was applied, resulting in

improved integration of cells across conditions (Figure 6A), with
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separate visualizations for the sepsis and control groups provided in

Figure 6B. Clustering based on Harmony-corrected principal

components (PC) (with PC 13 selected; Supplementary Figures 2B,

C) identified 23 transcriptionally distinct clusters (Figure 6C), which

were annotated using the SingleR package and grouped into six major

immune cell types: Monocyte, NK_cell, Neutrophils, Platelets,

Erythroblast, and B_cell (Supplementary Figure 2D). Within the

monocyte lineage, three subsets were identified (Supplementary

Figure 2E): classical, intermediate, and non-classical (Wong et al.,
FIGURE 5

Development and validation of a prognostic model for sepsis. (A) Concordance index (C-index) values of prognostic models constructed using
various machine learning algorithms. (B–D) Kaplan–Meier survival analysis and time-dependent ROC curves evaluating model performance in the
following datasets: (B) GSE65682, (C) GSE54514, and (D) GSE95233. (E) Comparative analysis of the proposed model and previously published
prognostic signatures, based on C-index values across all three datasets.
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2011; Thomas et al., 2017; Li et al., 2024). In total, eight immune cell

populations were delineated, including Monocytes (subdivided into

classical, intermediate, and non-classical subsets), NK cells,

Neutrophils, Platelets, Erythroblasts, and B cells (Figure 6D).

Among the five candidate genes (TFRC, PILRA, DEFA4, KRT23,

and BEX1), TFRC and PILRA displayed significantly higher

expression in monocyte subsets compared with other immune cell

types, whereas DEFA4, KRT23, and BEX1 showed minimal or

negligible expression across all populations. Feature plots in

Figure 6E confirmed their cell-type-specific expression patterns,

and both TFRC and PILRA were differentially expressed between
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the sepsis and control groups (Figure 6F). Notably, in the sepsis

group, TFRC and PILRA also exhibited significant variation in

expression across the eight immune cell types, whereas no such

differences were observed for the remaining genes (Figure 6G).
Expression profiles of TFRC and PILRA in
healthy controls and sepsis patients

Validation in PBMCs from healthy controls, sepsis survivors,

and non-survivors confirmed that TFRC expression progressively
FIGURE 6

Single-cell transcriptomic analysis of key gene expression in sepsis. (A) t-SNE visualization of all 12 samples, demonstrating overall cell distribution.
(B) t-SNE plots comparing cell distributions between control and sepsis groups. (C) Identification of 23 distinct cell clusters based on transcriptomic
profiles. (D) Annotation of eight major cell types across all samples. (E) Feature plots showing the expression patterns of TFRC, PILRA, DEFA4, KRT23,
and BEX1 within the eight annotated cell types. (F) Group-wise comparison of the five hub genes between sepsis and control samples. (G)
Differential expression of TFRC, PILRA, DEFA4, KRT23, and BEX1 across the eight immune cell types.
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increased, whereas PILRA decreased across these groups (qPCR,

Figure 7A; WB, Figures 7B, C). Analysis of the GSE154401 dataset

showed that leptin antibody treatment of T cells significantly

elevated TFRC, while PILRA exhibited a non-significant

reduction (Figure 7D). Consistently, in GSE57065 and

GSE131761 , TFRC was upregula ted and PILRA was

downregulated in sepsis compared with controls (Figures 7E, F).
Discussion

In this study, leptin-associated genes were identified through

the integration of multiple computational approaches, including

WGCNA, differential expression analysis, and NMF. Based on these

candidate genes, two predictive models were developed: a

prognostic model to estimate patient survival outcomes, and a

diagnostic model specifically designed to predict 28-day mortality

in sepsis. Both models demonstrated favorable predictive

performance across internal and external validation cohorts.

Among the genes incorporated into model development, TFRC

and PILRA were consistently shared by both models and were

selected for further investigation. Single-cell RNA sequencing data

revealed their distinct expression profiles within specific immune

cell populations. In addition, validation using patient-derived

peripheral blood samples confirmed that TFRC and PILRA were

significantly differentially expressed between septic individuals and

healthy controls. These results support their potential utility as

molecular indicators for disease classification and risk assessment

in sepsis.
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In recent years, numerous machine learning–based diagnostic

models for sepsis have been proposed, many achieving high AUC

values in training cohorts but showing limited generalizability in

external datasets. For instance, Zhang et al. combinedWGCNA and

multiple classification algorithms to develop a diagnostic model

based on 22 core genes (Zhang et al., 2025). While the model

achieved an AUC of 0.999 in the training dataset, its performance

dropped to 0.763 in the external validation cohort, reflecting

potential overfitting and sensitivity to sample heterogeneity. Moor

et al. developed a deep learning model trained on electronic health

records from five countries, achieving an average AUC of 0.84

across multiple institutions and enabling sepsis detection

approximately 3.7 hours earlier than clinical diagnosis (Moor

et al., 2023). However, the model relied heavily on structured

EHR data and lacked mechanistic biological insights. By contrast,

our LASSO + RF-based diagnostic model, constructed using 14

transcriptomic features, achieved an AUC of 0.999 in the training

dataset and maintained reasonable performance in four

independent validation cohorts (AUCs ranging from 0.630 to

0.739). Unlike models relying solely on clinical variables or

lacking external validation, our model is grounded in molecular

expression profiles, offering both biological interpretability and

cross-platform robustness, which enhances its potential for early,

accurate identification of sepsis in diverse patient populations.

In addition to the representative prognostic models already

compared in this study, several other recent models deserve

attention. (Sweeney et al., 2018). developed three transcriptome-

based mortality risk scores using 12 datasets, achieving AUCs

between 0.77 and 0.89 in five external validation cohorts. Their
FIGURE 7

Experimental validation of TFRC and PILRA expression in human PBMCs and independent datasets. (A) Quantitative PCR (qPCR) analysis of TFRC and
PILRA expression in peripheral blood mononuclear cells (PBMCs) from healthy controls, sepsis survivors, and non-survivors. (B, C) Western blot (WB)
analysis of TFRC and PILRA protein expression in PBMCs across the same three groups. (D) Validation of TFRC and PILRA expression changes in T
cells following leptin antibody treatment using the GSE154401 dataset. (E) Validation of TFRC and PILRA expression between sepsis patients and
controls in the GSE57065 cohort. (F) Validation of TFRC and PILRA expression between sepsis patients and controls in the GSE131761 cohort.
P < 0.05 was considered statistically significant and is indicated by *.
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strength lies in extensive cross-dataset validation, though the

models employed relatively simple linear approaches and lacked

nonlinear interaction modeling. (Chenoweth et al., 2024). identified

eight prognostic genes through meta-analysis across international

cohorts. Their logistic regression–based model yielded an AUC of

0.812, outperforming qSOFA in predicting 28-day mortality, yet

still limited in modeling complex gene-gene interactions. In

comparison, our prognostic model integrates 12 genes and

leverages a RSF + GBM ensemble learning strategy to better

capture nonlinear relationships. This combination yielded high

predictive performance in both training and external datasets.

Overall, compared to existing models, ours features broader

pathway integration and more powerful algorithmic modeling,

offering enhanced risk stratification capabilities in the context of

sepsis’s multifactorial pathophysiology.

TFRC (transferrin receptor, CD71) is a transmembrane

glycoprotein that mediates cellular iron uptake and is widely

expressed in proliferating immune cells (Jabara et al., 2016). By

binding to transferrin, TFRC facilitates the internalization of iron

ions, thereby supporting lymphocyte proliferation and immune

function (Jabara et al., 2016). Mutations in the TFRC gene can

lead to combined immunodeficiency with T and B cell defects and

hypogammaglobulinemia, underscoring its essential role in

immune competence (Jabara et al., 2016). In contrast, PILRA

(paired immunoglobulin-like type 2 receptor alpha) is an

inhibitory receptor expressed on myeloid cells. It contains an

intracellular ITIM domain, which recruits phosphatases such as

SHP-1 to deliver negative signals (Mousseau et al., 2000). Through

this mechanism, PILRA downregulates the activation of monocyte/

macrophage and NK cell populations, contributing to immune

homeostasis and limiting excessive inflammation (Mousseau

et al., 2000). In animal models, mice deficient in PILRA show

enhanced production of pro-inflammatory cytokines such as IL-1b
and IL-6 following inflammatory stimulation, resulting in

exacerbated tissue injury. These findings suggest a negative

regulatory role for PILRA in immune responses (Sun et al., 2014).

The immunopathology of sepsis is characterized by a disruption

of immune homeostasis. Emerging evidence suggests that altered

expression of TFRC and PILRA may be involved in this

dysregulation. Proteomic analyses have shown that TFRC levels

are significantly elevated in the peripheral blood of sepsis patients

compared to healthy controls, and particularly higher among

nonsurvivors (Li et al., 2022). These findings indicate a strong

association between elevated TFRC and poor prognosis,

highlighting its diagnostic and prognostic value in sepsis (Li et al.,

2022). Moreover, mechanistic studies have revealed that TFRC may

influence disease progression by regulating ferroptosis, a form of

iron-dependent cell death, which contributes to tissue damage

during sepsis (Wang and Bian, 2025). In comparison, research on

PILRA in the context of sepsis is limited. However, transcriptomic

clustering analyses have identified PILRA as a marker

distinguishing immune subtypes of sepsis, suggesting that its

expression may modulate the magnitude and trajectory of

inflammatory responses (Zhang et al., 2020b). Taken together,

TFRC and PILRA appear to mediate distinct but complementary
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immunometabolic processes—iron regulation and innate immune

modulation—that may jointly contribute to sepsis pathogenesis.

Our single-cell RNA sequencing data, together with

independently collected samples from sepsis patients and healthy

controls, revealed that TFRC is upregulated, while PILRA is

downregulated in PBMCs. This pattern is consistent with

previous findings and supports their potential utility as sepsis

biomarkers. Elevated TFRC likely reflects heightened immune cell

proliferation and may correlate with disease severity (Li et al., 2022),

whereas reduced PILRA suggests attenuation of inhibitory signaling

and a possible hyperinflammatory state. Therapeutically, both

molecules present as promising targets for immune modulation.

Strategies aimed at limiting TFRC-mediated iron uptake—such as

iron chelation or ferroptosis inhibition—may mitigate

inflammation and tissue injury in sepsis (Wang and Bian, 2025).

Meanwhile, modulation of PILRA signaling, via agonists or

antagonists, could serve dual purposes: dampening early

hyperinflammation or reversing late-phase immunosuppression.

In conclusion, TFRC and PILRA, supported by both

transcriptomic data and existing literature, show promise as

immunobiological markers and therapeutic targets in sepsis and

warrant further investigation.

Despite the promising results, several limitations should be

acknowledged. First, all models were derived from publicly available

transcriptomic datasets, without inclusion of an independent,

prospectively collected cohort, which may limit generalizability to

broader clinical populations. Although external validation was

performed across multiple datasets, most lacked detailed clinical

annotations, restricting the integration of routine variables such as

SOFA scores or lactate that could enhance bedside applicability.

Second, experimental validation was limited to PBMC samples

from a small cohort, and although consistent patterns were

observed across two independent datasets (GSE57065 and

GSE131761), mechanistic experiments such as functional

perturbations (e.g., gene knockdown or leptin stimulation assays)

were not performed. Third, while scRNA-seq analysis enabled

immune cell annotation and highlighted the transcriptional

heterogeneity of monocytes, the resolution remains limited and

does not provide spatial context. Finally, the diagnostic and

prognostic models demonstrated some variability in predictive

performance across datasets, likely reflecting batch effects,

demographic differences, or technical inconsistencies. Future

work should focus on prospective multi-center validation,

integration of multi-omics and harmonized clinical data, and

experimental studies to elucidate causal mechanisms and

strengthen the translational potential of these findings.
Conclusion

Machine learning approaches identified leptin-associated

molecular subtypes and facilitated the development of prognostic

models for sepsis. TFRC and PILRA were highlighted as potential

biomarkers, supported by multi-level validation. These findings

underscore the potential of leptin-related pathways as important
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correlates of immune dysregulation in sepsis, although further

mechanistic studies are warranted to confirm causality.
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