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Altered salivary microbiota due to the progression of periodontitis may serve as a

marker for simple and accurate identification of periodontitis. In this study, we

examined saliva samples collected from 2,050 community-dwelling adults using

16S rRNA gene sequencing and verified the predictive performance of salivary

microbiota in detecting periodontitis using a light gradient boosting machine

algorithm. Five-fold stratified cross-validation was applied with 10 iterations, and

the predictive performance was evaluated using the mean area under the

receiver operating characteristic curve (AUC) value. In detecting periodontitis

defined by number of teeth with probing depth ≥4 mm, localized (≥2 teeth),

intermediate (≥4 teeth), and generalized (≥6 teeth) cases were detected with

mean AUC values of 0.81 (95% confidence intervals, 0.80–0.81), 0.85 (0.84–

0.86), and 0.87 (0.87–0.88), showing an increasing trend with extent. According

to the Shapley additive explanation analysis, Porphromonas gingivalis, Tannerella

forsythia , Mycoplasma faucium, Treponema species HMT-237, and

Fretibacterium species HMT-362 were identified as important features for the

detection of periodontitis. Our study presents the potential of salivary microbiota

as a tool for mass screening of periodontitis and provides information on novel

and important targets, including taxa other than known periodontal pathogens,

to establish salivary screening tests.
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1 Introduction

Periodontitis is an inflammatory oral disease that arises from

complex interactions between the host immune response and dental

plaque microorganisms (Pihlstrom et al., 2005; Papapanou et al., 2018).

Clinically, it is characterized by the resorption of the alveolar bone and

formation of a deep periodontal pocket, eventually resulting in tooth

loss. Periodontitis is also known to be associated with various systemic

diseases, such as cardiovascular disease, rheumatoid arthritis, and

respiratory disease (Pihlstrom et al., 2005; Hajishengallis, 2014;

Angjelova et al., 2024; Dolcezza et al., 2024). Therefore, early

detection and intervention in periodontitis are crucial for

maintaining oral and systemic health. However, it often remains

undetected until it progresses to a severe state owing to its

asymptomatic nature in the early stages. Periodontal examinations

by dental professionals, either dentists or hygienists, are required for the

detection and diagnosis of periodontitis, which is a technical, time-

consuming, and invasive process. Therefore, there is an urgent need to

develop a novel approach for accurate and simple detection of

periodontitis without specialized training.

Saliva is a promising specimen for the detection of periodontitis

because it can be easily and noninvasively collected. Various

salivary components, such as occult blood, enzymes, cytokines,

and proteins, have been investigated for their potential to detect

periodontal disease (Lamster et al., 2003; Nomura et al., 2006;

Shimazaki et al., 2011; Maeng et al., 2016; Wu et al., 2018; Liaw

et al., 2023; Lu et al., 2023). However, no definitive conclusions or

methodologies have been established. In particular, we focused on

salivary microbiota as a reasonable biomarker. Briefly, the

progression of periodontitis increases the subgingival space of the

periodontal pocket, which is occupied by obligate anaerobic and

proteolytic bacteria. In parallel, salivary microbiota contains

bacteria shed from the subgingival space as a minor component

and their occupancy in salivary microbiota increases with the

progression of periodontitis (Umeda et al., 1998; He et al., 2012;

Haririan et al., 2014; Belstrøm et al., 2017; Kageyama et al., 2017;

Jung et al., 2024). Considering these factors, it is reasonable to

predict periodontal condition by examining the salivary microbiota.

In line with these findings, we examined the salivary microbiota,

focusing on subgingival bacteria, and demonstrated that it can be

used for the identification of periodontitis with high predictive

performance (Ma et al., 2021). However, although this performance

was remarkable in generalized cases of periodontitis, it was limited

in the detection of localized cases.

In this study, we used a light gradient boosting machine

(LightGBM) based on salivary microbiota data to predict

periodontitis. LightGBM is a high-performance machine learning

algorithm based on gradient boosting decision trees designed for

efficiency and scalability, enabling fast and accurate analysis of

numerous variables with nonlinearity and complex feature

interactions (Ke et al., 2017). In this study, we aimed to

investigate the predictive performance of salivary microbiota in

the detection of periodontitis, including localized cases, using this

machine learning approach and to identify the key bacterial species

in the prediction model.
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2 Materials and methods

2.1 Study participants

The participants in this study were community-dwelling adults in

Hisayama town, Japan (Hata et al., 2013). As a part of the health

examination of Hisayama residents, we conducted dental examinations

and saliva sampling of participants aged ≥39 years in 2012. Of the 2,654

participants who underwent dental examination, saliva samples

sufficient for microbiota analysis were collected from 2,100

participants. After excluding 50 participants with <2 teeth (the

required minimum for definition of outcomes, n=49) and those with

missing probing depth (PD) data (n=1), 2,050 participants were finally

included in the analysis. Written informed consent was obtained from

all participants. The Ethics Committee of Kyushu University approved

the present study and the procedure for obtaining informed consent

(approval number: 23092).
2.2 Dental examination and saliva sample
collection

Dental examinations and sample collection were conducted

according to a previously described protocol (Takeshita et al., 2016).

Briefly, the periodontal condition was evaluated by PD and bleeding on

probing at two sites for all teeth except the third molars (mesio- and

mid-buccal sites) based on the NHANES III method. Following the

dental examination, we instructed the participants to chew gum for 2

min and collected their whole stimulated saliva in sterile plastic tubes.

The collected saliva samples were stored at -80°C until analysis.
2.3 DNA extraction and 16S rRNA gene
analysis

DNA was extracted from the saliva samples using the bead-beating

method described previously (Kageyama et al., 2022, 2023). The V1–V2

regions of 16S rRNA gene were amplified using the following primers:

8F (5′-AGA GTT TGA TYM TGG CTC AG-3′) with the sample-

specific tag sequence and 338R (5′-TGC TGCCTCCCGTAGGAGT-

3′). Polymerase chain reaction amplification and purification were

performed as described previously (Takeshita et al., 2016). The

purified amplicons were pooled and sequenced using an Ion PGM

Hi-Q Sequencing kit (Thermo Fisher Scientific) on an Ion PGM

(Thermo Fisher Scientific). Quality filtering of all raw sequence reads

was performed using a script manually written in R software (version

4.2.3). The reads that exhibited <200 bases, had an average quality score

≤25, or did not include the correct forward and reverse primer

sequences were excluded from the analysis. The remaining reads were

demultiplexed by examining the tag sequence at the forward end and

the forward and reverse primer sequences were trimmed. The quality-

checked reads (fastq.gz) were imported into QIIME 2 (version 2023.2.0)

and directly clustered against 16S rRNA gene sequences in eHOMD

(version 15.22) with a minimum identity of 97% using the vsearch

cluster-features-closed-reference plugin in QIIME 2 (Chen et al., 2010;
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Rognes et al., 2016; Bolyen et al., 2019). Finally, an abundance table of

salivary microbiota, including 802 taxa, was generated.
2.4 Outcomes

The severity of periodontitis was defined by the Centers for Disease

Control and Prevention (CDC) and the American Academy of

Periodontology (AAP) case definitions (Eke et al., 2012) or the

biological definitions based on the number of teeth with PD ≥4 mm.

As the biological definitions, we defined presence of ≥2, ≥4, and ≥6

teeth with PD ≥4 mm (top 5th, 10th, and 20th percentiles for number

of teeth with PD ≥4 mm) as localized, intermediate, and generalized

periodontitis. The outcomes of this study were mild, moderate, and

severe periodontitis based on the CDC and AAP case definitions and

localized, intermediate, and generalized periodontitis based on the

biological definition, as binary classifications (such as severe and

non-severe).
2.5 Machine learning analysis

All machine learning analyses were performed using the Python

software (version 3.12.5). For testing intermediate and generalized

periodontitis according to the biological definitions, 10 and 24

participants with <4 and <6 teeth (the required minimum for

definitions), respectively, were excluded. To focus on the predictive

performance of the salivary microbiota, the dataset was composed only

of age, sex, and the relative abundance of each taxon in the salivary

microbiota. We applied a five-fold stratified cross-validation using the

StratifiedKFold function from the scikit-learn library (version 1.5.1)

(Pedregosa et al., 2011) (Figure 1). Over all five-fold training/validation
Frontiers in Cellular and Infection Microbiology 03
splits, the model was fitted to the training set using LightGBM (version

4.5.0). Performance metrics, including the area under the receiver

operating characteristic curve (AUC), sensitivity, and specificity, were

assessed using the validation set. The optimal cut-off values for

determining sensitivity and specificity were calculated based on the

Youden index, which maximizes the sum of sensitivity and specificity

(Youden, 1950). This cross-validation process was iterated 10 times,

and 50 values were obtained for each performance metric.

Hyperparameters were primarily set as objective=binary, metric=auc,

is_unbalance=True, and force_col_wise=True, and further tuned using

the LightGBMTunerCV function (n_splits=3) from the Optuna library

(version 4.0.0) (Akiba et al., 2019). The best parameters obtained were

used to fit the model using the training set. To interpret the model, we

computed the Shapley additive explanation (SHAP) values (Lundberg

et al., 2020). The SHAP framework assigns each feature an importance

value for prediction, enabling interpretation of the predictions of

complex models. We computed the SHAP values of all the features

in each trained model (50 models) fitted to the training set, and we

calculated the mean of the absolute SHAP values for each feature

(version 0.46.0).
3 Results

3.1 Characteristics of participants and 16S
rRNA gene sequencing

We examined the salivary microbiota of 2,050 participants (934

male and 1,116 female) aged 39–90 years (median: 61 years). The

median number of teeth present was 26 (interquartile range [IQR]: 22–

28) and 33.9% of participants had ≥28 teeth (Table 1). According to the

CDC and AAP case definitions, 3.8%, 18.4%, and 6.5% of the
FIGURE 1

Flow chart of machine learning procedures. For testing intermediate and generalized periodontitis according to the biological definitions, 10 and 24
participants without the required minimum number of teeth for definitions were excluded, respectively.
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participants had mild, moderate, and severe periodontitis, respectively.

Regarding the biological definitions, 12.0%, 5.2%, and 5.7% of the

participants had localized, intermediate, and generalized periodontitis,

respectively. Their saliva samples were analyzed using 16S rRNA gene

amplicon analysis and finally 21,796,606 reads (9534.8 ± 3219.8 reads

per sample) were obtained to determine the bacterial composition of

salivary microbiota. The salivary microbiota of each participant

comprised a median of 198 (IQR: 172–223) bacterial species and was

dominated by Rothia mucilaginosa, Prevotella melaninogenica,Neisseria

subflava, Streptococcus salivarius, and Granulicatella adiacens.
3.2 Predictive performance of salivary
microbiota in detecting periodontitis

Prediction models were constructed using LightGBM with the

bacterial composition data of the salivary microbiota. The

predictive performance in detecting periodontitis according to

each definition is presented in Table 2. The mean AUC values for

detecting localized, intermediate, and generalized periodontitis

defined by the biological definitions were 0.81 (95% confidence

intervals [CI], 0.80–0.81), 0.85 (0.84–0.86), and 0.87 (0.87–0.88),

respectively, showing an increasing trend with severity. Although

severe periodontitis according to CDC and AAP case definitions

were detected with an AUC value of 0.83 (0.82–0.84), the

performance for detecting mild and moderate periodontitis were

lower than those when using the biological definitions, with AUC

values of 0.77 (0.77–0.78) and 0.78 (0.77–0.79).
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3.3 Important features for detecting
periodontitis

To identify important features for detecting periodontitis, we

calculated the mean SHAP value of each feature in the 50 models.

Figure 2 shows the top 20 most important features for detecting

periodontitis based on the biological definitions (see Supplementary

Table 1 for the results by definition). Porphromonas gingivalis and

Tannerella forsythia demonstrated the highest and second-highest

SHAP values, respectively, for localized to generalized periodontitis.

These were followed by sex, Fusobacterium nucleatum subspecies

vincentii, and Mycoplasma faucium for the detection of localized

periodontitis. For the detection of intermediate and generalized

periodontitis, M. faucium, Treponema species HMT-237, and

Fretibacterium species HMT-362 were particularly important, after P.

gingivalis and T. forsythia. The relative abundances of Cardiobacterium

hominis, Lautropia mirabilis, and Streptococcus salivarius negatively

contributed to the detection of periodontitis.
4 Discussion

This study determined the salivary microbiota composition of 2,050

participants using 16S rRNA gene amplicon analysis, and verified its

predictive performance in the detection of periodontitis using amachine

learning approach. This approach demonstrated high performance in

detecting periodontitis based on number of teeth with PD ≥4 mm,

achieving an AUC value ≥0.80 not only in generalized cases but also in

localized cases whose detection was limited in our previous study

focusing on only subgingival-plaque specific bacteria in saliva (Ma

et al., 2021). This result emphasizes the potential of whole salivary

microbiota as a screening tool for periodontitis. Unlike dental

examinations, which are time-consuming, invasive, and require

technical tests, saliva collection is easy and noninvasive and does not

require the expertise of dentists and hygienists. Furthermore, this type of

salivary bacterial test is expected to contribute to the reassessment and
TABLE 2 Predictive performance of salivary microbiota in detecting
periodontitis.

Outcome AUC Sensitivity Specificity

CDC/AAP definitions

Mild 0.77 (0.77–0.78) 0.73 (0.71–0.76) 0.70 (0.68–0.72)

Moderate 0.78 (0.77–0.79) 0.74 (0.72–0.77) 0.70 (0.68–0.72)

Severe 0.83 (0.82–0.84) 0.83 (0.80–0.86) 0.73 (0.70–0.76)

Biological definitions

Localized 0.81 (0.80–0.81) 0.76 (0.74–0.78) 0.75 (0.73–0.76)

Intermediate 0.85 (0.84–0.86) 0.83 (0.81–0.85) 0.76 (0.74–0.77)

Generalized 0.87 (0.87–0.88) 0.86 (0.84–0.89) 0.77 (0.75–0.80)
The data are presented as mean values (95% confidence intervals) on 50 iterations. As the
biological definitions, presence of ≥2, ≥4, and ≥6 teeth with probing depth ≥4 mmwas defined
as localized, intermediate, and generalized periodontitis. Sensitivity and specificity were
determined using cut-off values based on the Youden index. AUC, area under the receiver
operating characteristic curve, CDC, Centers for Disease Control and Prevention; AAP,
American Academy of Periodontology.
TABLE 1 Characteristics of the study participants.

Characteristic Participants (n=2,050)

Age (years) 60.3 ± 12.0

Male 934 (45.6)

Number of teeth 24.3 ± 5.6

Number of teeth with probing depth ≥4 mm 1.2 ± 2.6

Periodontitis based on the CDC/AAP definitions

None 1,462 (71.3)

Mild 77 (3.8)

Moderate 377 (18.4)

Severe 134 (6.5)

Periodontitis based on the biological definitions

None 1,583 (77.2)

Localized 245 (12.0)

Intermediate 106 (5.2)

Generalized 116 (5.7)
Data are presented as mean ± standard deviation for age and number of teeth and n (%) for
categorical variables. As the biological definitions, presence of ≥2, ≥4, and ≥6 teeth with
probing depth ≥4 mm was defined as localized, intermediate, and generalized periodontitis.
CDC, Centers for Disease Control and Prevention; AAP, American Academy of
Periodontology.
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improvement of oral health conditions. We believe that salivary

microbiota has the potential to be used for extensive and non-

burdensome screening that can estimate the necessity for visiting a

dental office simply through collection and mailing of saliva.

For clinical application, it is necessary to set an appropriate cutoff

value. Particularly, in the screening test, minimizing false negatives

(individuals with periodontitis who test negative) is prioritized to reduce

overlooking cases that require early intervention or urgent treatment. In

detecting intermediate and generalized cases, the sensitivities were high

(0.83 and 0.86, respectively), even when a cutoff value based on the

Youden index was used, which considers a balance between sensitivity

and specificity (Youden, 1950). Meanwhile, it seemed difficult to

distinguish localized cases from healthy cases, as expected, and the

sensitivity of localized cases (0.76) was lower than that of intermediate

and generalized cases. When we recalculated the cutoff value based on

an F2 score, which is a form of the F score calculated by sensitivity and

precision and prioritizes sensitivity, the specificity declined to 0.60 but

the sensitivity improved to 0.87 (Chinchor and Sundheim, 1993; Sasaki,

2007). In this case, false positives (individuals without periodontitis who

test positive) may increase; however, false negatives will decrease. Such a

trade-off and an appropriate cutoff value should be carefully considered

in further investigations of independent populations.

During the prediction process, P. gingivalis and T. forsythia were

identified as the most important features for the detection of

periodontitis. They are classically well-known as the ”red complex”

along with Treponema denticola because of their co-aggregation

characteristics and strong association with periodontitis (Socransky

et al., 1998; Holt and Ebersole, 2005). In addition, subgingival
Frontiers in Cellular and Infection Microbiology 05
bacteria, such as Fretibacterium species HMT-362, F. nucleatum,

Porphyromonas endodontalis, Filifactor alocis, and Eubacterium

saphenum, have also been identified as important features (Pérez-

Chaparro et al., 2014; Kageyama et al., 2017; Ma et al., 2021). These

findings are consistent with our concept that the salivary microbiota

contains bacteria shed from the subgingival space, which expands with

the progression of periodontitis, and their abundance in the salivary

microbiota can be used to detect periodontitis. This study also identified

M. faucium as a critical feature, following P. gingivalis and T. forsythia.

Although a few studies reported the detection of M. faucium from

subgingival plaque in patients with periodontitis (Abusleme et al., 2013;

Camelo-Castillo et al., 2015; Chen et al., 2018),M. faucium is considered

as a member of microbiota on human oropharynx including palatine

tonsils and might be involved in periodontitis in a manner different

from subgingival bacteria (Freundt et al., 1974; Escapa et al., 2018).

Further studies focusing onM. fauciummay provide novel information

to enhance predictive performance or understand periodontitis.

Aging is a known risk factor for periodontitis and was identified as

the sixth important feature in detecting localized periodontitis.

However, it was not listed in the top 20 features for intermediate

and generalized periodontitis. These results suggest that an alteration in

the bacterial composition of salivary microbiota by the progression of

periodontitis occurs regardless of age and support the utility of salivary

microbiota for detecting periodontitis.

In the present approach, the predictive performance was lower in

detecting periodontitis based on the CDC and AAP case definitions

compared with the biological definitions. This is partly because the

former considers the clinical attachment loss (AL). For instance, the
FIGURE 2

Important features for detecting periodontitis based on the biological definitions The bar plot shows the mean absolute Shapley additive explanation
(SHAP) value on 50 iterations for each definition. A higher absolute SHAP value indicates a greater impact on the prediction. The features are
ordered according to the mean absolute SHAP value among all definitions and the top 20 features are shown. Each dot represents each participant
and the red color indicates that they are male, older, and have higher relative abundance of each taxon. The positive and negative values mean that
the feature increases or decreases the probability of periodontitis for each participant, respectively.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1631798
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Kageyama et al. 10.3389/fcimb.2025.1631798
moderate definition includes cases with ≥2 interproximal sites with AL

≥4 mm. Although AL can be used to evaluate the degree of alveolar

bone resorption and prior periodontitis, it is not necessarily

accompanied by deep periodontal pockets. Therefore, there are many

cases with no increase in subgingival bacteria in the oral cavity, and an

accurate prediction may not be possible.

This study had some limitations. First, the species-level taxonomic

assignment was based on the sequencing of the 16S rRNA gene V1–V2

regions. Although these regions are recommended for oral microbiota

analysis because of their ability to discriminate oral streptococci from the

V3–V4 regions (Wade and Prosdocimi, 2020), theymight be insufficient

to distinguish bacterial species with similar base sequences. Second, the

present approach incurs costs for molecular analyses and sequencing.

Although sequencing costs have drastically decreased over the past few

decades, we should consider a cost-saving scheme such as simultaneous

analysis of a large number of samples for social applications. Third, there

is a need for further examination of the selection of machine learning

models, input features, and outcome variables. Although we performed

logistic regression analysis as a supplementary analysis, the predictive

performance was lower than the present results (mean AUC values of

0.75, 0.76, and 0.77 for localized, intermediate, and generalized cases;

Supplementary Table 2), suggesting the validity of a complex model,

such as LightGBM. We further explored the community periodontal

index (CPI) as an outcome, and the performances were mean AUC

values of 0.77 and 0.78 for detecting participants with CPI scores ≥3

(with PD ≥4 mm) and 4 (with PD ≥6 mm), showing that screening

results by CPI can also serve as a gold standard for future research

(Supplementary Table 2). Fourth, this study included a dataset of

Japanese adults, and the generalizability is limited. External validation

using an independent dataset is required. Fifth, as the present results

were based on a cross-sectional design, the potential utility of salivary

microbiota for assessing the risk of future onset or progression of

periodontitis should be further studied.

In conclusion, this study employed a machine learning approach

using salivary microbiota data and highlighted the potential utility of

salivary microbiota in the screening of periodontitis. Furthermore,

some taxa have been identified as notable biomarkers for screening

periodontitis. Further analyses assessing global generalizability,

practicality, and costs would be required to support the development

of a novel screening test based on salivary microbiota.
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