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Influenza A virus (IAV) remains a major health concern in both humans and

animals, with pigs serving as key reservoirs for generating novel reassortant

viruses with pandemic potential. Respiratory microbiome alterations during

infection may facilitate secondary bacterial complications. This study

investigates the lung microbiota of pigs naturally infected with IAV across

different regions in Spain, using Oxford Nanopore Technologies (ONT) long-

read 16S rRNA sequencing to characterize associated bacterial communities. Our

results show a higher bacterial genus diversity in IAV-infected animals compared

to healthy controls, with significant differences in both presence and relative

abundance of bacterial taxa. Infected lungs exhibited increased proportions of

potential pathogens, particularly Glaesserella spp., detected in approximately

60% of infected samples, often as the dominant genus. Other pathogenic genera,

including Pasteurella, Staphylococcus, Mycoplasma, and Fusobacterium, were

also strongly associated with infection. Clustering analyses revealed distinct

microbial profiles that clearly separated infected from non-infected animals,

identifying specific bacterial signatures predictive of infection status. These

findings suggest that IAV infection significantly alters the pulmonary

microbiota, potentially creating a permissive environment for secondary

bacterial infections. This study underscores the relevance of microbiota shifts
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during IAV infection in swine and highlights the importance of understanding

microbial dynamics in respiratory disease progression. Additionally, we present a

novel, rapid, and practical experimental pipeline based on ONT long-read

sequencing to investigate the respiratory microbiota in swine infection models.

This approach offers a valuable tool for future research and potential diagnostic

applications in both veterinary and human medicine.
KEYWORDS

coinfection, influenza virus, lung, sequencing, respiratory microbiome, pigs, swine,
Oxford Nanopore
Introduction

Influenza viruses are a significant concern in both veterinary

and public health, with swine serving as important reservoirs for

various Influenza A virus subtypes. The potential for generating

novel reassortant viruses and subsequent zoonotic transmission to

humans underscores the importance of understanding the

dynamics of influenza in swine populations (Zell et al., 2013).

Moreover, recent pandemics, such as the H1N1 in 2009, with

swine being the mixing vessel for the resulting reassortant viruses

with four different original Influenza viruses from human, bat and

pigs (Kingsford et al., 2009), highlights the need for comprehensive

surveillance and research in this area.

Currently there is great interest in unravelling the role of

microbiota in viral infections, given that it could be a potential

therapeutic target or an important prognostic marker. The term

“microbiota” refers to the collection of microorganisms, primarily

bacteria, that inhabit a specific environment in the body. Efforts are

currently being made in order to develop future therapeutic

approaches in the microbiome area (Jin et al., 2022). Bacterial

microbiota is present in many organs, including the respiratory tract,

and it appears to play a role in the pathogenesis or progression of

several diseases. In the lungs, alterations in microbial composition have

been associated with chronic obstructive pulmonary disease (COPD),

asthma, cystic fibrosis, and respiratory infections, where shifts in

microbial diversity or abundance often correlate with disease severity

or exacerbations (Garrett, 2015; Budden et al., 2019;Wilde et al., 2024).

Furthermore, the lung microbiota has drawn considerable attention

due to the intricate immunological tolerance mechanisms that are

necessary to preserve a balanced and symbiotic interaction between

resident microbes and the host in the respiratory environment.

The respiratory microbiota plays a fundamental role as a

potential source of influenza-associated secondary opportunistic

bacterial infections (Li et al., 2021). While influenza-induced

changes in the intestinal microbiota are well documented in

animal models, direct effects on the respiratory microbiota remain

understudied (Li et al., 2021). Only some investigations analyzing

sputum samples in humans have also reported significant
02
alterations in respiratory microbial communities following

influenza infection (Zhou et al., 2023a). Unlike other internal

organs, the lungs are exposed to both external and internal

factors that create a highly dynamic microbial environment

(Dickson et al., 2015b; Dickson et al., 2016). Although lungs were

once thought to be sterile (Dickson et al., 2016; Whiteside et al.,

2021), the pulmonary microbiome of swine represents a complex

ecosystem comprising diverse bacterial communities. These

microbial communities may play a critical role in the

development of secondary infections, which are directly

associated with increased morbidity and mortality following

Influenza infection (Li et al., 2021).

Despite its potential importance, our understanding of the

porcine respiratory microbiome is still limited, presenting an

exciting opportunity for further investigation. Traditionally, the

identification of pulmonary microbiota in swine has relied on

culture-based methods, which are inherently limited by their

inability to capture the full breadth of microbial diversity

(Tunney et al., 2013). Although these methods have identified the

main secondary pathogens associated with pneumonia in swine

[Streptococcus suis, Haemophilus parasuis, Pasteurella multocida,

among others (Zhao et al., 2021)], most of the bacteria present in

the lungs and the respiratory environment are non-cultivable using

conventional techniques and require enrichment factors, leading to

a significant loss of information about their ecological role during

cultivation. To overcome this limitation, alternative approaches

such as high-throughput sequencing of the 16S rRNA gene have

emerged as powerful tools for characterizing microbial

communities (Li et al., 2021).

In this study, we employed Oxford Nanopore sequencing

technology (ONT) to investigate the pulmonary microbiome of

pigs infected with Influenza virus from different locations in Spain

with a targeted Next Generation Sequencing (NGS) metagenomic

approach, by generating long-read 16S rRNA sequences (Figure 1 –

Graphical abstract). This analysis provides a more comprehensive

assessment of bacterial diversity and composition in the context of

Influenza infection and pathogenesis, offering insights into potential

frameworks for disease understanding.
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Materials and methods

Sample collection

Clinical samples (lung, trachea, and nasal exudates) from healthy

(39) and influenza infected pigs (53) with respiratory symptoms were

provided by farm veterinarians from main pig-producing regions of

Spain. Samples were stored at -20°C and sent in ice to maintain the

cold chain. A preliminary diagnostic test of Influenza A-specific RT-
Frontiers in Cellular and Infection Microbiology 03
PCR was performed at EXOPOL S.L. (San Mateo de Gállego, Spain).

Positive samples were confirmed by RT-PCR in our laboratory. Non

infected samples (PCR negative) were named as healthy.

Pulmonary tissue processing and nucleic
acids extraction

A tissue fragment (25 mg only containing soft tissue from a

lobe, no trachea or bronchioles) was embedded in 5 mL of PBS and
FIGURE 1

Graphical abstract. (a) Schematic and Graphical Representation of Experimental Methodology. A piece of lung from all infected pigs was extracted,
embedded in PBS (Phosphate Buffered Saline) (1) and crushed (2) using a TissueLyser. Then, DNA was extracted (3) using Qiagen extraction kit and
amplified (4) with barcoded 16S primers from Oxford Nanopore Technologies. Purification of the DNA (5) was performed using magnetic beads for
the library preparation and sequencing (6). Finally, data were analyzed (7). (b) Number and origin of the pigs analyzed. 92 samples were processed
and analyzed: 53 were Influenza-infected and 39 were (non-infected) - healthy animals. Figure created with BioRender.com.
frontiersin.org
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crushed with an ultra-turrax until no big and detectable fragments

were visible (until the mixture was homogeneous). Then, DNA

extraction was performed using QIAAMP DNA MINI KIT

(Qiagen) according to the manufacturer’s instructions for tissues.

Specifically, 80 µL of the homogenate was mixed with 100 µL of

buffer ATL and proteinase K and incubated overnight at 56°C.

RNase A (100 mg/mL) was added and incubated for 2 minutes at

room temperature to remove RNA. Then, 200 µL of buffer AL was

added and incubated for 10 minutes at 70°C, followed by the

addition of 200 µL of 100% ethanol. The lysate was loaded onto

spin columns and centrifuged at 6000 g. Wash steps with buffers

AW1 and AW2 were performed according to the protocol,

including a high-speed spin (20,000 g) and a final drying step.

DNA was eluted in two rounds using 100 µL of DNase-free AE

buffer, with 1–5 min incubation before each spin to improve yield.
16S/18S ratio obtention

Extracted DNA from healthy and infected samples were

amplified using quantitative PCR technique using SYBR Premix

Ex Taq (Takara Kusatsu, Shiga, Japan) following manufacturer

instructions in a 7900HT fast real-time PCR system (Thermo

Scientific, Waltham, MA, USA) using the primers needed to

quantify the expression of the genes under analysis, designed

u s i n g an i n - h ou s e p r o g r am (1 6 S _Fw : TGTCGTG

AGATGTTGGG, 16S_Rv: CGATTCCAGCTTCATGT; 18S_Fw:

CCAAGATCCAACTACGAGCTT, 18S_Rv: GGCCCTGTAAT

TGGAATGAGTC). Thermal cycling conditions were as follows:

an initial incubation of 2 minutes at 50°C, followed by a

denaturation step of 10 minutes at 95°C. Amplification was then

performed for 40 cycles of 15 seconds at 95°C, 15 seconds at 60°C,

and 15 seconds at 72°C. A melting curve analysis was included at

the end to confirm specificity of amplification. Samples with

undetermined 16S amplification after 40 cycles were considered

below the detection limit. Then, the DDCt (2(Ct16S – Ct18S)) for 16S/

18S was calculated, and normalized with the lowest value over the

detection limit. The threshold for the limit of detection (LOD) was

set based on the theoretical maximum Ct value of 40 for 16S

amplification, in combination with the average Ct value observed

for 18S across samples. This resulted in a LOD ratio of

approximately 15, below which samples were considered under

the detection limit and excluded from statistical analysis.

This ratio serves as an independent proxy of bacterial load

relative to host tissue, allowing comparison of bacterial abundance

per unit of lung tissue between healthy and infected samples,

independently of sequencing depth or amplification biases.
16S rRNA PCR amplification and
purification

10 ng of DNA were used to amplify the 16S rRNA gene of the

bacteria present in the sample using the 16S Barcoding kit (SQK-

16S024) from Oxford Nanopore Technologies (ONT), according to
Frontiers in Cellular and Infection Microbiology 04
the manufacturer’s instructions. The Taq Polymerase used was

LongAmp Hot Start Taq 2X Master Mix (NEB, M0533S), as

indicated in the protocol. After amplification, DNA was purified

using HighPrep beads (Magbio - AC-60005) and eluted in 10 µl of

10 mM Tris-HCl pH 8.0 with 50 mM NaCl.
MinION sequencing of the 16S rRNA gene
and bacteria identification

50–100 fmoles of purified DNA were pooled in 10 mL of Elution
Buffer and sequenced using the MinION Mk1b ONT. For priming

and loading the FlowCells, the Flow Cell Priming Kit (EXP-FLP002)

was used according to the manufacturer’s instructions. Briefly, the

Rapid Adapter (RAP) was added to the purified sample and

incubated for 5 minutes. During this time, flow cells were primed

by mixing Flush Tether (FLT) with Flush Buffer (FB), and loading

800 mL of this mix into the flow cell after air removal. The final

sequencing mix was prepared by combining the RAP-treated

sample with Sequencing Buffer (SQB), Loading Beads (LB), and

water to a final volume of 75 mL. An additional 200 mL of the FLT/

FB mix was loaded via the priming port, and the library was then

added dropwise onto the SpotON port. All flow cells were checked

before sequencing and run parameters were set equally for all runs

during a maximum run limit of 72h. Basecalling was performed in

real time using the MinKNOW software (v22.12.5), which

integrates the Guppy basecaller under default settings. All

sequencing runs were subjected to quality control, and samples

with extremely low read counts (e.g., <100 high-quality reads) were

excluded from further analysis.
Data analysis

Bacterial/host (16S/18S) ratios were obtained by normalized

relative copy number and compared with a non-parametrical

Mann-Whitney test between samples over the detection limit.

Normality of the data was assessed using multiple tests, including

the Anderson–Darling, D’Agostino–Pearson, and Shapiro–Wilk

tests, all of which indicated a significant deviation from

normality. A p-value < 0.05 was considered statistically significant.

Epi2me desktop application (Oxford Nanopore Technologies)

was used for identification and bacterial classification using the

metagenomics workflow. This workflow performs taxonomic

assignment of mixed samples and provides genus-level resolution

based on single-read alignments using either Kraken2 or Minimap2.

In our experiment, Kraken2 (v2.0.9-beta) (Wood et al., 2019) was as

selected for the alignment of reads to Standard-8 database

(incorporated in Kraken2 tool). This database includes 246,068

different species. All analyses were conducted using the web-based

Epi2me interface under default settings. No command-line tools or

R environments were used for this step.

An initial filter of length (200bp – 5000bp) was set during base-

calling to discard both short and long reads as failed reads. Short

reads may add noise to the analysis, and long reads were not
frontiersin.org
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targeted as the analysis focused on the complete barcoded 16s genes.

The maximum statistical significance threshold (Evalue) was set as

default [e=0.01], and minimum coverage was set at 30%. In this

context, “coverage” refers to the proportion of each read that is

aligned to a reference sequence in the Standard−8 database; reads

must align over at least 30% of their length to be considered for

taxonomic classification. These settings correspond to the default

parameters of the Epi2me Metagenomics workflow and were not

manually modified.

After obtaining the taxonomic and abundance of bacterial reads

using Kraken2 in the Epi2me platform, the microbial composition of

samples and groups was analyzed and plotted using R (v4.3.3). Alpha

and beta diversity metrics were calculated using themicrobiomeStat R

package v0.2.1 (Zhou et al., 2022) applying the analysis to the full

dataset without rarefaction in order to preserve the total read

information. Specifically, alpha diversity was estimated using

Chao1, ACE, Shannon, and Simpson indices, while beta diversity

was assessed using Bray–Curtis distances and visualized through

MDS (Multidimensional Scaling) plots. Statistical differences in alpha

diversity indices and beta diversity distances between infected and

healthy groups were assessed using the LinDA method implemented

in the microbiomeStat R package, which fits linear models adjusted

for potential confounders. Significance was determined based on p-

values adjusted for multiple testing. In addition, a species

accumulation curve (rarefaction curve) was generated using the

vegan R package v2.7−7 (Oksanen et al., 2025) to explore the

relationship between the number of samples and the number of

detected species. As expected, the shape of the curve varied depending

on the order of sample addition due to differences in richness among

samples; a representative run showing a typical logarithmic shape was

selected for illustration. Statistical differences in alpha and beta

diversity between infected and healthy groups were assessed using

the LinDA method implemented in the microbiomeStat R package,

which fits linear models adjusted for potential confounders.

Significance was determined based on p-values adjusted for

multiple testing. To identify differentially abundant taxa between

healthy and infected animals while accounting for the compositional

and sparse nature of microbiome count data, we additionally applied

the ANalysis of Composition of Microbiomes with Bias Correction

(ANCOM-BC), implemented in the ANCOMBC R package v2.10.1

(McMurdie and Holmes, 2013; Lin and Peddada, 2020). This method

was run at multiple taxonomic levels (phylum, class, order, family,

genus), and results were used to complement the interpretation of

taxonomic shifts between groups.

Then, a comparison between groups was performed by five

different methods: 1) Wilcox rank sum test [stats R package (The R

Core Team)], 2) biserial correlation function based on sensitivity/

sensibility [multipatt function from indicspecies R package v1.7.12

(Cáceres et al., 2025)], 3) Pearson correlation based on presence

[multipatt R package (De Cáceres and Legendre, 2009)], 4) LinDa

method (microbiomeStat R package), and 5) Boruta [Boruta R

package v7.0.0 (Kursa and Rudnicki, 2010)]. The significant

bacteria from all methods were further selected for the generation

of a prediction model using a Flexible Discriminant Analysis (FDA)

using the mda R package v0.7−10 (Hastie et al., 2024). All methods
Frontiers in Cellular and Infection Microbiology 05
were compared based on their discrimination abilities and the Z

scores obtained.
Results

Lung samples from healthy (39) and naturally infected pigs (53)

were processed. Influenza infection was initially detected by RT-

qPCR at EXOPOL S.L and further confirmed in our laboratory, with

an average Ct value of 23.93 (± 3.52 SD) for positive samples. Then,

total DNA was extracted from each sample and used to estimate the

relative bacterial burden per tissue unit using qPCR targeting

bacterial 16S and host 18S rRNA genes. The 16S/18S ratio was

used as a proxy for bacterial abundance relative to host tissue.

Analysis of these ratios revealed substantial variability across

samples (Figure 2a-left). Notably, influenza-infected animals

showed significantly increased bacterial loads compared to

healthy controls (Figure 2a-right), with a median 16S/18S ratio of

787.7 (range: 1.116–1,163) versus 36.05 (range: 1.661–65,376) in

healthy lungs (p = 0.0008, Mann Whitney test). Influenza infected

samples had 21.85x median ratio compared to healthy samples.
Taxonomic analysis and microbial diversity

All samples were sequenced using 16S Long-read Oxford

Nanopore Technologies (ONT). MinKNOW Software was used to

collect sequencing data, perform basecalling in real-time, and

demultiplex the barcodes. Bacterial identification was performed

using Epi2me, and relative abundance was calculated for all

classification levels. 16S rRNA gene sequencing and comparisons

were analyzed between the two groups (Infected vs Healthy).

A total of 1,519,055 reads were classified as “Classification

successful”, meaning that a taxon could be assigned to those reads

based on a valid NCBI Taxonomic ID (taxid). Unclassified reads

were discarded as the results were not available or did not meet the

criteria set at the start. Classification by Epi2me was assigned with

Kraken2 after alignment of the read with the Standard-8 database

(246,068 species). Taxonomic analysis revealed 40 bacteria phyla, 76

classes, 175 orders, 372 families, 953 genera, and 2361 species.

Species level was not considered in the analysis as the low level of

resolution might interfere with the results.

For alpha diversity analysis, bacterial community indices (Chao1

and ACE) were calculated for richness analysis, while Shannon and

Simpson indices were calculated for diversity analysis. ACE and

Chao1 indices indicated that the bacterial richness was not

significantly different (p > 0.05) between groups, as determined by

the LinDA method (Supplementary Figure 1a). Similarly, no

significant differences (p > 0.05) were found in bacterial community

diversity (Shannon and Simpson indices). However, rarefaction

curves showed a higher number of observed genera in infected

samples compared to healthy samples (Supplementary Figure 1b).

For beta diversity analysis, two-dimensional principal

coordinates analysis (PCoA) based on Bray-Curtis (BC) distance

using MicrobiomeStat R package (Supplementary Figure 1c), and
frontiersin.org
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FIGURE 2

Relative bacterial abundance in the lungs of Influenza virus-infected and non-infected swine. (a) Individual 16S/18S gene ratio obtained by qPCR for
39 healthy (green) and 53 infected (red) DNA purified from lung necropsy samples. LOD: Limit of Detection (b) Stacked bar average relative
abundance (%) of bacteria present in healthy (Influenza confirmed negative) pigs and Infected with influenza virus for phylum, class, order, family,
and genus. (c) Violin plots of the main class groups classification of bacteria (Bacilli, Betaproteobacteria, Gammaproteobacteria, and Mollicutes) in
Healthy vs Infected animals diagnosed with Influenza virus. (d) Venn diagram of bacteria in healthy or infected pigs at the genus level. (e) Individual
bacterial stacked representation of genus relative abundance (%) ordered in terms of abundance. (f) Violin plots of relevant genus groups
classification of bacteria (Streptococcus, Escherichia, Glaesserella, and Pasteurella) in healthy vs infected samples from Influenza virus-diagnosed
swine. Statistical comparisons were performed using the Mann–Whitney U test and ANCOM-BC microbiome test. Significance levels are indicated as
follows: · p ≈ 0.05, *p < 0.05; **p < 0.01; ***p < 0.001. ns, Non-signitican diferences.
Frontiers in Cellular and Infection Microbiology frontiersin.org06
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three-dimensional BC dissimilarity using Bracken package from

Krakentools were calculated (Supplementary Figure 1d). In this last

analysis, other factors such as batch effect or the origin of the pigs

were included. Beta diversity analysis revealed that the two groups

were segregated into several different community clusters that are

primarily dependent on the infection rather than the run or the

region (Supplementary Figures 1c, d). Both beta diversity approaches

showed consistent results, indicating that neither sequencing run nor

geographical origin explained the sample clustering. Instead,

infection status was the main factor driving the observed

community differences. However, the cumulative percentage of

explained variances of the first 2 and 3 dimensions represented

only 17.19% and 23.37%, respectively (Supplementary Figure 1e).
Microbial composition of lung microbiota

To illustrate the overall taxonomic composition, the nine most

abundant groups at each taxonomic level (phylum, class, order,

family, and genus) were represented based on mean relative

abundance per group, and standard deviation (SD) values were

calculated to describe group variability (Figure 2b). For phylum

classification, Bacillota, Pseudomonadota, and Actinomycetota

comprised the main bacterial community in both groups. However,

other bacteria such as Fusobacteriota, andMycoplasmatota, present in

infected pigs, were low in healthy animals. In particular, infected pigs

showed a non-significant decrease in the Bacillota phylum compared

to healthy animals (32.7% [± 32.7% SD] vs 39.1% [± 25.1% SD],

p-valANCOM -BC = 0.12). In contrast, infected pigs showed higher

values for Fusobacteriota (3.27% [± 12.1% SD] vs 0.28% [± 1.46% SD],

p-valANCOM -BC = 0.0021), andMycoplasmatota (3.17% [± 10.8% SD]

vs 0.04% [± 0.16% SD], p-valANCOM -BC = 2.68E-06) compared to

healthy pigs. Within these phyla, in the class groups (Figures 2b, c),

bacterial relative abundance in healthy pigs showed a higher, non-

significant percentage of percentage of Bacilli (28.69% [± 21.9% SD]

vs 20.99% [± 25.7% SD], p-valANCOM -BC = 0.37) and

Betaproteobacteria (4.68% [± 0.08% SD] vs 0.80% [± 0.025% SD],

p-valANCOM -BC = 0.13) compared to naturally infected animals. In

the infected animals, there was a higher relative abundance of

Gammaproteobacteria and Mycoplasmatota (39.48% [± 28.4% SD]

vs 45.76% [± 36.5% SD], p-valANCOM -BC = 0.0042; and 0.028%, [±

0.1% SD] vs 3.12% [± 10.9% SD], p-valANCOM -BC = 1E-20,

respectively). Deeper in the analysis, order classification showed a

majority of Lactobacillales in healthy pigs (22.36% [± 20.9% SD] vs

13.46% [± 22.6% SD], p-valANCOM -BC = 0.93), but a higher prevalence

of Pasteurellales in infected animals (10.28% [± 20.6% SD] vs 22.77%

[± 29% SD], p-valANCOM -BC = 0.0047). Among them, the most

abundant families were Streptococcaceae for healthy animals (19.93%

[± 19.7% SD] vs 11.94% [± 21.7% SD], p-valANCOM -BC = 0.9),

although Neisseriaceae was the most significant group for healthy

animals (3.39% [± 7% SD] vs 0.4% [± 1.9% SD], p-valANCOM -BC =

0.0025); and Pasteurellaceae for infected ones (10.28% [± 20.6% SD].

vs 22.77% [± 29% SD], p-valANCOM -BC = 0.003).

Regarding genus abundance (Figures 2d–f), the number of

unique and shared bacterial genera between the two groups was
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shown using Venn diagrams (Figure 2d). The total number of

bacterial genera in the infected group was much higher than in the

healthy group (498 versus 120), while 192 genera were shared

between the two groups, suggesting that these shared genera

might represent common inhabitants of lung microbiota. The

prevalence of each bacterial genera identified in each group

(healthy and infected) is represented in Supplementary Figure 2a.

Prevalence is understood as the percentage of samples that

identified the presence of the bacteria. Also, a table with the

bacteria and each prevalence, as represented in the Venn diagram

groups, is shown in Supplementary Figure 2b.

Analysis of the top 10 bacteria in the genus classification

(Figures 2e, f) showed that Streptococcus is the most abundant

bacteria for both infected (11.73% [± 21.48% SD], p-valANCOM-BC =

0.8) and healthy (18.05% [± 17.88% SD]) pigs. However, significant

differences were found for Glaesserella and Pasteurella (Figures 2d, e),

which were more abundant in infected animals (0.93% [± 3.22% SD]

vs 9.6% [± 19.16% SD], p-valANCOM -BC = 3.1E-06 for Glaesserella;

and 2.6% [± 3.9% SD] vs 7.97% [± 16.91% SD], p-valANCOM -BC =

0.012 for Pasteurella). In healthy animals, the most predominant

genera with relative abundances over 1%, apart from Streptococcus,

were Escherichia (15.12% [± 17.71% SD]), Sphingomonas (7.22% [±

18.73% SD]), Clostridium (7.15% [± 16.54% SD]), Actinobacillus

(5.31% [± 15.44% SD]) or Cutibacterium (4.08% [± 13.67% SD]),

among others. While in the infected animals, after Streptococcus, the

most predominant bacteria wereGlaesserella, (9.64% [± 19.16% SD]),

Escherichia (8.88% [± 13.26% SD]), Pasteurella (7.95% [± 16.91%

SD]), Sphingomonas (5.93% [± 17.61% SD]), Clostridium (5.87% [±

18.75% SD]), Cutibacterium (4.5% [± 9.57% SD]) or Salmonella

(3.83% [± 4.49% SD]), among others. Interestingly, bacteria such as

Staphylococcus, Mycoplasma, Haemophilus, Bacillus, Trueperella or

Salmonella were also higher in the infected group. Analysis of the

relative abundance of genus level in the individual samples

(Supplementary Figure 3) showed that in infected animals there is

a higher number of samples where there is a major predominance of a

single bacteria. This is particularly clear for the already mentioned

genera Glaesserella and Pasteurella. In contrast, the number of

samples with Streptococcus in the infected samples decreased

considerably. Also, this individual analysis included clusterization

by regions (Supplementary Figure 3), where samples from the same

regions were not necessarily from the same farm. However, it can be

observed that in healthy animals, samples from the same region show

similar patterns, while in infected animals, the observed relative

abundances are despair.
Comparison of lung microbial communities
between the two groups

We further analyzed the significant differences between bacterial

abundances in both groups using the Wilcoxon rank sum test

method. To confirm that the Wilcoxon rank-sum test was the most

suitable for our data, we also evaluated five additional statistical

methods for comparison (Supplementary Figures 4 and 5). These

methods were compared using a flexible discriminant analysis (FDA)
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predictive model based on the significant bacteria of each model.

Finally, the discrimination abilities of each model after FDA and the

Z score for each model validated the Wilcoxon test as the most

suitable for these data.

The Wilcoxon rank-sum test revealed significant differences in

the abundance of 63 bacterial taxa between the infected and healthy

groups (Figure 3a). Of these, 14 taxa were predominantly associated

with the healthy group, showing higher prevalence and mean

abundances, while the remaining taxa were more indicative of the

infected group. Bacterial group from healthy samples included

Caulobacter, Phenylobacterium, Neisseria, Brevundimonas,

Anoxybacillus, Streptococcus and Lactococcus, among others. The

complete list of significantly different taxa, including those

associated with the infected group and their corresponding p-

values, is fully reported in Figure 3a.

Using only the 63 significant bacteria, the clustering method

based on k-medoids (Partitioning Around Medoids – PAM)

differences between 5 clusters of bacteria, of which healthy

samples are embedded in cluster 1 area (Figure 3b). However,

neural network based on Louvain communities of Pearson

correlation showed 4 optimal clusters. Here, cluster 1 shows the

interaction between all significant bacterial species for healthy

samples (Figure 3c). The other 3 clusters, corresponding to

bacteria predominantly found in infected samples, cluster

together and are separated from cluster 1. Although no single

‘primary’ bacterium dominates each cluster, several taxa within

each group stand out either by their high abundance or clinical

relevance. For example, Glaesserella or Fusobacterium were

prominent in clusters associated with infected animals, both

known respiratory pathogens in pigs. In healthy groups,

Streptococcus, Neisseria, or Lactococcus.
Discussion

Since the relationship between lung microbiota and respiratory

infections was first explored, several studies have focused on

describing bacteria present in the lungs of infected animals,

including those infected with Influenza viruses (Vereecke et al.,

2023). Human studies, for instance, have analyzed bronchoalveolar

lavages from critically ill patients with community-acquired

pneumonia (CAP) (Marimón et al., 2023; Zhou et al., 2023a).

However, these studies are often limited by small sample sizes,

biased due to preventive antibiotic treatments, and cross-

contamination from the mouth microbiota, among other

variables. Increasing the number of samples and conducting

broader studies pose significant challenges when analyzing human

samples. This issue, however, can be mitigated by using swine

samples, as the lung structure and immune response in swine

closely mimic those in humans (Schwaiger et al., 2019).

To date, no published studies have investigated the swine lung-

tissue microbiota in the context of Influenza virus infection. Some

of them, instead focused on lung microbiota of diseased pigs

(Porcine Respiratory Disease Complex – PRDC) (Li et al., 2021),

or studied the use of probiotics to prevent pathology in the lung
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microbiota composition (Winther et al., 2024). Others

characterized the swine lower respiratory tract antibiotic

resistome (Zhou et al., 2023b). A recent similar study identified

viral and bacterial profiles in endemic Influenza A virus infected

swine herds using Nanopore metagenomic sequencing on

tracheobronchial swabs (Vereecke et al., 2023).

On the other hand, although human and swine microbiotas are

different in the lungs (Yu et al., 2016; Siqueira et al., 2017), it is

critical to understand swine microbiota alterations associated with

Influenza virus and lung microbiota dynamics, because pigs are

anatomically and physiologically similar to humans (Rajao and

Vincent, 2015). Consequently, the swine model could be potentially

used to explore the understanding the potential source of

inflammatory signals and potential future therapeutic approaches

associated with influenza complications. For this reason, we

analyzed the pulmonary microbiota of 53 pigs infected with

Influenza and compared them with the microbiota of 39 healthy

pigs. All samples belonged to different geographic areas from Spain.

However, as a limitation, no detailed clinical data was available

beyond the general symptomatology and influenza positivity. Thus,

we cannot correlate disease severity with bacterial coinfections or

metagenomic findings. Notably, defining the clinical course of

influenza in pigs, including any signs of severe respiratory

distress, could aid in identifying coinfection markers for more

comprehensive future analyses.

Bacterial communities in lung samples Influenza-infected and

non-infected animals present significant differences in terms of

detection (presence) and relative abundance. The bacterial 16S/18S

DNA ratio can be used as a surrogate of the relative abundance of

bacteria in a lung sample as compared to eukaryotic cells. The

analysis of this ratio by qPCR indicates an overall increase of

bacterial 16S compared to 18S in Influenza-infected samples

(Figure 2a) that can correlate with a higher abundance of bacterial

communities in infected samples (Supplementary Figure 1b).

Although all samples were manipulated with the same DNA

extraction protocols, there are important differences in the DNA

quality that could be attributed to differences in sample collection,

processing, and preservation, as they were collected at different

origins and time points. Also, the distribution of bacteria in the lung

might differ among pigs (Dickson et al., 2015a). Despite that, clear

differences can be observed in infected samples.

Initial analysis of bacterial 16S sequencing indicates that alpha

diversity showed no significant differences (Supplementary

Figure 1a), although the rarefaction curves (Supplementary

Figure 1b) showed higher bacterial richness in infected animals.

In line with this observation, other microbiome articles in

influenza-infected humans showed no significance in alpha

diversity neither (Zhou et al., 2023a). A possible explanation for

this phenomenon could be that diversity indexes consider not only

the richness of genera, but also the distribution of those species. The

samples from infected animals revealed increased richness, yet a

higher imbalance in genus abundance, resulting in the dominance

of particular bacterial species. This aligns with the scenarios

described by Jake G. Natalini et al. (Natalini et al., 2023), where

dysbiosis can increase host susceptibility to pathogens. The authors
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explain that dysbiosis may favor dominant bacteria in the lungs, or,

in their absence, promote the growth of less dominant pathogens,

leading to further dysbiosis and pathogenesis.

On the other hand, principal coordinates analysis (PCoA) of

Bray-Curtis (BC) distances showed some differences between the

two groups. However, the percentage of explanation from the two

first dimensions are low (9.34% and 7.85%, respectively). This could

be explained by the wide variability of the samples in terms of

origin, timepoint of collection, and other factors such as the
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Influenza virus subtype causing the infection or divergent swine

genetics. The 3-dimensional MDS plot shown in Supplementary

Figure 1d, which captures an additional 6.18% of the variance

between samples, illustrates a distinct clustering of the healthy

samples (shown in green) near the center. In contrast, the

infected samples are dispersed radially in multiple directions,

rather than deviating along a single axis, suggesting a widespread

divergence from the healthy group in various aspects of microbial

composition. Finally, in terms of potential biases stemming from
FIGURE 3

Differential bacterial proportions and correlation networks. (a) Comparisons of the relative proportion (%) in Influenza-virus infected and healthy
groups at the level of bacterial genus. (b) Partitioning Around Medoids (PAM) clustering analysis. (c) Neural network of significant bacteria based on
Pearson correlation and Louvain clusterization. Each node for (b, c) represents a bacterial genus, separated by distances and grouped following
clusterization methods.
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batch effects or sample origin, no clear evidence was found

indicating any significant influence on the results of the samples.

Mean relative abundance analysis indicates that Influenza-

infected animals present a significantly higher abundance of

potential pathogenic bacteria, responsible for the majority of

secondary infections in pigs (Obradovic et al., 2021; Goto et al.,

2023). In particular, Glaesserella spp. was found approximately in

60% of our infected samples and, in some cases, was found to be the

most predominant bacteria in those samples. Other bacteria, such as

Pasteurella, Staphylococcus, Mycoplasma or Fusobacterium were

also correlated with infected samples. These bacterial genres are

common secondary pathogens in swine respiratory disease (SRD)

(Goto et al., 2023). In particular, Glaesserella parasuis, Pasteurella

multocida, and Mycoplasma hyopneumoniae are responsible for the

porcine respiratory disease complex (PRDC) along with Influenza

virus (Zimmerman et al., 2019). These bacteria correlated

significantly with infected samples after performing statistical

analysis by Wilcoxon (Figure 3a). Then, although the Porcine

Reproductive and Respiratory Syndrome (PRRS) is commonly

associated with Influenza virus and Actinobacillus spp, we found

no significant differences in the detection of this bacteria in healthy

or infected samples.

Conversely, certain bacterial genera were significantly

correlated specifically with the healthy group, although they were

fewer in comparison to the samples from Influenza-infected

animals. Among them, Streptococcus spp., Caulobacter spp., and

Lactococcus spp. were notably associated with samples from

uninfected animals (Figure 3a). Some of these bacteria, such as

Lactococcus, have been repeatedly associated with higher prevalence

and abundance in healthy samples when compared to infected ones.

For instance, in one study of the microbiota of diseased pigs with

porcine respiratory disease complex (PRDC) (Li et al., 2021).

Others, like Streptococcus spp., are part of the normal pulmonary

microbiota, as they are known to colonize the respiratory tract,

likely due to their common presence in the oral cavity, which allows

direct contact with the lungs (Obradovic et al., 2021).

In particular with Streptococcus, we observed high prevalence in

both healthy (84%) and infected (72%) samples, as can be observed

in Supplementary Figure 2. However, the differences observed

between healthy and infected samples are not solely based on

genus-level abundances, but also on species-level distinctions.

Although we cannot confirm this data due to 16S sequencing

limitations on taxonomic resolution (Benıt́ez-Páez et al., 2016),

initial 16S-based identification indicated that infected samples

exhibit a higher prevalence of specific Streptococcus species, such

as S. suis, the most common, as well as S. porcinus and S. porci. In

contrast, healthy samples, while also harboring these colonizing

species, show a greater diversity of Streptococcus, including

additional species like S. agalactiae, S. pyogenes, and S. parasuis,

among others.

Finally, we used two clustering methods to determine the

relationship between genera in the samples (Figures 3b, c). The

first method, PAM, partitions the samples into groups by

minimizing the sum of dissimilarities between points and their

assigned medoids. This allows for the possibility that a bacterium,
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while assigned to one group, may be closer to the medoid of

another, suggesting that it could potentially belong to more than

one group. On the other hand, the Louvain method identifies

communities based on the maximization of modularity in a

network, with interactions between nodes (bacteria), though each

node can only belong to a single group or community.

The Louvain clustering method for community detection

identified four distinct groups, of which one of them (Cluster 1 –

Figure 3c) was separated, corresponding to bacteria that are more

characteristic of healthy samples. Additionally, the subclustering

from what we considered the three infection-associated groups, may

indicate three potential factors: (i) variability within the infected

group due to differences in the pre-infection commensal microbiota

of the pigs, possibly influenced by factors such as environmental

factors, animal age, disease progression, immune response, or prior

treatments; (ii) the presence of distinct subpopulations of bacteria

within infected samples derived from the infection stage, severity, or

coinfections, potentially reflecting differences in microbial

composition; and (iii) the interactions among various bacterial

species, with some acting as primary pathogens, while others

function as secondary bacteria, taking advantage of the

environment created by the primary bacterial invasion.

Additionally, the subtype of Influenza virus infecting the pigs

may play a role in this subclustering. Different Influenza subtypes

could influence the pulmonary microbiota in distinct ways,

potentially leading to variations in bacterial community structure.

More virulent subtypes, or more serious disease, might disrupt the

microbiota more severely, allowing specific pathogens to dominate,

which could explain the observed differences between the

subclusters. In fact, we identified multiple influenza subtypes

across our samples. However, the subtyping analysis was not

conducted due to incomplete data availability for all pigs. These

aspects should be clarified in future analysis.

While this study provides valuable insights into the pulmonary

microbiota of naturally influenza-infected farm pigs, several

limitations should be addressed. One major limitation is the low

bacterial yield from several lung samples, which increases the

potential for bias. Although we mitigated this issue by including a

relatively large sample size (92 samples), a more robust and

statistically representative analysis would require an even larger

number of samples from more diverse environments. Furthermore,

the lack of detailed information about the pigs, such as any treatments

they may have received, the timing of lung sample collection relative

to the onset of symptoms, or the exact time since infection, constrains

our ability to fully understand the factors driving the observed

microbial shifts. These unknown variables introduce potential

confounders that could influence bacterial composition. Due to

confidentiality agreements with the farms involved in the study, we

were not granted access to detailed metadata of the animals, such as

sex, age, breed, reproductive status, diet, or medical history. While

these variables can influence the microbiota and would have enriched

the interpretation of our findings, their unavailability represents an

inherent limitation of working with field samples under real-world

conditions. A further limitation is the potential variability in sample

collection. Although biopsies were generally taken from comparable
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lung regions (preferably the distal right cardiac lobe) and inflamed

areas in infected animals, sampling was performed by different

personnel across multiple sites without centralized supervision.

This may have introduced variability in the microbial profiles,

which should be considered when interpreting the results.

Despite these limitations, our study has notable strengths. It is

among the firsts to explore the pulmonary microbiota in farm pigs

naturally infected with circulating strains of Influenza, offering a

comparison with healthy pigs from farm environments. Unlike

laboratory studies, which often operate under highly controlled

conditions where the microbiota, diet, and environment are more

homogeneous, our study captures the complex and variable realities

of commercial farming. In laboratory settings, environmental factors

are tightly regulated, which can facilitate analysis but may not

accurately reflect real-world conditions, as farm environments are

typically more diverse and dynamic and can potentially be less clean.

This makes our findings particularly relevant for understanding

microbial dynamics in pigs under natural farming conditions,

where external influences such as diet, housing, and hygiene are

less controlled but more representative of the actual conditions faced

in swine production systems.

In this sense, we also tested lung samples from controlled in vivo

experiments performed in an animal housing facility (data not

shown). In our case, the number of individual species obtained was

very limited compared to the farm animals. We attribute this low

number of species to the animal housing conditions, which are

normally clean and more homogenous compared to farms. This

might limit the use of in vivo models to study pigs’ microbiota

associated with influenza.

Although studies in humans are limited by the difficulty of

accessing lung tissue directly, investigations using sputum or

bronchoalveolar lavage samples have reported changes in lung

microbiota associated with influenza A infection. For instance, a

recent study found significant shifts in the abundance of genera

such as Neisseria, Porphyromonas, and Actinobacillus in patients

with severe influenza A pneumonia, despite no significant

differences in overall diversity metrics (Zhou et al., 2023a). These

findings support the notion that influenza infection impacts lung

bacterial communities, highlighting the translational relevance of

our pig lung tissue study, which benefits from direct sampling of

lung parenchyma and controlled experimental conditions.

The complex inflammatory regulation of the host-respiratory

and immune systems during influenza determines the severity of

the disease. While much attention has been given to individual

pathogens, such as different Influenza viruses and the bacteria

associated with secondary infections, this traditional view may be

overly simplistic. The data suggest that Koch’s postulates no longer

fully explain the complexity of the disease caused by some infectious

agents. The role of different bacteria associated with infections by

Influenza viruses requires further investigation. Alternative

dysbiosis contexts can lead to similar disease severities, requiring

different therapeutic approaches. Both descriptive and functional

microbiota assays are essential to better understand disease etiology

and develop more effective treatments.
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