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Influenza A virus (IAV) remains a major health concern in both humans and
animals, with pigs serving as key reservoirs for generating novel reassortant
viruses with pandemic potential. Respiratory microbiome alterations during
infection may facilitate secondary bacterial complications. This study
investigates the lung microbiota of pigs naturally infected with IAV across
different regions in Spain, using Oxford Nanopore Technologies (ONT) long-
read 16S rRNA sequencing to characterize associated bacterial communities. Our
results show a higher bacterial genus diversity in IAV-infected animals compared
to healthy controls, with significant differences in both presence and relative
abundance of bacterial taxa. Infected lungs exhibited increased proportions of
potential pathogens, particularly Glaesserella spp., detected in approximately
60% of infected samples, often as the dominant genus. Other pathogenic genera,
including Pasteurella, Staphylococcus, Mycoplasma, and Fusobacterium, were
also strongly associated with infection. Clustering analyses revealed distinct
microbial profiles that clearly separated infected from non-infected animals,
identifying specific bacterial signatures predictive of infection status. These
findings suggest that IAV infection significantly alters the pulmonary
microbiota, potentially creating a permissive environment for secondary
bacterial infections. This study underscores the relevance of microbiota shifts
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during IAV infection in swine and highlights the importance of understanding
microbial dynamics in respiratory disease progression. Additionally, we present a
novel, rapid, and practical experimental pipeline based on ONT long-read
sequencing to investigate the respiratory microbiota in swine infection models.
This approach offers a valuable tool for future research and potential diagnostic
applications in both veterinary and human medicine.
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Introduction

Influenza viruses are a significant concern in both veterinary
and public health, with swine serving as important reservoirs for
various Influenza A virus subtypes. The potential for generating
novel reassortant viruses and subsequent zoonotic transmission to
humans underscores the importance of understanding the
dynamics of influenza in swine populations (Zell et al, 2013).
Moreover, recent pandemics, such as the HINI in 2009, with
swine being the mixing vessel for the resulting reassortant viruses
with four different original Influenza viruses from human, bat and
pigs (Kingsford et al., 2009), highlights the need for comprehensive
surveillance and research in this area.

Currently there is great interest in unravelling the role of
microbiota in viral infections, given that it could be a potential
therapeutic target or an important prognostic marker. The term
“microbiota” refers to the collection of microorganisms, primarily
bacteria, that inhabit a specific environment in the body. Efforts are
currently being made in order to develop future therapeutic
approaches in the microbiome area (Jin et al., 2022). Bacterial
microbiota is present in many organs, including the respiratory tract,
and it appears to play a role in the pathogenesis or progression of
several diseases. In the lungs, alterations in microbial composition have
been associated with chronic obstructive pulmonary disease (COPD),
asthma, cystic fibrosis, and respiratory infections, where shifts in
microbial diversity or abundance often correlate with disease severity
or exacerbations (Garrett, 2015; Budden et al., 2019; Wilde et al., 2024).
Furthermore, the lung microbiota has drawn considerable attention
due to the intricate immunological tolerance mechanisms that are
necessary to preserve a balanced and symbiotic interaction between
resident microbes and the host in the respiratory environment.

The respiratory microbiota plays a fundamental role as a
potential source of influenza-associated secondary opportunistic
bacterial infections (Li et al., 2021). While influenza-induced
changes in the intestinal microbiota are well documented in
animal models, direct effects on the respiratory microbiota remain
understudied (Li et al., 2021). Only some investigations analyzing
sputum samples in humans have also reported significant
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alterations in respiratory microbial communities following
influenza infection (Zhou et al., 2023a). Unlike other internal
organs, the lungs are exposed to both external and internal
factors that create a highly dynamic microbial environment
(Dickson et al., 2015b; Dickson et al., 2016). Although lungs were
once thought to be sterile (Dickson et al., 2016; Whiteside et al.,
2021), the pulmonary microbiome of swine represents a complex
ecosystem comprising diverse bacterial communities. These
microbial communities may play a critical role in the
development of secondary infections, which are directly
associated with increased morbidity and mortality following
Influenza infection (Li et al., 2021).

Despite its potential importance, our understanding of the
porcine respiratory microbiome is still limited, presenting an
exciting opportunity for further investigation. Traditionally, the
identification of pulmonary microbiota in swine has relied on
culture-based methods, which are inherently limited by their
inability to capture the full breadth of microbial diversity
(Tunney et al., 2013). Although these methods have identified the
main secondary pathogens associated with pneumonia in swine
[Streptococcus suis, Haemophilus parasuis, Pasteurella multocida,
among others (Zhao et al., 2021)], most of the bacteria present in
the lungs and the respiratory environment are non-cultivable using
conventional techniques and require enrichment factors, leading to
a significant loss of information about their ecological role during
cultivation. To overcome this limitation, alternative approaches
such as high-throughput sequencing of the 16S rRNA gene have
emerged as powerful tools for characterizing microbial
communities (Li et al., 2021).

In this study, we employed Oxford Nanopore sequencing
technology (ONT) to investigate the pulmonary microbiome of
pigs infected with Influenza virus from different locations in Spain
with a targeted Next Generation Sequencing (NGS) metagenomic
approach, by generating long-read 16S rRNA sequences (Figure 1 —
Graphical abstract). This analysis provides a more comprehensive
assessment of bacterial diversity and composition in the context of
Influenza infection and pathogenesis, offering insights into potential
frameworks for disease understanding.
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FIGURE 1

Graphical abstract. (a) Schematic and Graphical Representation of Experimental Methodology. A piece of lung from all infected pigs was extracted,
embedded in PBS (Phosphate Buffered Saline) (1) and crushed (2) using a TissuelLyser. Then, DNA was extracted (3) using Qiagen extraction kit and
amplified (4) with barcoded 16S primers from Oxford Nanopore Technologies. Purification of the DNA (5) was performed using magnetic beads for
the library preparation and sequencing (6). Finally, data were analyzed (7). (b) Number and origin of the pigs analyzed. 92 samples were processed

and analyzed: 53 were Influenza-infected and 39 were (non-infected) - healthy animals. Figure created with BioRender.com.

Materials and methods
Sample collection

Clinical samples (lung, trachea, and nasal exudates) from healthy
(39) and influenza infected pigs (53) with respiratory symptoms were
provided by farm veterinarians from main pig-producing regions of
Spain. Samples were stored at -20°C and sent in ice to maintain the
cold chain. A preliminary diagnostic test of Influenza A-specific RT-
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PCR was performed at EXOPOL S.L. (San Mateo de Gallego, Spain).
Positive samples were confirmed by RT-PCR in our laboratory. Non
infected samples (PCR negative) were named as healthy.

Pulmonary tissue processing and nucleic
acids extraction

A tissue fragment (25 mg only containing soft tissue from a
lobe, no trachea or bronchioles) was embedded in 5 mL of PBS and
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crushed with an ultra-turrax until no big and detectable fragments
were visible (until the mixture was homogeneous). Then, DNA
extraction was performed using QIAAMP DNA MINI KIT
(Qiagen) according to the manufacturer’s instructions for tissues.
Specifically, 80 uL of the homogenate was mixed with 100 pL of
buffer ATL and proteinase K and incubated overnight at 56°C.
RNase A (100 mg/mL) was added and incubated for 2 minutes at
room temperature to remove RNA. Then, 200 uL of buffer AL was
added and incubated for 10 minutes at 70°C, followed by the
addition of 200 uL of 100% ethanol. The lysate was loaded onto
spin columns and centrifuged at 6000 g. Wash steps with buffers
AW1 and AW2 were performed according to the protocol,
including a high-speed spin (20,000 g) and a final drying step.
DNA was eluted in two rounds using 100 puL of DNase-free AE
buffer, with 1-5 min incubation before each spin to improve yield.

16S/18S ratio obtention

Extracted DNA from healthy and infected samples were
amplified using quantitative PCR technique using SYBR Premix
Ex Taq (Takara Kusatsu, Shiga, Japan) following manufacturer
instructions in a 7900HT fast real-time PCR system (Thermo
Scientific, Waltham, MA, USA) using the primers needed to
quantify the expression of the genes under analysis, designed
using an in-house program (16S_Fw: TGTCGTG
AGATGTTGGG, 16S_Rv: CGATTCCAGCTTCATGT; 18S_Fw:
CCAAGATCCAACTACGAGCTT, 18S_Rv: GGCCCTGTAAT
TGGAATGAGTC). Thermal cycling conditions were as follows:
an initial incubation of 2 minutes at 50°C, followed by a
denaturation step of 10 minutes at 95°C. Amplification was then
performed for 40 cycles of 15 seconds at 95°C, 15 seconds at 60°C,
and 15 seconds at 72°C. A melting curve analysis was included at
the end to confirm specificity of amplification. Samples with
undetermined 16S amplification after 40 cycles were considered
below the detection limit. Then, the AACt (2(“t16S = €189y for 165/
18S was calculated, and normalized with the lowest value over the
detection limit. The threshold for the limit of detection (LOD) was
set based on the theoretical maximum Ct value of 40 for 16S
amplification, in combination with the average Ct value observed
for 18S across samples. This resulted in a LOD ratio of
approximately 15, below which samples were considered under
the detection limit and excluded from statistical analysis.

This ratio serves as an independent proxy of bacterial load
relative to host tissue, allowing comparison of bacterial abundance
per unit of lung tissue between healthy and infected samples,
independently of sequencing depth or amplification biases.

16S rRNA PCR amplification and
purification
10 ng of DNA were used to amplify the 16S rRNA gene of the

bacteria present in the sample using the 16S Barcoding kit (SQK-
165024) from Oxford Nanopore Technologies (ONT), according to
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the manufacturer’s instructions. The Taq Polymerase used was
LongAmp Hot Start Taq 2X Master Mix (NEB, M0533S), as
indicated in the protocol. After amplification, DNA was purified
using HighPrep beads (Magbio - AC-60005) and eluted in 10 pl of
10 mM Tris-HCI pH 8.0 with 50 mM NaClL

MinlON sequencing of the 16S rRNA gene
and bacteria identification

50-100 fmoles of purified DNA were pooled in 10 UL of Elution
Buffer and sequenced using the MinION Mk1b ONT. For priming
and loading the FlowCells, the Flow Cell Priming Kit (EXP-FLP002)
was used according to the manufacturer’s instructions. Briefly, the
Rapid Adapter (RAP) was added to the purified sample and
incubated for 5 minutes. During this time, flow cells were primed
by mixing Flush Tether (FLT) with Flush Buffer (FB), and loading
800 UL of this mix into the flow cell after air removal. The final
sequencing mix was prepared by combining the RAP-treated
sample with Sequencing Buffer (SQB), Loading Beads (LB), and
water to a final volume of 75 puL. An additional 200 uL of the FLT/
FB mix was loaded via the priming port, and the library was then
added dropwise onto the SpotON port. All flow cells were checked
before sequencing and run parameters were set equally for all runs
during a maximum run limit of 72h. Basecalling was performed in
real time using the MinKNOW software (v22.12.5), which
integrates the Guppy basecaller under default settings. All
sequencing runs were subjected to quality control, and samples
with extremely low read counts (e.g., <100 high-quality reads) were
excluded from further analysis.

Data analysis

Bacterial/host (16S/18S) ratios were obtained by normalized
relative copy number and compared with a non-parametrical
Mann-Whitney test between samples over the detection limit.
Normality of the data was assessed using multiple tests, including
the Anderson-Darling, D’Agostino—Pearson, and Shapiro-Wilk
tests, all of which indicated a significant deviation from
normality. A p-value < 0.05 was considered statistically significant.

Epi2me desktop application (Oxford Nanopore Technologies)
was used for identification and bacterial classification using the
metagenomics workflow. This workflow performs taxonomic
assignment of mixed samples and provides genus-level resolution
based on single-read alignments using either Kraken2 or Minimap?2.
In our experiment, Kraken2 (v2.0.9-beta) (Wood et al., 2019) was as
selected for the alignment of reads to Standard-8 database
(incorporated in Kraken2 tool). This database includes 246,068
different species. All analyses were conducted using the web-based
Epi2me interface under default settings. No command-line tools or
R environments were used for this step.

An initial filter of length (200bp - 5000bp) was set during base-
calling to discard both short and long reads as failed reads. Short
reads may add noise to the analysis, and long reads were not
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targeted as the analysis focused on the complete barcoded 16s genes.
The maximum statistical significance threshold (Ey,,.) was set as
default [e=0.01], and minimum coverage was set at 30%. In this
context, “coverage” refers to the proportion of each read that is
aligned to a reference sequence in the Standard—8 database; reads
must align over at least 30% of their length to be considered for
taxonomic classification. These settings correspond to the default
parameters of the Epi2me Metagenomics workflow and were not
manually modified.

After obtaining the taxonomic and abundance of bacterial reads
using Kraken2 in the Epi2me platform, the microbial composition of
samples and groups was analyzed and plotted using R (v4.3.3). Alpha
and beta diversity metrics were calculated using the microbiomeStat R
package v0.2.1 (Zhou et al,, 2022) applying the analysis to the full
dataset without rarefaction in order to preserve the total read
information. Specifically, alpha diversity was estimated using
Chaol, ACE, Shannon, and Simpson indices, while beta diversity
was assessed using Bray-Curtis distances and visualized through
MDS (Multidimensional Scaling) plots. Statistical differences in alpha
diversity indices and beta diversity distances between infected and
healthy groups were assessed using the LinDA method implemented
in the microbiomeStat R package, which fits linear models adjusted
for potential confounders. Significance was determined based on p-
values adjusted for multiple testing. In addition, a species
accumulation curve (rarefaction curve) was generated using the
vegan R package v2.7-7 (Oksanen et al, 2025) to explore the
relationship between the number of samples and the number of
detected species. As expected, the shape of the curve varied depending
on the order of sample addition due to differences in richness among
samples; a representative run showing a typical logarithmic shape was
selected for illustration. Statistical differences in alpha and beta
diversity between infected and healthy groups were assessed using
the LinDA method implemented in the microbiomeStat R package,
which fits linear models adjusted for potential confounders.
Significance was determined based on p-values adjusted for
multiple testing. To identify differentially abundant taxa between
healthy and infected animals while accounting for the compositional
and sparse nature of microbiome count data, we additionally applied
the ANalysis of Composition of Microbiomes with Bias Correction
(ANCOM-BC), implemented in the ANCOMBC R package v2.10.1
(McMurdie and Holmes, 2013; Lin and Peddada, 2020). This method
was run at multiple taxonomic levels (phylum, class, order, family,
genus), and results were used to complement the interpretation of
taxonomic shifts between groups.

Then, a comparison between groups was performed by five
different methods: 1) Wilcox rank sum test [stats R package (The R
Core Team)], 2) biserial correlation function based on sensitivity/
sensibility [multipatt function from indicspecies R package v1.7.12
(Caceres et al,, 2025)], 3) Pearson correlation based on presence
[multipatt R package (De Caceres and Legendre, 2009)], 4) LinDa
method (microbiomeStat R package), and 5) Boruta [Boruta R
package v7.0.0 (Kursa and Rudnicki, 2010)]. The significant
bacteria from all methods were further selected for the generation
of a prediction model using a Flexible Discriminant Analysis (FDA)
using the mda R package v0.7-10 (Hastie et al., 2024). All methods
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were compared based on their discrimination abilities and the Z
scores obtained.

Results

Lung samples from healthy (39) and naturally infected pigs (53)
were processed. Influenza infection was initially detected by RT-
qPCR at EXOPOL S.L and further confirmed in our laboratory, with
an average Ct value of 23.93 (+ 3.52 SD) for positive samples. Then,
total DNA was extracted from each sample and used to estimate the
relative bacterial burden per tissue unit using qPCR targeting
bacterial 16S and host 185 rRNA genes. The 16S/18S ratio was
used as a proxy for bacterial abundance relative to host tissue.
Analysis of these ratios revealed substantial variability across
samples (Figure 2a-left). Notably, influenza-infected animals
showed significantly increased bacterial loads compared to
healthy controls (Figure 2a-right), with a median 16S/18S ratio of
787.7 (range: 1.116-1,163) versus 36.05 (range: 1.661-65,376) in
healthy lungs (p = 0.0008, Mann Whitney test). Influenza infected
samples had 21.85x median ratio compared to healthy samples.

Taxonomic analysis and microbial diversity

All samples were sequenced using 16S Long-read Oxford
Nanopore Technologies (ONT). MinKNOW Software was used to
collect sequencing data, perform basecalling in real-time, and
demultiplex the barcodes. Bacterial identification was performed
using Epi2me, and relative abundance was calculated for all
classification levels. 16S rRNA gene sequencing and comparisons
were analyzed between the two groups (Infected vs Healthy).

A total of 1,519,055 reads were classified as “Classification
successful”, meaning that a taxon could be assigned to those reads
based on a valid NCBI Taxonomic ID (taxid). Unclassified reads
were discarded as the results were not available or did not meet the
criteria set at the start. Classification by Epi2me was assigned with
Kraken?2 after alignment of the read with the Standard-8 database
(246,068 species). Taxonomic analysis revealed 40 bacteria phyla, 76
classes, 175 orders, 372 families, 953 genera, and 2361 species.
Species level was not considered in the analysis as the low level of
resolution might interfere with the results.

For alpha diversity analysis, bacterial community indices (Chaol
and ACE) were calculated for richness analysis, while Shannon and
Simpson indices were calculated for diversity analysis. ACE and
Chaol indices indicated that the bacterial richness was not
significantly different (p > 0.05) between groups, as determined by
the LinDA method (Supplementary Figure la). Similarly, no
significant differences (p > 0.05) were found in bacterial community
diversity (Shannon and Simpson indices). However, rarefaction
curves showed a higher number of observed genera in infected
samples compared to healthy samples (Supplementary Figure 1b).

For beta diversity analysis, two-dimensional principal
coordinates analysis (PCoA) based on Bray-Curtis (BC) distance
using MicrobiomeStat R package (Supplementary Figure 1c), and
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FIGURE 2
Relative bacterial abundance in the lungs of Influenza virus-infected and non-infected swine. (a) Individual 165/18S gene ratio obtained by qPCR for
39 healthy (green) and 53 infected (red) DNA purified from lung necropsy samples. LOD: Limit of Detection (b) Stacked bar average relative
abundance (%) of bacteria present in healthy (Influenza confirmed negative) pigs and Infected with influenza virus for phylum, class, order, family,
and genus. (c) Violin plots of the main class groups classification of bacteria (Bacilli, Betaproteobacteria, Gammaproteobacteria, and Mollicutes) in
Healthy vs Infected animals diagnosed with Influenza virus. (d) Venn diagram of bacteria in healthy or infected pigs at the genus level. (e) Individual
bacterial stacked representation of genus relative abundance (%) ordered in terms of abundance. (f) Violin plots of relevant genus groups
classification of bacteria (Streptococcus, Escherichia, Glaesserella, and Pasteurella) in healthy vs infected samples from Influenza virus-diagnosed
swine. Statistical comparisons were performed using the Mann-Whitney U test and ANCOM-BC microbiome test. Significance levels are indicated as
follows: - p = 0.05, *p < 0.05; **p < 0.01; ***p < 0.001. ns, Non-signitican diferences.
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three-dimensional BC dissimilarity using Bracken package from
Krakentools were calculated (Supplementary Figure 1d). In this last
analysis, other factors such as batch effect or the origin of the pigs
were included. Beta diversity analysis revealed that the two groups
were segregated into several different community clusters that are
primarily dependent on the infection rather than the run or the
region (Supplementary Figures 1¢, d). Both beta diversity approaches
showed consistent results, indicating that neither sequencing run nor
geographical origin explained the sample clustering. Instead,
infection status was the main factor driving the observed
community differences. However, the cumulative percentage of
explained variances of the first 2 and 3 dimensions represented
only 17.19% and 23.37%, respectively (Supplementary Figure le).

Microbial composition of lung microbiota

To illustrate the overall taxonomic composition, the nine most
abundant groups at each taxonomic level (phylum, class, order,
family, and genus) were represented based on mean relative
abundance per group, and standard deviation (SD) values were
calculated to describe group variability (Figure 2b). For phylum
classification, Bacillota, Pseudomonadota, and Actinomycetota
comprised the main bacterial community in both groups. However,
other bacteria such as Fusobacteriota, and Mycoplasmatota, present in
infected pigs, were low in healthy animals. In particular, infected pigs
showed a non-significant decrease in the Bacillota phylum compared
to healthy animals (32.7% [+ 32.7% SD] vs 39.1% [+ 25.1% SD]J,
p-valancom -sc = 0.12). In contrast, infected pigs showed higher
values for Fusobacteriota (3.27% [+ 12.1% SD] vs 0.28% [+ 1.46% SD],
p-valancom sc = 0.0021), and Mycoplasmatota (3.17% [+ 10.8% SD]
vs 0.04% [+ 0.16% SD], p-valancom -Bc = 2.68E-06) compared to
healthy pigs. Within these phyla, in the class groups (Figures 2b, c),
bacterial relative abundance in healthy pigs showed a higher, non-
significant percentage of percentage of Bacilli (28.69% [+ 21.9% SD]
vs 20.99% [+ 25.7% SD], p-valancom -Bc = 0.37) and
Betaproteobacteria (4.68% [+ 0.08% SD] vs 0.80% [+ 0.025% SD],
p-valancom -c = 0.13) compared to naturally infected animals. In
the infected animals, there was a higher relative abundance of
Gammaproteobacteria and Mycoplasmatota (39.48% [+ 28.4% SD]
vs 45.76% [+ 36.5% SD], p-valancom -sc = 0.0042; and 0.028%, [+
0.1% SD] vs 3.12% [+ 10.9% SD], p-valancom -sc = 1E-20,
respectively). Deeper in the analysis, order classification showed a
majority of Lactobacillales in healthy pigs (22.36% [+ 20.9% SD] vs
13.46% [+ 22.6% SD], p-valancom -sc = 0.93), but a higher prevalence
of Pasteurellales in infected animals (10.28% [+ 20.6% SD] vs 22.77%
[+ 29% SD], p-valancom -sc = 0.0047). Among them, the most
abundant families were Streptococcaceae for healthy animals (19.93%
[+ 19.7% SD] vs 11.94% [+ 21.7% SD], p-valancom -sc = 0.9),
although Neisseriaceae was the most significant group for healthy
animals (3.39% [+ 7% SD] vs 0.4% [+ 1.9% SD], p-valancom -Bc =
0.0025); and Pasteurellaceae for infected ones (10.28% [+ 20.6% SD].
vs 22.77% [+ 29% SD], p-valancom _sc = 0.003).

Regarding genus abundance (Figures 2d-f), the number of
unique and shared bacterial genera between the two groups was
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shown using Venn diagrams (Figure 2d). The total number of
bacterial genera in the infected group was much higher than in the
healthy group (498 versus 120), while 192 genera were shared
between the two groups, suggesting that these shared genera
might represent common inhabitants of lung microbiota. The
prevalence of each bacterial genera identified in each group
(healthy and infected) is represented in Supplementary Figure 2a.
Prevalence is understood as the percentage of samples that
identified the presence of the bacteria. Also, a table with the
bacteria and each prevalence, as represented in the Venn diagram
groups, is shown in Supplementary Figure 2b.

Analysis of the top 10 bacteria in the genus classification
(Figures 2e, f) showed that Streptococcus is the most abundant
bacteria for both infected (11.73% [+ 21.48% SD], p-valancom. e =
0.8) and healthy (18.05% [+ 17.88% SD]) pigs. However, significant
differences were found for Glaesserella and Pasteurella (Figures 2d, e),
which were more abundant in infected animals (0.93% [+ 3.22% SD]
vs 9.6% [+ 19.16% SD], p-valancom -Bc = 3.1E-06 for Glaesserella;
and 2.6% [+ 3.9% SD] vs 7.97% [+ 16.91% SD], p-valancom -sc =
0.012 for Pasteurella). In healthy animals, the most predominant
genera with relative abundances over 1%, apart from Streptococcus,
were Escherichia (15.12% [+ 17.71% SD]), Sphingomonas (7.22% [+
18.73% SDJ]), Clostridium (7.15% [+ 16.54% SD]), Actinobacillus
(5.31% [+ 15.44% SD]) or Cutibacterium (4.08% [+ 13.67% SD]),
among others. While in the infected animals, after Streptococcus, the
most predominant bacteria were Glaesserella, (9.64% [+ 19.16% SD]),
Escherichia (8.88% [+ 13.26% SD]), Pasteurella (7.95% [+ 16.91%
SD]), Sphingomonas (5.93% [+ 17.61% SD]), Clostridium (5.87% [+
18.75% SD]), Cutibacterium (4.5% [+ 9.57% SD]) or Salmonella
(3.83% [+ 4.49% SD]), among others. Interestingly, bacteria such as
Staphylococcus, Mycoplasma, Haemophilus, Bacillus, Trueperella or
Salmonella were also higher in the infected group. Analysis of the
relative abundance of genus level in the individual samples
(Supplementary Figure 3) showed that in infected animals there is
a higher number of samples where there is a major predominance of a
single bacteria. This is particularly clear for the already mentioned
genera Glaesserella and Pasteurella. In contrast, the number of
samples with Streptococcus in the infected samples decreased
considerably. Also, this individual analysis included clusterization
by regions (Supplementary Figure 3), where samples from the same
regions were not necessarily from the same farm. However, it can be
observed that in healthy animals, samples from the same region show
similar patterns, while in infected animals, the observed relative
abundances are despair.

Comparison of lung microbial communities
between the two groups

We further analyzed the significant differences between bacterial
abundances in both groups using the Wilcoxon rank sum test
method. To confirm that the Wilcoxon rank-sum test was the most
suitable for our data, we also evaluated five additional statistical
methods for comparison (Supplementary Figures 4 and 5). These
methods were compared using a flexible discriminant analysis (FDA)
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predictive model based on the significant bacteria of each model.
Finally, the discrimination abilities of each model after FDA and the
Z score for each model validated the Wilcoxon test as the most
suitable for these data.

The Wilcoxon rank-sum test revealed significant differences in
the abundance of 63 bacterial taxa between the infected and healthy
groups (Figure 3a). Of these, 14 taxa were predominantly associated
with the healthy group, showing higher prevalence and mean
abundances, while the remaining taxa were more indicative of the
infected group. Bacterial group from healthy samples included
Caulobacter, Phenylobacterium, Neisseria, Brevundimonas,
Anoxybacillus, Streptococcus and Lactococcus, among others. The
complete list of significantly different taxa, including those
associated with the infected group and their corresponding p-
values, is fully reported in Figure 3a.

Using only the 63 significant bacteria, the clustering method
based on k-medoids (Partitioning Around Medoids - PAM)
differences between 5 clusters of bacteria, of which healthy
samples are embedded in cluster 1 area (Figure 3b). However,
neural network based on Louvain communities of Pearson
correlation showed 4 optimal clusters. Here, cluster 1 shows the
interaction between all significant bacterial species for healthy
samples (Figure 3c). The other 3 clusters, corresponding to
bacteria predominantly found in infected samples, cluster
together and are separated from cluster 1. Although no single
‘primary’ bacterium dominates each cluster, several taxa within
each group stand out either by their high abundance or clinical
relevance. For example, Glaesserella or Fusobacterium were
prominent in clusters associated with infected animals, both
known respiratory pathogens in pigs. In healthy groups,
Streptococcus, Neisseria, or Lactococcus.

Discussion

Since the relationship between lung microbiota and respiratory
infections was first explored, several studies have focused on
describing bacteria present in the lungs of infected animals,
including those infected with Influenza viruses (Vereecke et al,
2023). Human studies, for instance, have analyzed bronchoalveolar
lavages from critically ill patients with community-acquired
pneumonia (CAP) (Marimon et al., 2023; Zhou et al., 2023a).
However, these studies are often limited by small sample sizes,
biased due to preventive antibiotic treatments, and cross-
contamination from the mouth microbiota, among other
variables. Increasing the number of samples and conducting
broader studies pose significant challenges when analyzing human
samples. This issue, however, can be mitigated by using swine
samples, as the lung structure and immune response in swine
closely mimic those in humans (Schwaiger et al., 2019).

To date, no published studies have investigated the swine lung-
tissue microbiota in the context of Influenza virus infection. Some
of them, instead focused on lung microbiota of diseased pigs
(Porcine Respiratory Disease Complex — PRDC) (Li et al,, 2021),
or studied the use of probiotics to prevent pathology in the lung
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microbiota composition (Winther et al., 2024). Others
characterized the swine lower respiratory tract antibiotic
resistome (Zhou et al., 2023b). A recent similar study identified
viral and bacterial profiles in endemic Influenza A virus infected
swine herds using Nanopore metagenomic sequencing on
tracheobronchial swabs (Vereecke et al., 2023).

On the other hand, although human and swine microbiotas are
different in the lungs (Yu et al, 2016; Siqueira et al., 2017), it is
critical to understand swine microbiota alterations associated with
Influenza virus and lung microbiota dynamics, because pigs are
anatomically and physiologically similar to humans (Rajao and
Vincent, 2015). Consequently, the swine model could be potentially
used to explore the understanding the potential source of
inflammatory signals and potential future therapeutic approaches
associated with influenza complications. For this reason, we
analyzed the pulmonary microbiota of 53 pigs infected with
Influenza and compared them with the microbiota of 39 healthy
pigs. All samples belonged to different geographic areas from Spain.
However, as a limitation, no detailed clinical data was available
beyond the general symptomatology and influenza positivity. Thus,
we cannot correlate disease severity with bacterial coinfections or
metagenomic findings. Notably, defining the clinical course of
influenza in pigs, including any signs of severe respiratory
distress, could aid in identifying coinfection markers for more
comprehensive future analyses.

Bacterial communities in lung samples Influenza-infected and
non-infected animals present significant differences in terms of
detection (presence) and relative abundance. The bacterial 16S/18S
DNA ratio can be used as a surrogate of the relative abundance of
bacteria in a lung sample as compared to eukaryotic cells. The
analysis of this ratio by qPCR indicates an overall increase of
bacterial 16S compared to 18S in Influenza-infected samples
(Figure 2a) that can correlate with a higher abundance of bacterial
communities in infected samples (Supplementary Figure 1b).

Although all samples were manipulated with the same DNA
extraction protocols, there are important differences in the DNA
quality that could be attributed to differences in sample collection,
processing, and preservation, as they were collected at different
origins and time points. Also, the distribution of bacteria in the lung
might differ among pigs (Dickson et al., 2015a). Despite that, clear
differences can be observed in infected samples.

Initial analysis of bacterial 16S sequencing indicates that alpha
diversity showed no significant differences (Supplementary
Figure la), although the rarefaction curves (Supplementary
Figure 1b) showed higher bacterial richness in infected animals.
In line with this observation, other microbiome articles in
influenza-infected humans showed no significance in alpha
diversity neither (Zhou et al., 2023a). A possible explanation for
this phenomenon could be that diversity indexes consider not only
the richness of genera, but also the distribution of those species. The
samples from infected animals revealed increased richness, yet a
higher imbalance in genus abundance, resulting in the dominance
of particular bacterial species. This aligns with the scenarios
described by Jake G. Natalini et al. (Natalini et al., 2023), where
dysbiosis can increase host susceptibility to pathogens. The authors

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1634469
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Arranz-Herrero et al.

10.3389/fcimb.2025.1634469

a Pvalue
Priestia &= [ 4631 *
Porphymonas = ey ’04631 *
MUru uruella e [l '04250 *
acrococcus fem [ *
Floricoccus fem . Hea[thy et ’2% &
Marseil:_lsliba'ctl?r — [ ,04250 *
ergiella jum e 104250 *
Parageobacillus fe . Infected o ,04250 *
aloramator jee o 104250 *
Methylobacterium fee o 4250 *
himwellia f==— —e—i 103929 *
Rahnella = —e—i ,03523 *
Lonepinella = —e—t ,03276 *
Oceanisphaera 1= e ,03150 *
Necropsobacter = o 3150 *
afnia ot ,03150 *
Chitinophaga 1~ e ,03150 *
Providencia ™ o ,03150 *
Leclercia = o 3150 *
Plesiomonas o ,03150 *
Nocardioides {= o ,03150 *
Cronobacter = —e—i ,03045 *
Tatumella = —o—t ,02827 *
Kosakonia f=—= —s 0,02586 *
Bacillus === —e—i: 0,02271 *
Pseudescherichia = ot 0,01942 *
Phocoenobacter = o 0,01942 *
Lonsdalea = o 0,01942 *
Leminorella = o 0,01942 *
Izhkiella e 0,01942 *
Chania —— o 0,01942 *
Brenneria = ot 0,01942 *
Conservatibacter = o 0,01942 *
Trueperella = o 0,01942 *
Morganella g7 —— 0,01920 *
Fusobacterium == —e—i: 0,01469 *
Lactococcus =—= —e—i 0,01227 *
Shewanella = e el 0,01194 *
Paracoccus {== i 0,01194 *
arvimonas —e—i: 0,01072 *
Carnobacterium e ——i: 0,00809 **
Neobacillus = —e—i: 0,00749 **
Rosenbergiella e} 0,00731 **
Gallibacterium ——— ! ,00731 **
Pectobacterium = —e—i: 0,00701 **
trep —e—i 0,00474 **
Mesomycoplasma == i 0,00445 **
Anaerococcus == e 0,00445 **
ickeya fr— ——i: 0,00445 **
Cedecea i 0,00445 **

Bisgardia —— e—i: 0,00445
Anoxybacillus e o 0,00343 *
Brevundimonas jem e 0,00343 **
Filobacterium = = 0,00269 **
Canicola —e—i: 0,00269 **
Neisseria fm—— —e—i 0,00210 **
Photobacterium e i 0,00161 **
Phenylobacterium fee—u e 0,00147
Haer P i —e—i 8,38333 il
Mycoplasma —e—i , ol
StapRyloc —— 000038 **
1 —— 0,00012 ***
Caulobacter ; . —e— 4,07E-7 ™

20 40 s 80
Proportions (%)

o

PAM clustering results

1

0
Dim (205%)

FIGURE 3

10 40 05 0o 05 10
Difference of proportions (%)
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groups at the level of bacterial genus. (b) Partitioning Around Medoids (PAM) clustering analysis. (c) Neural network of significant bacteria based on
Pearson correlation and Louvain clusterization. Each node for (b, c) represents a bacterial genus, separated by distances and grouped following

clusterization methods.

explain that dysbiosis may favor dominant bacteria in the lungs, or,
in their absence, promote the growth of less dominant pathogens,
leading to further dysbiosis and pathogenesis.

On the other hand, principal coordinates analysis (PCoA) of
Bray-Curtis (BC) distances showed some differences between the
two groups. However, the percentage of explanation from the two
first dimensions are low (9.34% and 7.85%, respectively). This could
be explained by the wide variability of the samples in terms of
origin, timepoint of collection, and other factors such as the
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Influenza virus subtype causing the infection or divergent swine
genetics. The 3-dimensional MDS plot shown in Supplementary
Figure 1d, which captures an additional 6.18% of the variance
between samples, illustrates a distinct clustering of the healthy
samples (shown in green) near the center. In contrast, the
infected samples are dispersed radially in multiple directions,
rather than deviating along a single axis, suggesting a widespread
divergence from the healthy group in various aspects of microbial
composition. Finally, in terms of potential biases stemming from
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batch effects or sample origin, no clear evidence was found
indicating any significant influence on the results of the samples.

Mean relative abundance analysis indicates that Influenza-
infected animals present a significantly higher abundance of
potential pathogenic bacteria, responsible for the majority of
secondary infections in pigs (Obradovic et al., 2021; Goto et al,
2023). In particular, Glaesserella spp. was found approximately in
60% of our infected samples and, in some cases, was found to be the
most predominant bacteria in those samples. Other bacteria, such as
Pasteurella, Staphylococcus, Mycoplasma or Fusobacterium were
also correlated with infected samples. These bacterial genres are
common secondary pathogens in swine respiratory disease (SRD)
(Goto et al,, 2023). In particular, Glaesserella parasuis, Pasteurella
multocida, and Mycoplasma hyopneumoniae are responsible for the
porcine respiratory disease complex (PRDC) along with Influenza
virus (Zimmerman et al., 2019). These bacteria correlated
significantly with infected samples after performing statistical
analysis by Wilcoxon (Figure 3a). Then, although the Porcine
Reproductive and Respiratory Syndrome (PRRS) is commonly
associated with Influenza virus and Actinobacillus spp, we found
no significant differences in the detection of this bacteria in healthy
or infected samples.

Conversely, certain bacterial genera were significantly
correlated specifically with the healthy group, although they were
fewer in comparison to the samples from Influenza-infected
animals. Among them, Streptococcus spp., Caulobacter spp., and
Lactococcus spp. were notably associated with samples from
uninfected animals (Figure 3a). Some of these bacteria, such as
Lactococcus, have been repeatedly associated with higher prevalence
and abundance in healthy samples when compared to infected ones.
For instance, in one study of the microbiota of diseased pigs with
porcine respiratory disease complex (PRDC) (Li et al, 2021).
Others, like Streptococcus spp., are part of the normal pulmonary
microbiota, as they are known to colonize the respiratory tract,
likely due to their common presence in the oral cavity, which allows
direct contact with the lungs (Obradovic et al., 2021).

In particular with Streptococcus, we observed high prevalence in
both healthy (84%) and infected (72%) samples, as can be observed
in Supplementary Figure 2. However, the differences observed
between healthy and infected samples are not solely based on
genus-level abundances, but also on species-level distinctions.
Although we cannot confirm this data due to 16S sequencing
limitations on taxonomic resolution (Benitez-Paez et al., 2016),
initial 16S-based identification indicated that infected samples
exhibit a higher prevalence of specific Streptococcus species, such
as S. suis, the most common, as well as S. porcinus and S. porci. In
contrast, healthy samples, while also harboring these colonizing
species, show a greater diversity of Streptococcus, including
additional species like S. agalactiae, S. pyogenes, and S. parasuis,
among others.

Finally, we used two clustering methods to determine the
relationship between genera in the samples (Figures 3b, c). The
first method, PAM, partitions the samples into groups by
minimizing the sum of dissimilarities between points and their
assigned medoids. This allows for the possibility that a bacterium,
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while assigned to one group, may be closer to the medoid of
another, suggesting that it could potentially belong to more than
one group. On the other hand, the Louvain method identifies
communities based on the maximization of modularity in a
network, with interactions between nodes (bacteria), though each
node can only belong to a single group or community.

The Louvain clustering method for community detection
identified four distinct groups, of which one of them (Cluster 1 -
Figure 3c) was separated, corresponding to bacteria that are more
characteristic of healthy samples. Additionally, the subclustering
from what we considered the three infection-associated groups, may
indicate three potential factors: (i) variability within the infected
group due to differences in the pre-infection commensal microbiota
of the pigs, possibly influenced by factors such as environmental
factors, animal age, disease progression, immune response, or prior
treatments; (ii) the presence of distinct subpopulations of bacteria
within infected samples derived from the infection stage, severity, or
coinfections, potentially reflecting differences in microbial
composition; and (iii) the interactions among various bacterial
species, with some acting as primary pathogens, while others
function as secondary bacteria, taking advantage of the
environment created by the primary bacterial invasion.
Additionally, the subtype of Influenza virus infecting the pigs
may play a role in this subclustering. Different Influenza subtypes
could influence the pulmonary microbiota in distinct ways,
potentially leading to variations in bacterial community structure.
More virulent subtypes, or more serious disease, might disrupt the
microbiota more severely, allowing specific pathogens to dominate,
which could explain the observed differences between the
subclusters. In fact, we identified multiple influenza subtypes
across our samples. However, the subtyping analysis was not
conducted due to incomplete data availability for all pigs. These
aspects should be clarified in future analysis.

While this study provides valuable insights into the pulmonary
microbiota of naturally influenza-infected farm pigs, several
limitations should be addressed. One major limitation is the low
bacterial yield from several lung samples, which increases the
potential for bias. Although we mitigated this issue by including a
relatively large sample size (92 samples), a more robust and
statistically representative analysis would require an even larger
number of samples from more diverse environments. Furthermore,
the lack of detailed information about the pigs, such as any treatments
they may have received, the timing of lung sample collection relative
to the onset of symptoms, or the exact time since infection, constrains
our ability to fully understand the factors driving the observed
microbial shifts. These unknown variables introduce potential
confounders that could influence bacterial composition. Due to
confidentiality agreements with the farms involved in the study, we
were not granted access to detailed metadata of the animals, such as
sex, age, breed, reproductive status, diet, or medical history. While
these variables can influence the microbiota and would have enriched
the interpretation of our findings, their unavailability represents an
inherent limitation of working with field samples under real-world
conditions. A further limitation is the potential variability in sample
collection. Although biopsies were generally taken from comparable
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lung regions (preferably the distal right cardiac lobe) and inflamed
areas in infected animals, sampling was performed by different
personnel across multiple sites without centralized supervision.
This may have introduced variability in the microbial profiles,
which should be considered when interpreting the results.

Despite these limitations, our study has notable strengths. It is
among the firsts to explore the pulmonary microbiota in farm pigs
naturally infected with circulating strains of Influenza, offering a
comparison with healthy pigs from farm environments. Unlike
laboratory studies, which often operate under highly controlled
conditions where the microbiota, diet, and environment are more
homogeneous, our study captures the complex and variable realities
of commercial farming. In laboratory settings, environmental factors
are tightly regulated, which can facilitate analysis but may not
accurately reflect real-world conditions, as farm environments are
typically more diverse and dynamic and can potentially be less clean.
This makes our findings particularly relevant for understanding
microbial dynamics in pigs under natural farming conditions,
where external influences such as diet, housing, and hygiene are
less controlled but more representative of the actual conditions faced
in swine production systems.

In this sense, we also tested lung samples from controlled in vivo
experiments performed in an animal housing facility (data not
shown). In our case, the number of individual species obtained was
very limited compared to the farm animals. We attribute this low
number of species to the animal housing conditions, which are
normally clean and more homogenous compared to farms. This
might limit the use of in vivo models to study pigs’ microbiota
associated with influenza.

Although studies in humans are limited by the difficulty of
accessing lung tissue directly, investigations using sputum or
bronchoalveolar lavage samples have reported changes in lung
microbiota associated with influenza A infection. For instance, a
recent study found significant shifts in the abundance of genera
such as Neisseria, Porphyromonas, and Actinobacillus in patients
with severe influenza A pneumonia, despite no significant
differences in overall diversity metrics (Zhou et al., 2023a). These
findings support the notion that influenza infection impacts lung
bacterial communities, highlighting the translational relevance of
our pig lung tissue study, which benefits from direct sampling of
lung parenchyma and controlled experimental conditions.

The complex inflammatory regulation of the host-respiratory
and immune systems during influenza determines the severity of
the disease. While much attention has been given to individual
pathogens, such as different Influenza viruses and the bacteria
associated with secondary infections, this traditional view may be
overly simplistic. The data suggest that Koch’s postulates no longer
fully explain the complexity of the disease caused by some infectious
agents. The role of different bacteria associated with infections by
Influenza viruses requires further investigation. Alternative
dysbiosis contexts can lead to similar disease severities, requiring
different therapeutic approaches. Both descriptive and functional
microbiota assays are essential to better understand disease etiology
and develop more effective treatments.
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