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1Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and
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School of Public Health, Nanjing Medical University, Nanjing, China, 3Department of Epidemiology,
School of Public Health, Southeast University, Nanjing, China, 4Department of Tuberculosis, Nanjing
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The low positive predictive value of tuberculin skin tests and interferon-g release
assays often results in unnecessary prophylaxis. This study aimed to identify

antigen-specific biomarkers with high accuracy for predicting progression to

active tuberculosis (ATB). QuantiFERON supernatants from a school tuberculosis

outbreak cohort were analyzed, tracking students over two years to identify ATB

cases. We assessed 67 cytokines using the Luminex Multiplex Array kit and

applied LASSO and multivariate logistic regression to select predictors. A

nomogram was developed from the coefficients of top predictors. Model

performance was evaluated by AUC, C-index, and AIC. The levels of FGFbasic,

GM-CSF, MPIF-1/CCL23, as well as the combinations of ratios of FGFbasic/GM-

CSF and FGFbasic/MPIF-1/CCL23 were significantly associated with the risk of

ATB. AUC values for the prediction models based on individual cytokines ranged

from 0.607 to 0.713, notably lower than those of the fixed models based on the

logistic regression (0.932) and LASSO regression (0.939). The LASSO regression

model exhibited the best predictive performance, with a higher sensitivity (0.858

vs. 0.818) and specificity (0.949 vs.0.923), lower AIC (36.323 vs. 38.232), and

equivalent C-index (0.939) compared to the traditional logistic regression model.

The biomarkers identified in this study offer valuable insights for developing a

more precise tool to identify individuals at high risk for rapid progression to ATB

disease, enabling targeted interventions. The combination of multiple immune

indicators shows significant promise in improving diagnostic accuracy.
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Highlights

To our knowledge, this is the first cohort study to identify

antigen-specific biomarkers with substantial predictive accuracy for

adolescents at high risk of progressing to active tuberculosis. The

biomarkers identified in this study pave the way for developing

more precise diagnostic tools for tuberculosis, making it possible to

implement targeted interventions early.
Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(M.tb), likely reemerged as the world’s leading cause of death

from a single infectious agent in 2023. That year, an estimated

10.8 million new TB cases were reported worldwide, with China

accounting for approximately 741,000 cases, ranking third among

the 30 high-burden TB countries, behind India and Indonesia. This

follows a three-year period during which COVID-19 temporarily

surpassed it as the most significant infectious cause of mortality

(Module 1: tuberculosis surveillance, 2024). The global burden of

TB remains substantial, with approximately one-fourth of the

world’s population harboring a latent tuberculosis infection

(LTBI) and an annual incidence of over 10.8 million new active

TB (ATB) cases. Globally, TB accounts for an estimated 1.09 million

deaths each year, underscoring its lasting impact on public health

(World Health Organization). However, 5–10% of individuals

infected with M.tb will progress to ATB disease within months to

years after the initial infection (Organization WH, 2018). Early

detection and treatment of ATB, along with preventive treatment

for individuals with LTBI, are thus regarded as two fundamental

pillars of TB control. These strategies are essential for achieving the

TB elimination targets outlined by the World Health Organization

(WHO) (Organization WH, 2014).

The diagnosis of LTBI currently lacks a definitive gold standard.

The two most widely used diagnostic tools, the tuberculin skin test

(TST) and interferon-g release assays (IGRA), have limitations.

Neither method can reliably differentiate LTBI from ATB, and they

are associated with low positive predictive values (PPV)—

approximately 2.7% for TST and 1.5% for IGRA (Diel et al.,

2012). Consequently, a significant number of individuals testing

positive with TST or IGRAs would need treatment to prevent

progression to ATB, highlighting the need for more accurate

diagnostic tools. Given the differences in treatment approaches,

an immunodiagnostic test capable of distinguishing between LTBI
Abbreviations: TB, tuberculosis; M.tb, Mycobacterium tuberculosis; ATB, active

tuberculosis; LTBI, latent tuberculosis infection; WHO, World Health

Organization; TST, tuberculin skin test; IGRA: interferon-g release assays; PPV,

positive predictive values; IFN-g, interferon-g; QFT, QuantiFERON-TB Gold-in

Tube; IQR, interquartile range, SD, standard deviation; LASSO, Least Absolute

Shrinkage and Selection Operator; MVPs, most valuable predictors; AUC,

receiver operating characteristic curve; C-index, the concordance index, AIC,

the Akaike Information Criterion; DCA, decision curve analysis; PCA, principal

component analysis.
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and ATB would substantially advance clinical care. The immune

response to mycobacterial infections, particularly the role of IFN-g,
has been extensively studied (Kaufmann, 2001; Ruhwald and Ravn,

2009). Urgently needed are easily measurable biomarkers or

biosignatures, such as cytokines associated with the immune

response to M.tb, to enhance the prediction of disease progression

(Kaufmann, 2001; Ruhwald and Ravn, 2009; Clifford et al., 2015).

These developments are crucial for enhancing global TB control

efforts. Furthermore, combinations of biomarkers may offer greater

sensitivity than individual markers (Nemeth et al., 2010; Frahm

et al., 2011). Cytokines often synchronize to regulate inflammation,

immune cell activation, and tissue repair, influencing each other’s

expression through feedback mechanisms.

Despite this, existing studies mostly focus on adults, lacking

dynamic immune marker analysis of LTBI progression to ATB in

adolescents. We hypothesized that adolescents are optimal subjects

for identifying biomarkers of TB progression due to their simpler

immune profiles, which exhibit fewer comorbidities and less

immune senescence than adults, thereby minimizing confounding

factors in cytokine expression (Eming et al., 2017; Daniel et al.,

2023). In this study, we assessed TB-antigen-stimulated cytokine

levels in adolescents who advanced to ATB compared to those who

did not. We aimed to reveal the distinct immune profiles between

these groups and identify predictors for the transition to infectious

TB disease.
Materials and methods

Study design

Between November 2020 and December 2021, ongoing

enrollment of students in close contact with active student TB

patients was conducted in Jiangsu Province. Following the

“Guidelines for Tuberculosis Prevention and Control in Chinese

Schools”, students were screened for M.tb infection and ATB,

primarily using TST and Chest X-ray examinations. If the rate of

students with a TST induration diameter of 10–15 millimeters

exceeded the regional average, IGRAs were recommended. The

residual venous blood after IGRA testing is used for cytokine

detection after centrifugation, which was then stored frozen at -80

degrees Celsius. All enrolled students were followed up for two

years to detect ATB. The follow-up was conducted every 6 months

through symptom screening (e.g., cough, fever, weight loss) and

cross-referencing with the Tuberculosis Management Information

System, managed by teachers and local CDC staff. Participants were

categorized into three groups: Non-LTBI, LTBI, and ATB.

Subsequently, participants’ blood plasma cytokine levels were

assessed through Luminex assays to tentatively identify cytokine-

based biomarkers capable of distinguishing between LTBI and ATB

cases. Non-LTBI students were characterized as those who were

excluded from ATB and had negative IGRA results. LTBI was

regarded as students who did not progress to ATB within 2 years

despite having positive IGRA. ATB was diagnosed following the

national guidelines.
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Multiplex chemokine assay

Chemokines in plasma were assessed utilizing the Bio-Plex Pro

Human Chemokine Panel 40-plex assay kit and 27-plex assay kit.

The 40-plex assay kit included 6Ckine/CCL21, BCA-1/CXCL13,

CTACK/CCL27, ENA-78/CXCL5, Eotaxin/CCL11, Eotaxin-2/

CCL24, Eotaxin-3/CCL26, Fractalkine/Cx3CL1, GCP-2/CXCL6,

Gro-a/CXCL1, Gro-b/CXCL2, 1-309/CCL1.IP-10/CXCL10, 1-

TAC/CXCL11, MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL7,

MCP-4/CCL13, MDC/CCL22.MIF, MIG/CXCL9, MIP-1Q/CCL3,

MIP-18/CCL15, MIP-3a/CCL20, MIP-3B/CCL19, MPIF-1/

CCL23.SCYB16/CXCL16, SDF-1a+b/CXCL12, TARC/CCL17,

TECK/CCL25, CXCL8, IFN-y, IL-1b, IL-2, 1L-4, 1L-6, IL-10, IL-
16, GM-CSF and TNF-a. The 27-plex assay kit included FGFbasic,

Eotaxin, G-CSF, GM-CSF, IFN-y, IL-1B, IL-1ra, 1L-2, 1L-4, 1L-5,

1L-6, 1L-7, 1L-8, 1L-9, 1L-10, IL-12(p70), 1L-13, 1L-15, 1L-17, IP-

10, MCP-1(MCAF), MIP-1Q, MIP-1B, PDGF-BB, RANTES, TNF-

a and VEGF. Samples, standards, and blank controls were

incubated on a shaker at 850 rpm for 30 minutes. Each detection

batch included internal controls and duplicate samples to ensure

reproducibility and consistency.

The diluted microspheres are first distributed into a 96-well

plate, followed by the addition of standards, samples, and blank

controls. The plate is then incubated on a plate shaker at 850 rpm

for 30 minutes at room temperature. After removing the samples,

the plate is washed three times using a plate washer. The detection

antibody is diluted with Antibody Diluent according to the

instructions, and 25 µL of the diluted antibody is added to each

well. The plate is covered and incubated on the shaker at 850 rpm

for 30 minutes at room temperature, in the dark. Following the

detection antibody incubation, the plate is washed three times, and

Streptavidin-PE is diluted with Assay Buffer as per the instructions.

50 µL of the diluted Streptavidin-PE is added to each well, and the

plate is incubated on the shaker at 850 rpm for 10 minutes at room

temperature, in the dark. After three additional washes, 125 µL of

Assay Buffer is added to each well to resuspend the microspheres.

The plate is then incubated for 2 minutes on the shaker at 850 rpm,

in the dark, before being read using a calibrated Luminex machine.
Diagnostic tests for LTBI

TST was performed using the Mantoux method (Lu et al.,

2023). QuantiFERON-TB Gold-in Tube (QFT) Assay was used to

evaluate LTBI. Whole blood samples were collected and incubated

in three different tubes: one with TB antigen (stimulated), one with

mitogen (positive control), and one without any antigen

(unstimulated, Nil). The processing followed the manufacturer’s

guidelines (QIAGEN, Germany). After incubation, the supernatants

were collected to measure the interferon-g (IFN-g) response,

expressed in IU/mL. The results were analyzed using the QFT

software to determine whether the individuals were QFT-positive or

negative. Any remaining supernatants were promptly stored at

−80 °C for future analysis.
Frontiers in Cellular and Infection Microbiology 03
Detection of ATB

Two complementary approaches were employed to identify

ATB among study participants. The first involved active follow-

up conducted by teachers and local staff from the Center for Disease

Control and Prevention. The second was a retrospective case

detection based on registry data. ATB cases were identified by

cross-referencing two datasets: (1) records containing information

on all study participants and (2) the Tuberculosis Management

Information System of Jiangsu Province, which documented all

reported TB cases from 2020 to 2022. To link individuals between

the cohort and the TB registry database, we utilized identifiers such

as name, date of birth, sex, address, and identification number.
Statistical analysis

Standard 2 × 2 contingency tables, the interquartile range

(IQR), and mean ± standard deviation (SD) were employed for

summarizing categorical and continuous variables, respectively.

Fisher’s exact test was utilized to compare the frequencies of

categorical variables. For quantitative data, statistical analysis was

performed using non-parametric tests (Mann-Whitney U for two

groups, Kruskal-Wallis for multiple groups). Differences in

chemokine levels between group pairs were compared using one-

way ANOVA. Subsequently, we compared two models: a

conventional Logistic Regression model and a model based on the

Least Absolute Shrinkage and Selection Operator (LASSO)

regression. In the logistic regression model, we applied forward

selection, a variable selection method where predictors are

iteratively added based on their statistical significance (P < 0.10).

LASSO regression analysis, employing 10-fold cross-validation, was

utilized to reduce dimensionality and identify the most significant

predictors. The l value in LASSO regression was selected using the

one standard error (1SE) rule to balance model simplicity and

predictive accuracy. Due to the limited sample size, no separate

training and validation sets were created; instead, 10-fold cross-

validation was used to evaluate model performance. A nomogram

was then developed by integrating all the most valuable predictors

(MVPs) based on their regression coefficients from the binary

logistic regression (Friedman et al., 2010). The nomogram’s

discrimination capability was evaluated using the area under the

receiver operating characteristic curve (AUC), the concordance

index (C-index), and the Akaike Information Criterion (AIC)

(Hanley and McNeil, 1982).

Additionally, decision curve analysis (DCA) was conducted to

evaluate the net clinical benefit of the nomogram (Vickers and

Elkin, 2006). DCA assesses the net clinical benefit of the predictive

model across different threshold probabilities to guide clinical

decision-making. The ability of potential predictive biomarkers to

differentiate between groups was assessed using principal

component analysis (PCA). A P-value less than 0.05 was

considered statistically significant. Data were analyzed using R

software version 4.3.2 (https://www.r-project.org).
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Ethics approval and consent to participate

This study was reviewed and approved by the ethics committee

of the Center for Disease Control and Prevention of Jiangsu

Province. All eligible participants signed written informed

consent (Approval Number: JSJK2024-B022-01).
Results

Study population

This study initially enrolled a total of 62 students, with 12

individuals excluded from the initial cohort due to insufficient

supernatant availability for analysis, resulting in a final sample

size of 50 participants. Of the 50 participants, 21 individuals (42%)

were tested negative on the QFT assay, while 29 participants (60%)

yielded positive results. After the following 2 years, 11 participants

developed ATB (Supplementary Table 1), with 10 exhibiting

positive QFT results. The median age of the entire cohort was 21

years (IQR: 20-24). Among the participants, 36 individuals (72.0%)

were female. TST reaction diameter for all 50 individuals was 13.0

mm (IQR: 4.5-15.0) (Table 1 and Supplementary Table 2).
Comparisons of chemokines

Grouped according to QFT results, we found that the baeline

levels of IL-10 (Z = -2.295, P = 0.022) and IL-16 (Z = -1.976, P =

0.048) were significantly higher in the positive QFT group
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compared to the negative QFT group. However, when individuals

were grouped into the negative QFT group, positive QFT group,

and ATB group, in addition to IL-10 (W = 113.5, P = 0.032) and IL-

16 (W = 115, P = 0.036) was also significantly higher in the positive

QFT group compared to the negative QFT group (Figure 1).

When comparing cytokine levels between the ATB group and

the LTBI group, the ATB group exhibited higher levels of FGFbasic

(W = 52.5, P = 0.023) but lower levels of GM-CSF (W = 151, P =

0.046) and MPIF-1/CCL23 (W = 156, P = 0.028) (Figure 1). Thus,

the ratios of FGFbasic/GM-CSF (W = 223, P = 0.002) and

FGFbasic/MPIF-1/CCL23 (W = 231, P = 0.006) emerged as

highly promising risk signatures for predicting the risk of

progression from LTBI to ATB (Figure 2).

The AUC values (95% CI) for Baseline FGF, QFT, IL-1ra, I-309/

CCL1, GM-CSF, and MPIF-1/CCL23 were 0.713 (0.568–0.832),

0.711 (0.565–0.830), 0.652 (0.504–0.781), 0.628 (0.480–0.761),

0.607 (0.459–0.742), and 0.762 (0.621–0.871), respectively

(Figure 3A). Additionally, the AUC values for the combinations

of FGFBasic/GM-CSF and FGFBasic/MPIF-1/CCL23 were 0.71

(0.561–0.859) and 0.80 (0.628–0.971), respectively (Figure 3B,

Supplementary Table 3).
Identification of optimal predictive factors
for ATB through logistic regression model

A final Logistic Regression analysis was conducted using a

model selected through Stepwise Forward Selection, which

included four predictors: QFT, FGFbasic, IL-1ra, and I-309/CCL1.

The fitted coefficients and OR for each predictor in the model are as
TABLE 1 Demographic characteristics of the 50 participants, overall and by QuantiFERON-TB Gold In-Tube test status.

Variable All

QFT

Negative
Positive
without

tuberculosis

Positive
with

tuberculosis
Statistic P

Sex

Female 36 (72) 15 (75) 15 (79) 6 (55) Fisher-exact 0.428

Male 14 (28) 5 (25) 4 (21) 5 (45)

Age (years) 21 (20, 24) 26 (20, 35) 21 (20, 21) 20 (20, 22) Kruskal-W, 7.7 0.021

TST (mm) 13.0 (4.5, 15.0) 10.25 (0.0, 14.75) 14.00 (13.00, 15.50) 12.50 (0.00, 15.50) Kruskal-W, 4.5 0.105

TB Ag-Nil 0.68 (0.01, 2.15) 0.01 (-0.01, 0.07) 1.85 (0.79, 3.63) 1.59 (0.24, 3.01) Kruskal-W, 30.1 <0.001

FGFBasic 11.47 (9.39, 13.43) 11.47 (9.91, 13.43) 10.44 (9.39, 11.47) 15.32 (11.47, 17.13) Kruskal-W, 6.1 0.048

Eotaxin 85.48 (66.64, 135.94) 89.11 (72.98, 144.48) 68.58 (55.91, 92.11) 97.68 (73.19, 143.46) Kruskal-W, 4.9 0.086

GM-CSF 1.53 (1.13, 1.83) 1.42 (0.67, 1.56) 1.55 (1.53, 2.34) 1.42 (1.13, 1.56) Kruskal-W, 5.4 0.066

IL-10 0.67 (0.32, 0.95) 0.45 (0.18, 0.71) 0.95 (0.45, 1.25) 0.70 (0.32, 0.83) Kruskal-W, 5.0 0.083

IL-16
116.95

(85.69, 164.66)
96.58 (67.46, 120.20)

117.69
(101.39, 167.18)

139.24
(116.95, 222.16)

Kruskal-W, 6.6 0.036

I-309/CCL1 24.36 (19.55, 30.83) 24.36 (22.62, 25.38) 24.03 (8.89, 27.91) 24.36 (17.79, 33.56) Kruskal-W, 1.7 0.431

MPIF-1/CCL23 74.90 (52.42, 74.90) 75.45 (65.81, 87.87) 75.45 (52.89, 92.40) 52.73 (32.23, 66.41) Kruskal-W, 7.1 0.029
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1635486
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lu et al. 10.3389/fcimb.2025.1635486
follows: QFT (OR = 16.08, 95% CI: 1.83, 447.05, P=0.034), FGFbasic

(OR = 1.58, 95% CI: 1.19, 2.37, P=0.006), IL-1ra (OR = 1.01, 95%

CI: 1.00, 1.02, P=0.137), and I-309/CCL1 (OR = 10.92, 95% CI: 0.83,

1.00, P=0.076) (Table 2). In this Logistic Regression model, the

AUC for predicting ATB was 0.932 (95% CI: 0.854, 1.000), with a C-

index of 0.939 and an AIC of 38.232. The model demonstrated a

sensitivity of 0.818 and a specificity of 0.923 (Figure 3C;

Supplementary Tables 3, 4). A correlation heat map is presented

in Supplementary Figure 1, where we identified several chemokines

with strong correlations.
Frontiers in Cellular and Infection Microbiology 05
Identification of optimal predictive factors
for ATB through the LASSO regression
model

Applying LASSO regression with 10-fold cross-validation, we

determined the optimal hyperparameter l based on the bivariate

deviation. Utilizing this optimal l, five nonzero coefficients of

preoperative features were identified as the MVPs for ATB

(Figures 4A, B). The identified factors, including QFT, FGFbasic,

IL-1ra, I-309/CCL1, and MPIF-1/CCL23, were recognized as
FIGURE 2

Difference in plasma cytokines levels between negative LTBI, positive LTBI and ATB by Luminex among FGFbasic/GM-CSF and FGFbasic/MPIF-1/
CCL23.
FIGURE 1

Difference in plasma cytokines levels between negative LTBI, positive LTBI and ATB by Luminex.
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FIGURE 3

Receiving operating characteristic curve analysis between TB and non-TB. AUC, area under the curve. (A) FGFbasic, GM-CSF, FGFbasic, IL-1ra, I-
309/CCL1, MPIF-1/CCL23, FGFbasic/I-309/CCL ratio, FGFbasic/MPIF-1/CCL23; (B) FGFbasic/GM-CSF and FGFbasic/MPIF-1/CCL23; (C) Logistic
Regression model; (D) Lasso model.
FIGURE 4

Feature selection using the least absolute shrinkage and selection operator (LASSO) analysis with 10-fold cross-validation. Lambda (tuning
parameter) selection of deviance in the LASSO regression based on the one standard error criteria (right dotted line) and the minimum criteria (left
dotted line) (A). LASSO coefficient profiles of the candidate features. The intersecting curves represent the number of features retained at that log
(lambda) value. (B) “FGFbasic,” “GM-CSF,” “IL-1ra,” “I-309/CCL1,” and “MPIF-1/CCL23”. (C) Nomogram for predicting the risk of tuberculosis
outcomes. (D) the calibration curve. (E) and the decision curve analysis.
Frontiers in Cellular and Infection Microbiology frontiersin.org06

https://doi.org/10.3389/fcimb.2025.1635486
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lu et al. 10.3389/fcimb.2025.1635486
potential prognostic indicators for the development of ATB at the

optimal l value of 0.083. These variables were then incorporated

into the multivariate logistic regression analyses. The findings

indicated that positive QFT results (OR=7.20, 95% CI: 0.73,

196.61, P=0.135), elevated levels of FGFbasic (OR=1.50, 95% CI:

1.11, 2.30, P=0.021), and IL-1ra (OR=1.01, 95% CI: 1.00, 1.02,

P=0.063), along with decreased levels of I-309/CCL1 (OR=0.94,

95% CI: 0.84, 1.01, P=0.140) and MPIF-1/CCL23 (OR=0.95, 95%

CI: 0.89, 1.00, P=0.081) were independent prognostic factors for the

progression to ATB (Table 2).
Establishment of the nomogram

Using the coefficients of the five predictors (1.974, 0.402, 0.008,

-0.065, and -0.049), we created a nomogram with the ‘rms’ package

in R software (Figure 4C). The lengths of the lines in the nomogram

represent the importance of each predictor. Among these, MPIF-1/

CCL23 had the highest weight, indicating it is the most significant

predictor of TB, followed by FGFbasic, IL-1ra, and I-309/CCL1.

Conversely, QFT was identified as the least influential factor. The

total score was calculated by summing the preoperative scores for

the five relevant symptoms. The risk of developing ATB was

assessed by drawing a vertical line from the total score to the risk

scale. The AUC (0.9394, 95% CI: 0.857-1.000) and C-index (0.939)

indicated good calibration and accuracy, respectively (Figure 3D).

The calibration and DCA curves also displayed close alignment

between the observed and predicted probabilities (Figure 4D, E;

Supplementary Tables 3, 4).

We performed principal component analysis (PCA) on the five

analytes (“FGFbasic,” “GM-CSF,” “IL-1ra,” “I-309/CCL1,” and

“MPIF-1/CCL23”) that were identified as significantly different

through dominant analysis, to assess their ability to differentiate

between ATB and non-ATB (Supplementary Figure 2). The PCA

results demonstrated a clear and distinct separation of the two

groups, highlighting the effectiveness of these biomarkers in

distinguishing between them.
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Comparison of the different models

The AUCs of the prediction models based on individual

cytokines ranged from 0.607 to 0.713, notably lower than those of

the fixed models utilizing Logistic regression (AUC: 0.932) and

Lasso regression (AUC: 0.939). Among these, the Lasso regression

model demonstrated superior predictive performance, with higher

sensitivity (0.858 vs. 0.818), identical specificity (0.949), lower AIC

(36.323 vs. 38.232), an equivalent C-index (0.939), and better

performance in the DCA (Figure 4E) compared to the traditional

logistic regression model. The 10-fold cross-validated AUC of the

LASSO model was 0.960 (95% CI: 0.901–1.000), while that of the

logistic regression model was 0.962 (95% CI: 0.908–1.000),

demonstrating strong and stable discriminative ability for both

models. These results indicate that the Lasso regression model

outperformed the other two models in predicting TB. Meanwhile,

the hazard ratio(HR) for progression to ATB according to the

LASSOmodel was 66.85, nearly twice as high as the 38.98 calculated

using the Logistic model (Supplementary Table 5).
Discussion

While IGRAs generally exhibit limited prognostic capability, the

IGRA test can effectively identify additional biomarkers. Stimulating

T cells with M.tb antigens triggers a surge in a complex network of

cytokines, reflecting the immune responses specific to TB. In this

study, we conducted an exploratory analysis of soluble biomarkers to

predict progression to ATB. We utilized single and combined

cytokine biomarkers through LASSO regression and multivariate

logistic regression analysis to identify significant factors

distinguishing ATB from non-TB cases. Our findings revealed that

the predictive ability of single cytokines was relatively low. However,

this predictive capability significantly improved when combined with

positive QuantiFERON test results and was greatly enhanced using

combined cytokine biomarkers through LASSO regression and

multivariate Logistic regression analysis.
TABLE 2 Coefficients, Odd Ratios, and 95% Confidence Intervals of the predictors in the Final two Models.

Factors
Logistic regression model Lasso regression model

Coefficients OR (95% CI) P Coefficients OR (95% CI) P

QFT

Negative Reference Reference 00.034 Reference Reference 0.135

Positive 2.778 16.08 (1.83, 447.05) 1.974 7.20 (0.73, 196.61)

BasicFGF 0.46 1.58 (1.19, 2.37) 0.006 0.402 1.50 (1.11, 2.30) 0.021

IL-1ra 0.007 1.01 (1.00, 1.02) 0.137 0.008 1.01 (1.00, 1.02) 0.063

I-309/CCL1 -0.081 0.92 (0.83, 1.00) 0.076 -0.065 0.94 (0.84, 1.01) 0.14

MPIF-1/CCL23 – – – -0.049 0.95 (0.89, 1.00) 0.081
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IGRAs have shown reliable performance in detecting LTBI,

making them valuable adjuncts in diagnosing ATB, with superior

accuracy over the TST in predicting ATB. However, their limited

ability to distinguish ATB from non-TB cases reduces their clinical

utility (Auguste et al., 2017; Lu et al., 2021; Hamada et al., 2023). Host

biomarker studies have been at the center of interest for TB

immunodiagnostics due to their utility in developing a point-of-

care assay. In this study, we undertook an exploratory analysis of

soluble biomarkers capable of predicting the progression of TB

disease. To contextualize our findings, we compared them with

studies employing diverse methodologies to identify predictive

biomarkers for TB progression (Lacombe et al., 2014; Penn-

Nicholson et al., 2019; Daniel et al., 2023). Our results align with

and extend previous research using QuantiFERON-based,

transcriptomic, proteomic, and multi-omic approaches. For

example, Daniel et al. (2023) identified IP-10, CCL19, IFN-g, IL-
1ra, CCL3, and GM-CSF in QuantiFERON supernatants as

predictors of ATB in household contacts, consistent with our

identification of FGFbasic and MPIF-1/CCL23. Similarly, Penn-

Nicholson et al. (2019)) reported a proteomic signature(TRM5 and

3PR)for TB progression, supporting the role of inflammatory

markers akin to our cytokine ratios. Transcriptomic analyses by

Gupta et al. (Ji et al., 2019) and Roe et al. (Sanchez et al., 2023)

identified gene expression profiles linked to immune activation,

which align with our cytokine networks. Multi-omic studies by

Huang et al. (Scriba and Mendelsohn, 2020) integrate proteomic

and transcriptomic data to enhance predictive accuracy, reinforcing

the superiority of our combined biomarker models. Rodrıǵuez-

Molino et al. (2024)) reported higher rates of nonrespiratory TB

and severe disease in immunocompromised children, highlighting

the poor sensitivity of immune-based tests like QFT, which supports

our focus on novel biomarkers to improve diagnostic accuracy in

high-risk groups. These studies collectively suggest that our LASSO-

derived biomarkers could be tested in broader populations, including

immunocompromised individuals, to confirm their predictive utility.

These datasets provide opportunities for future validation of our

nomogram across diverse cohorts, potentially broadening its clinical

applicability. We found a significant difference in the levels of 3

analytes (FGFbasic, GM-CSF, and MPIF-1/CCL23) of the 67 and 2

combinations (FGFbasic/GM-CSF and FGFbasic/MPIF-1/CCL23) in

progressors as compared to non-progressors. Macrophages produce

FGF-basic and plays a role in mitogenic and angiogenic activity

(Henke et al., 1993). While its association with TB has not been

consistently established (Awoniyi et al., 2016; Sariko et al., 2019),

increased expression of FGFbasic may contribute to mechanisms that

promote TB pathogenesis, although the exact mechanisms remain

unclear. FGFbasic has been implicated in other inflammatory

diseases, such as rheumatoid arthritis and pulmonary fibrosis,

where it modulates inflammation and tissue remodeling, suggesting

a potential role in TB progression through pathways like granuloma

formation and fibrosis (Gudbjörnsson et al., 2004; Ghanem

et al., 2024).

During LTBI, FGFbasic could potentially support the

establishment of immune tolerance, inhibiting the immune

system’s ability to clear M.tb. By modulating cytokine balance,
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FGFbasic may help the immune system maintain “tolerance” to the

pathogen, allowing M.tb to persist in the host. This could facilitate

the transition from LTBI to ATB. Indirect support for this

hypothesis is provided by a study showing a decrease in FGFbasic

expression following the initiation of TB treatment. GM-CSF is a

growth factor that acts as a chemoattractant, recruiting neutrophils,

lymphocytes, and macrophages. It plays a crucial role in supporting

the inflammatory response during the productive phases (Olsson

et al., 2006; Cheknev et al., 2014) and is involved in granuloma

formation in TB to contain the infection (Szeliga et al., 2008).

Previous studies show that lower GM-CSF expression may serve as

a potential biomarker for predicting TB, although the underlying

mechanism remains unclear (Balcells et al., 2018; Sariko

et al., 2019).

In contrast, reduced levels of MPIF-1/CCL23 in progressors

suggest a disruption in granuloma formation, which facilitates

disease progression—this finding diverges from previous studies (Li

et al., 2023; Yang et al., 2023). Pang et al. and Zhang et al. observed

higher expression of MPIF-1/CCL23 in ATB cases compared to non-

TB controls, though without statistical significance, proposing it as a

predictive biomarker for TB (Li et al., 2023; Yang et al., 2023). This

discrepancy may be explained by the possibility that the immune

profile of the ATB group is in an early or “standby” state, which could

contribute to TB development (Yang et al., 2023). The distinct immune

profiles observed at different disease stages suggest that MPIF-1/CCL23

may have a stronger predictive ability for the progression to ATB. Our

study identified the FGFbasic/GM-CSF and FGFbasic/MPIF-1/CCL23

ratios as highly promising predictive markers for ATB, outperforming

single markers. However, further studies are needed to validate these

marker combinations in their respective cohorts.

The study population included a higher proportion of female

participants, which may influence immune marker expression.

Female hormones, such as estrogen, have been shown to

modulate immune responses, potentially affecting cytokine

production and TB progression. For instance, estrogen can

enhance macrophage activation and cytokine release, which may

explain the observed differences in FGFbasic and GM-CSF levels in

our cohort (Straub, 2007; Kovats, 2015). Further studies are needed

to explore gender-specific immune profiles in TB progression.

The host response to LTBI and ATB involves a complex

network of cytokines and chemokines at various levels of the

immune system. Other diseases can also trigger a broad array of

cytokines and chemokines, complicating the interpretation of

infection status. Several studies have suggested using a multiplex

model of cytokines and chemokines as biomarkers to differentiate

TB infection states, offering improved sensitivity and specificity

compared to single cytokine or chemokine tests (Wang et al., 2012;

Yang et al., 2023). Through logistic regression, we identified a

combination of “QFT, FGFbasic, IL-1ra, and I-309/CCL1” and

increased the AUC to 0.932, sensitivity to 0.818, and specificity to

0.923. Compared to traditional logistic regression, LASSO

regression offers key advantages such as automatic variable

selection, reduced overfitting, better handling of multicollinearity,

and model simplification for more straightforward interpretation.

Additionally, LASSO improves predictive performance, especially
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in high-dimensional data (Sukarti et al., 2024). Our study also

confirmed that, compared to logistic regression, the sensitivity for

predicting ATB was increased to over 0.9 as it achieves the optimal

requirement of ≥90% sensitivity for biomarker-based non-sputum

tests to predict TB progression per the target product profile (Penn-

Nicholson et al., 2019; Daniel et al., 2023).

An intriguing observation is that the multivariate models

include variables that do not show statistical significance when

considered individually, such as QFT, MPIF-1/CCL23, IL-1ra, and

I-309/CCL1. Like IGRAs, which have limited prognostic ability and

a low positive predictive value, the IGRA test may still be valuable

for identifying additional biomarkers to improve predictive

accuracy (Daniel et al., 2023). The decision tree analysis further

supported that cytokine predictive capabilities are enhanced in

individuals with positive QFT results. Additionally, IL-1ra, an

antagonist of IL-1 produced during inflammatory processes, has

been shown in previous studies to be associated with increased

susceptibility to LTBI and elevated levels in ATB cases (Ji et al.,

2019; Sanchez et al., 2023). Notably, IL-1ra was detectable in the

serum of LTBI patients and found to be at lower levels in those

treated for LTBI compared to untreated individuals, suggesting its

potential as a marker for the progression to active disease

(Juffermans et al., 1998; Zhang et al., 2020).

Our study has several notable strengths. First, the cohort

consisted entirely of adolescents, which helped avoid potential

cross-reaction with cytokines from other chronic diseases.

Second, all participants were from a school outbreak, indicating

that LTBI was likely recent. Third, the nomogram was tested using

independent cohorts from different centers, enhancing its reliability

and generalizability to a large extent.

However, we acknowledge several limitations in the current study.

First, the small sample size (n=50, with 11 active tuberculosis [ATB]

cases) limits statistical power, reducing the precision and generalizability

of our findings. This restricted cohort may lead to overfitting in the

LASSO model, despite 10-fold cross-validation, and could bias

biomarker selection, potentially compromising the nomogram’s

robustness. The limited number of outcome events further restricts

our ability to detect subtle differences in cytokine profiles. Larger, multi-

center studies with diverse populations are essential to validate our

findings, enhance statistical power, and ensure robust biomarker

performance. Second, the LASSO logistic regression model has not

been independently validated in other cohorts. Finally, we cannot rule

out the possibility that some individuals in the ATB group may have

been in the subclinical or early stages of TB. Third, event times for ATB

development were not recorded, limiting our ability to perform time-to-

event analyses such as Cox regression. This represents a methodological

limitation of using logistic regression, which does not account for the

timing of disease progression.

To address the need for multi-center cohort validation, we plan to

collaborate with regional TB control centers in Jiangsu and neighboring

provinces to recruit a larger, diverse cohort for external validation. This

will involve prospective enrollment of adolescents and adults with

recent LTBI exposure, using standardized IGRA and cytokine assays,

and longitudinal follow-up for at least 2 years to confirm the predictive

accuracy of our nomogram.
Frontiers in Cellular and Infection Microbiology 09
Conclusions

Our study identified soluble TB-specific biomarkers that could be

effectively used as potential short-term risk predictors for TB.

Specifically, ratios such as FGFbasic/GM-CSF and FGFbasic/MPIF-1/

CCL23 may serve as promising markers for predicting the progression

from non-TB to ATB, particularly in individuals with positive IGRA

results. Additionally, the combination of multiple immune indicators

analyzed through LASSO logistic regression demonstrated significant

potential in enhancing the diagnosis of ATB.
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SUPPLEMENTARY FIGURE 1

Correlation Heatmap for potential predictive biomarkers. (A) Correlation
Heatmap; (B) Significant Correlations (P < 0.05).

SUPPLEMENTARY FIGURE 2

CPCA plot of significantly different biomarkers between tuberculosis and
non-progressors: PCA shows that FGFbasic, GM-CSF, FGFbasic, IL-1ra, I-

309/CCL1, MPIF-1/CCL23 can clearly distinguish between tuberculosis and

non-tuberculosis with no overlap.
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Lacombe, J., Mangé, A., Bougnoux, A. C., Prassas, I., and Solassol, J. (2014). A
multiparametric serummarker panel as a complementary test to mammography for the
diagnosis of node-negative early-stage breast cancer and DCIS in young women.
Cancer Epidemiol. Biomarkers Prev. 23, 1834–1842. doi: 10.1158/1055-9965.EPI-14-
0267

Li, H., Ren, W., Liang, Q., Zhang, X., Li, Q., Shang, Y., et al. (2023). A novel
chemokine biomarker to distinguish active tuberculosis from latent tuberculosis: a
cohort study. Qjm. 116, 1002–1009. doi: 10.1093/qjmed/hcad214

Lu, P., Liu, Q., Zhou, Y., Martinez, L., Kong, W., Ding, X., et al. (2021). Predictors of
discordant tuberculin skin test and quantiFERON-TB gold in-tube results in eastern
China: A population-based, cohort study. Clin. Infect. Dis. 72, 2006–2015. doi: 10.1093/
cid/ciaa519

Lu, P., Wu, K., Zhou, H., Yu, H., Yuan, J., Dong, L., et al. (2023). Evaluation of
ESAT6-CFP10 Skin Test for Mycobacterium tuberculosis Infection among Persons
Living with HIV in China. J. Clin. Microbiol. 61, e0181622. doi: 10.1128/jcm.01816-22

Nemeth, J., Winkler, H. M., Karlhofer, F., Selenko-Gebauer, N., Graninger, W., and
Winkler, S. (2010). T cells co-producing Mycobacterium tuberculosis-specific type 1
cytokines for the diagnosis of latent tuberculosis. Eur. Cytokine Netw. 21, 34–39.
doi: 10.1684/ecn.2009.0182

Olsson, A. K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006). VEGF
receptor signalling - in control of vascular function.Nat. Rev. Mol. Cell Biol. 7, 359–371.
doi: 10.1038/nrm1911

Organization WH (2018). Latent tuberculosis infection: updated and consolidated
guidelines for programmatic management (World Health Organization).

Penn-Nicholson, A., Hraha, T., Thompson, E. G., Sterling, D., Mbandi, S. K., Wall, K.
M., et al. (2019). Discovery and validation of a prognostic proteomic signature for
tuberculosis progression: A prospective cohort study. PloS Med. 16, e1002781.
doi: 10.1371/journal.pmed.1002781
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1635486/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1635486/full#supplementary-material
https://doi.org/10.1186/s12879-017-2301-4
https://doi.org/10.1186/s12879-017-2301-4
https://doi.org/10.1016/j.jinf.2016.04.036
https://doi.org/10.1016/j.tube.2018.08.006
https://doi.org/10.1155/2014/518265
https://doi.org/10.1016/j.tube.2015.01.003
https://doi.org/10.1093/cid/ciac979
https://doi.org/10.1378/chest.11-3157
https://doi.org/10.1126/science.aam7928
https://doi.org/10.1016/j.tube.2011.02.006
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.pharmthera.2024.108669
https://doi.org/10.1080/00365510410003732
https://doi.org/10.1016/j.eclinm.2022.101815
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1038/s41564-019-0578-3
https://doi.org/10.1164/ajrccm.157.4.9709126
https://doi.org/10.1038/35095558
https://doi.org/10.1016/j.cellimm.2015.01.018
https://doi.org/10.1158/1055-9965.EPI-14-0267
https://doi.org/10.1158/1055-9965.EPI-14-0267
https://doi.org/10.1093/qjmed/hcad214
https://doi.org/10.1093/cid/ciaa519
https://doi.org/10.1093/cid/ciaa519
https://doi.org/10.1128/jcm.01816-22
https://doi.org/10.1684/ecn.2009.0182
https://doi.org/10.1038/nrm1911
https://doi.org/10.1371/journal.pmed.1002781
https://doi.org/10.3389/fcimb.2025.1635486
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lu et al. 10.3389/fcimb.2025.1635486
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