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Nonalcoholic fatty liver disease (NAFLD) has a global prevalence of 20%-33%, and

has become the main cause of chronic liver disease. Apart from lifestyle

modification therapy, there is currently no definitive pharmacological

treatment, thus there is an urgent need to find effective intervention strategies

to treat NAFLD. With the discovery of the important role of gut microbes in the

pathogenesis of NAFLD, research on the prevention and treatment of non-

alcoholic fatty liver disease by probiotics is increasing. At present, many studies

have confirmed the role of probiotic regulation in the treatment of NAFLD, which

can reduce the level of transaminase and liver fibrosis in patients and protect the

liver. The clinical application of probiotics includes single species such as

Lactobacillus and Bifidobacteria, as well as synbiotics with different

compositions. This article reviews the therapeutic effects of probiotics on

NAFLD and the mechanisms by which probiotics directly or indirectly affect the

disease. Further research is needed to fully understand the specific underlying

mechanisms between probiotics, gut microbes, and NAFLD, and more large-

scale clinical trials are needed to evaluate probiotics for the treatment of NAFLD.
KEYWORDS

probiotic, nonalcoholic fatty liver disease, application, mediating mechanism,
future perspective
1 Introduction

Nonalcoholic fatty liver disease (NAFLD) refers to liver disease in which more than 5%

of liver cells are infiltrated with liver fat on liver biopsy specimens and with no regard to

excessive alcohol consumption or other clear liver injury factors (Roychowdhury et al.,

2018). NAFLD can be divided into nonalcoholic simple fatty liver (NAFL) and
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nonalcoholic steatohepatitis (NASH). It is worth mentioning that

since most NAFLD patients have one or more cardiometabolic risk

factors, the existing name of NAFLD focuses on excluding excessive

drinking as the cause. Thus, some international experts have

reached a consensus and proposed using the new term metabolic

dysfunction-associated fatty liver disease (MAFLD), which refers to

steatosis brought on by an unbalanced metabolic environment,

along with potentially serious steatohepatitis lesions and

accompanying fibrosis, to replace NAFLD (Eslam et al., 2020).

NAFLD and MAFLD overlap significantly, and the two

classifications generally have strong concordance, as indicated by

a Cohen kappa value of up to 0.92. However, current research

related to MAFLD are very limited (Alboraie et al., 2019). Currently,

the global prevalence of NAFLD is increasing, with the incidence

rate ranging from 30% to 32.4% (Riazi et al., 2022; Brennan et al.,

2023; Younossi et al., 2023). Without timely treatment, NAFLD can

progress to cirrhosis, hepatocellular carcinoma, and even death

(Friedman et al., 2018). However, there is no definite drug therapy

for steatosis except lifestyle interventions. Therefore, it is urgent

need to find effective treatment methods to alleviate NAFLD.
2 Application of probiotic therapy in
nonalcoholic fatty liver disease

2.1 NAFLD and probiotic therapy

Recent studies have shown that regulation of gut microbiota can

be a feasible strategy for preventing and treating NAFLD. Probiotics

are live microorganisms that, when administered in adequate

amounts, confer a health benefit on the host. Studies have found

that probiotic therapy is an important means of regulating gut

microbiota (O'flaherty and Klaenhammer, 2010). At present, many

studies (Gao et al., 2016; Loman et al., 2018; Tang et al., 2019; Xiao

et al., 2019; Pan et al., 2020; Yang et al., 2021; Huang et al., 2022)

have confirmed the role of probiotics regulation in NAFLD

treatment through meta-analysis, which can reduce the level of

transaminase and liver fibrosis in patients and protect the liver

(Khan et al., 2019; Sabirin et al., 2022). Therefore, the first part of

the review focuses on the application of probiotic therapy in

NAFLD, aiming to provide more and better ideas for the

prevention and treatment of NAFLD. This review will provide an

updated synthesis of the mechanisms of probiotic therapy in

NAFLD and its therapeutic potential, with a focus on novel

insights and future research directions.
2.2 The role of probiotics in NAFLD

2.2.1 Single probiotic
The protective and preventive function of Lactobacillus in

NAFLD has been fully studied. Lactobacillus rhamnosus GG has

been confirmed to share intestinal fatty acids and prevent the

development of diet-induced hepatic steatosis, thus effectively

treating NAFLD (Jang et al., 2019). Ritze et al (Ritze et al., 2014).
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also showed that Lactobacillus rhamnosus GG can prevent NAFLD

in mice. Mu et al (Mu et al., 2020). showed that Lactobacillus

fermentum CQPC06 can colonize in the intestinal tract and alter gut

microbiota in NAFLD mice. Lactobacillus paracasei CNCM I-4034

and Lactobacillus rhamnosus CNCM I-4036 can relieve the liver

injury by reducing gene expression of pro-inflammatory

macrophage cell and leukocyte infiltration of the liver in NAFLD

rats (Fontana et al., 2021). Through the in vitromodel, Lactobacillus

plantarum AR113 and Lactobacillus casei pWQH01 relieved

steatosis in a manner dependent on bile salt hydrolase (Huang

et al., 2020). Similarly, Lactobacillus sakei MJM60958 can

significantly inhibit lipid accumulation in HepG2 cells stimulated

by oleic acid and cholesterol, reduce weight of both body and liver

in NAFLD mice and control the level of NAFLD-related markers as

well, indicating that Lactobacillus sakei MJM60958 can also

effectively prevent and treat NAFLD (Nguyen et al., 2022b).

Lactobacillus acidophilus SNZ 86 which can enrich selenium has

also been confirmed to relieve hepatic steatosis by up-regulating the

adenosine 5’-monophosphate (AMP)-activated protein kinase

(AMPK) and silent information regulator 1 (SIRT-1) pathways

(Pant et al., 2022). Lactobacillus paracasei Jlus66, isolated from

natural fermented milk, also has great potential in preventing

NAFLD (Ye et al., 2017), which was consistent with that of Wang

et al (Wang et al., 2019). In addition, Geng et al (Geng et al., 2022).

identified a new type of probiotic Lactobacillus kefiranofaciens ZW3

through zebrafish model and explored the its effect on lipid

deposition. They proved that Lactobacillus kefiranofaciens ZW3

has a specific protective effect on NAFLD. Interestingly, engineering

Lactobacillus reuteri, made by Oh et al., exerted the further

therapeutic effect in NAFLD through recombinant Interleukin-22

(IL-22) delivery (Oh et al., 2020). Liu et al (Liu et al., 2022). made

lactoferrin expressed by recombinant lactic acid bacteria, which was

more effective in relieving steatosis.

Bifidobacteria also play an important role in the protection and

prevention of NAFLD disease. Yan et al (Yan et al., 2020). evaluated

the effect of Bifidobacterium lactis V9 on hepatic steatosis in

NAFLD rats induced by high-fat diet. They found that

Bifidobacterium lactis V9 could inhibit inflammation and relieve

NAFLD. Do et al (Do et al., 2022). also found Bifidobacterium

animalis ssp. lactisMG741 could reduce weight and relieve NAFLD

by relieving intestinal permeability and inflammatory cytokines.

Oral Bifidobacterium longum supplements can prevent obesity and

NAFLD by regulating the mRNA expression of renin-angiotensin

system components (MaChado et al., 2021). Bifidobacterium

longum and Lactobacillus acidophilus can reduce liver fat

accumulation, with the former being more effective (Xu et al., 2011).

Moreover, the therapeutic potential of other strains in NAFLD

disease can’t be ignored. Faecalibacterium prausnitzii LC49 and LB8

were able to produce short-chain fatty acid and regulate the gut

microbiota, indicating their potential role in NAFLD (Hu et al.,

2022). MIYAIRI 588, as a probiotic that can enhance butyrate

production, has been discovered to slow down the progression of

NAFLD (Endo et al., 2013). Seo et al (Seo et al., 2013). also showed

that MIYAIRI 588 had new potential to relieve NAFLD. In addition,

Limosilactobacillus fermentum MG4295 has been proved to relieve
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hyperglycemia, a complication of NAFLD (Kim et al. ,

2022). (Table 1).

2.2.2 The combination of multi-strain probiotics
The use of single probiotics may not be satisfactory for the

treatment of NAFLD. Therefore, many basic studies have focused

on the research of the role of the combination of two or more

probiotics. Yu et al (Yu et al., 2021). found that Lactobacillus lactis

and Pediococcus pentosaceus could significantly postpone the

progress of NAFLD through the intestinal-liver axis, especially

through the tryptophan metabolic pathway. In the rat NAFLD

model, Azarang et al (Azarang et al., 2020). showed that the

utilization of single probiotics such as Lactobacillus acidophilus,

Lactobacillus casei, Lactobacillus reuteri and Bacillus coagulans

could reduce oxidative stress markers and the combination of

those four probiotics could significantly relieve more symptoms

of NAFLD. Regular use of compound probiotics “Symbiter” has also

been confirmed to prevent monosodium glutamate-induced

NAFLD in mice (Savcheniuk et al., 2014). Furthermore, a

probiotic blend containing five different Bacillus genera has been
Frontiers in Cellular and Infection Microbiology 03
shown to effectively reverse high-fat diet-induced hepatic steatosis,

highlighting the potential of Bacillus in treating NAFLD (Kim et al.,

2018). Mutaflor® probiotics have also been shown to slow the

progress of NAFLD by regulating HSC signaling (Hany et al., 2022).

Clinical trials investigating the role of combined probiotics in

NAFLD have been successfully conducted, further enhancing the

potential of probiotic combinations for clinical treatment of

NAFLD. Tablets containing Lactobacillus bulgaricus and

Streptococcus thermophilus was reported to be able to improve the

level of liver transaminase in patients with NAFLD, thus having a

better therapeutic effect on NAFLD (Aller et al., 2011). In a study

conducted by Kobyliak et al (Kobyliak et al., 2018c), 58 patients

with type 2 diabetes and NAFLD were enrolled and randomly

assigned to receive either the polyprobiotic “Symbiter” or a placebo.

The researchers discovered a significant reduction in the fatty liver

index, accompanied by decreased serum levels of aspartate

aminotransferase (AST), g-glutamyl transpeptadase (GGT), tumor

necrosis fator (TNF), and interleukin-6 (IL-6) in the probiotic

group. These observations indicated the potential of “Symbiter”

probiotics as a treatment for NAFLD.
TABLE 1 Single probiotic.

Author Category Probiotics Functions Reference

Jang et al.
Ritze et al.

Lactobacillus Lactobacillus rhamnnosus GG
Share intestinal fatty acids and prevent the
hepatic steatosis

(Ritze et al., 2014;
Jang et al., 2019)

Mu et al. Lactobacillus Lactobacillus femenhim COPC06
Colonize in the intestinal tract and alter
gut microbiota

(Mu et al., 2020)

Fontana et al. Lactobacillus
Lactobacillus paracasei CNCM1-4034,
Lactobacillus rhamnosus CNCM I-4036

Reduce gene expression of pro-inflammatory
macrophage cell and leukocyte infiltration and
relieve the liver injury

(Fontana et al., 2021)

Huang et al. Lactobacillus
Lactobacillus plantarum AR113, Lactobacillus
casei pWOH01

Relieve steatosis in a manner dependent on bile
salt hydrolase

(Huang et al., 2020)

Nguyen et al. Lactobacillus Lactobacillus sakei MIM60958 Inhibit lipid accumulation in HepG2 cells (Nguyen et al., 2022b)

Pant et al. Lactobacillus Lactobacillus acidophilus SNZ 86 Upregulate the AMPK and SIRT-I pathways (Pant et al., 2022)

Ye et al.
Wang et al.

Lactobacillus Lactobacillus paracasei Jhs66 Have great potential in preventing NAFLD
(Ye et al., 2017;
Wang et al., 2019)

Geng et al.
Liu et al.

Lactobacillus
Lactobacillus kefiranofaciens ZW3,
Lacticacid bacteria

Effectively relieve steatosis
(Geng et al., 2022;
Liu et al., 2022)

Oh et al. Lactobacillus Engincering Lactobacillus reuteri
Treat NAFLD further through recombinant
Interleukin-22 (IL-22) delivery

(Oh et al., 2020)

Yan et al. Bifidobacteria Bifidobacterium lactis V9 Inhibit inflammation and relieve NAFLD (Yan et al., 2020)

Do et al. Bifidobacteria Bifidobacterium animalis ssp. lactis MG741
Relieve intestinal permeability and
inflammatory cytokines

(Do et al., 2022)

Machado et al. Bifidobacteria Oral Bifidobacterium longum supplements
Regulate the mRNA expression of renin-
angiotensin system components

(MaChado et al., 2021)

Xu et al. Bifidobacteria
Bifidobacterium longum and
Lactobacillus acidophilus

Reduce liver fat accumulation (Xu et al., 2011)

Hu et al. Other strains Faecalibacterium prausnitzii LC49 and LB8
Produce short-chain fatty acid and regulate the
gut microbiota

(Hu et al., 2022)

Endo et al
Seo et al.

Other strains MIYAIRI 588 Slow down the progression of NAFLD
(Endo et al., 2013;
Seo et al., 2013)

Kim et al. Other strains Limosilactobacillus fermentum MG4295 Relieve hyperglycemia (Kim et al., 2022)
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Ahn et al (Ahn et al., 2019). treated obese NAFLD patients with

a mixture of probiotics including six bacteria. They found that

probiotic treatment for 12 weeks significantly reduced intrahepatic

fat and body weight in NAFLD patients. Probiotic capsules

composed of Bifidobacterium longum and Lactobacillus

acidophilus have been confirmed to significantly reduce body

weight, body mass index, waist and hip circumference and TNF-

a levels in patients with NAFLD, and increase the level of serum

total antioxidant capacity (Javadi et al., 2018). Similarly, Lactocare, a

probiotic capsule containing seven beneficial strains, significantly

reduced blood glucose and inflammatory markers in patients with

NAFLD (Sepideh et al., 2016). Multi-strain probiotics (MCP®

BCMC® strains) containing six different lactic acid bacteria and

bifidobacteria complement the treatment of NAFLD can stabilize

mucosal immune function and protect NAFLD patients with

increased intestinal permeability (Mohamad Nor et al., 2021).

VSL#3, a probiotic blend containing eight cultured bacteria, has

been utilized in the treatment of NAFLD in rats via its therapeutic

effects involve the mitigation of oxidative stress and alleviation of

inflammatory liver injury (Esposito et al., 2009). Derosa et al

(Derosa et al., 2022). recruited 60 white adult suffering from

NAFLD who were randomly assigned to receive VSL#3 or

placebo. The results showed that VSL#3 probiotic therapy could
Frontiers in Cellular and Infection Microbiology 04
significantly improve liver parameters and ultrasonic grading, and

there was no difference between men and women. Loguercio et al

(Loguercio et al., 2005). also found that probiotic VSL#3 can

significantly improve liver injury caused by NAFLD through

clinical cohort study. The capsule formed by probiotic

combination has also been fully explored in pediatric NAFLD.

Compared with children who received placebo, the level of liver

function of children who received probiotic capsules exhibited

remarkable enhancement (Famouri et al., 2017) (Table 2).

2.2.3 Incorporation of probiotics with other
biological components

Since individual probiotic and combination of probiotics display

have shown promising therapeutic potential, the incorporation of

probiotics with other biological components has also attracted wide

attention. Ahmed et al (Ahmed et al., 2020). showed that the

combination of Lactobacillus reuteri and metronidazole could

effectively regulate intestinal flora of NASH mice, resulting in

improved therapeutic outcomes. Wang et al (Wang W. et al., 2020).

found that the combination of probiotics Bifidobacterium bifidum V,

Lactobacillus plantarum X and Salvia miltiorrhiza polysaccharide

effectively alleviates hepatic steatosis by modulating gut microbiota

and relieving insulin resistance in high-fat diet induced NAFLD mice.
TABLE 2 The combination of probiotics.

Authors The combination of Probiotics Functions Reference

Yu et al.
Lactobacillus lactis,
Pediococcus pentosaceus

Significantly postpone the progress of NAFLD through
the intestinal-liver axis

(Yu et al., 2021)

Azarang et al.
Lactobacillus acidophilus, Lactobacillus casei,
Lactobacillus reuteri,
Bacillus coagulans

Significantly relieve more symptoms of NAFID (Azarang et al., 2020)

Savcheniuk et al.
Kobyliak et al.

“Symbiter” (containing 14 probiotics)
Decrease serum levels of AST, GGT, TNF and IL-6 and
prevent monosodium glutamate-induced NAFLD

(Savcheniuk et al., 2014;
Kobyliak et al., 2018c)

Kim et al.
A probiotic blend containing five different
Bacillus genera

Effectively reverse high-fat diet-induced hepatic steatosis (Kim et al., 2018)

Hany et al. Mutaflor® probiotics
Slow the progress of NAFLD by regulating
HSC signaling

(Hany et al., 2022)

Aller et al.
Lactobacillus bulgaricus,
Streptococcus thermophilus

Improve the level of liver transaminase in patients
with NAFLD

(Aller et al., 2011)

Ahn et al.

Lactobacillus acidophilus, L.rhamnosus,
L.paracasei
Pediococcus pentosaceus,
Bifdobacterium lactis,
B. breve

Reduce intrahepatic fat and bodyweight in
NAFLD patients

(Ahn et al., 2019)

Javadi et al.
Bifidobacterium longum,
Lactobacillus acidophilus

Reduce body weight, body mass index, waist and hip
circumference and TNF-a levels and increase the level
of serum total antioxidant capacity

(Javadi et al., 2018)

Sepideh et al. Lactocare (containing seven beneficial strains)
Reduce blood glucose and inflammatory markers in
patients with NAFLD

(Sepideh et al., 2016)

Mohamad et al.
MCP® BCMC® strains (containing six different lactic
acid bacteria and Bifidobacteria)

Stabilize mucosal immune
function and protect NAFLD
patients with increased intestinal permeability

(Mohamad Nor
et al., 2021)

Esposito et al.
Derosa et al.
Loguercio et al.

VSL#3 (a probiotic blend containing eight
cultured bacteria)

Mitigate oxidative stress and alleviate inflammatory liver
injury, improve liver parameters and ultrasonic grading,
effectively relieve liver injury

(Loguercio et al., 2005;
Esposito et al., 2009;
Derosa et al., 2022)
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Importantly, the combined treatment showed potential benefits

surpassing those of probiotics Bifidobacterium bifidum V and

Lactobacillus plantarum X alone, indicating that Salvia miltiorrhiza

polysaccharide can enhance the function of these probiotics. As the

substrate of prebiotics, when combined with Bifidobacteria, it has the

potential to improve the efficacy of NAFLD treatment. It is confirmed

that the combination of Resveratrol and Bifidobacteria may be a

potential drug for the treatment of NAFLD (Hu et al., 2021). In

addition, in the NAFLD rat model, “Symbiter” combined with

Omega-3 therapy could significantly relieve liver steatosis and

liver conversion lipid accumulation compared with probiotics

alone (Kobyliak et al., 2017). Furthermore, Kobyliak et al

(Kobyliak et al., 2018a). incorporated 48 patients with type 2

diabetes mellitus complicated with NAFLD and randomly assigned

them to multi-strain “Symbiter” combined with Omega-3 (“Symbiter

Omega” combination) and placebo respectively. They found that

“Symbiter Omega” combination could reduce liver fat, improve

blood lipids and metabolic characteristics, and reduce chronic

systemic inflammation in NAFLD patients. Smectite is a natural

silicate that binds to digestive mucus and has the ability to bind

endotoxin and exotoxin. Studies have found that the combination of

multi-probiotics “Symbiter” and Smectite gel “Symbiter Forte” can

play a synergistically enhanced role in the effective treatment of

NAFLD (Kobyliak et al., 2018b). In a clinical trial, 80 patients with

NAFLD were given symbiotic supplements (including six probiotics

and fructooligosaccharides) and placebos respectively. Symbiotic

supplements have been found to relieve steatosis in patients with

NAFLD (Asgharian et al., 2016). Probiotic mixtures have been found

to act on lipid profiles, leptin and inflammatory biomarkers to treat

fatty liver disease (Al-Muzafar and Amin, 2017). Similarly, Crommen

et al (Crommen et al., 2022). have shown in clinical trials that a

mixture of multi-strain probiotic powder and specific trace

microelements can effectively improve NAFLD-related markers in

obese patients undergoing miniature gastric bypass surgery.

2.2.4 Probiotics related products
The possible impact of probiotics-related products on NAFLD

has garnered significant attention. Kefir is a probiotic beverage that

contains a variety of lactic acid bacteria and yeast. In the NAFLD

mouse model, the administration of Kefir has been shown to

regulate the composition of intestinal microbiota and fungal flora,

leading to effective treatment of the condition (Kim et al., 2017).

Kombucha is a kind of natural nonalcoholic fermented beverage

with probiotic characteristics produced by symbiotic culture of

bacteria and yeast. Moreira et al (Moreira et al., 2022).

successfully confirmed that Kombucha can improve glucose

tolerance and reduce liver steatosis in obese mice through

NAFLD mouse experiments. Moreover, Konda et al (Konda et al.,

2020). found that probiotics banana juice treated by pectinase can

effectively deal with liver steatosis to effectively prevent NASH.

2.2.5 Probiotics plus lifestyle intervention
It is worth mentioning that probiotic supplements in

conjunction with lifestyle interventions have also been confirmed

to have positive effects on blood glucose parameters and leptin
Frontiers in Cellular and Infection Microbiology 05
levels in patients with NAFLD (Behrouz et al., 2017). Lifestyle

changes with multi-strain probiotic therapy can significantly

improve liver histology, the levels of alanine aminotransferase and

cytokine in patients with NAFLD (Duseja et al., 2019). Exercise

training and probiotics are also recommended as effective

treatments for NAFLD. Hosseini et al (Hosseini et al., 2022).

proved that intensive interval training and Lactobacillus

rhamnosus GG can minimize damage to liver tissue cell and

inflammation caused by NAFLD.
2.3 Future expectations

The aforementioned studies have consistently demonstrated the

efficacy of probiotics and their associated products in the prevention

and treatment of NAFLD. Furthermore, there is a growing trend in

research towards the clinical application of these practical products.

The application prospect of probiotics and its related products in

NAFLD is worth anticipation and further promoting.

The mechanism underlying the therapeutic effects of probiotics

in NAFLD treatment has consistently been a focal point of research.

It is believed that distinct probiotic strains may exert their effects

through different mediating mechanisms. Utilizing probiotics allows

researchers to observe changes in the individual’s gut microbiota

composition, while investigating how these changes impact disease

progression remains a key area for exploration. With the continuous

advancement of technical tools, an increasing number of research

methods have been employed to investigate the mechanism

underlying probiotic treatment of NAFLD. However, the current

understanding of the precise mechanism by which probiotics exert

their effects in NAFLD treatment remains limited. Only through the

comprehensive utilization of various research techniques can a more

comprehensive understanding of the mediating mechanisms be

achieved. Researchers must devote further efforts to clarify the

specific mechanism through which different probiotics play a role

in NAFLD.
3 The mediating mechanism of
probiotics in the treatment of
nonalcoholic fatty liver disease

Probiotic regulation offers an effective strategy for the treatment

and prevention of NAFLD, particularly in the absence of clear

pharmacological interventions for steatosis. Understanding the

mediating mechanisms underlying probiotic therapy in NAFLD

has remained a central focus of research focus of research.

Probiotics have the ability to modulate the physiological function

and metabolic status of patients with NAFLD by influencing the

composition, abundance and balance of intestinal microflora. To

investigate the mediating mechanism of probiotic therapy, it is

essential to commence with a comprehensive exploration of the

common pathogenesis and etiology of NAFLD.

The ecological imbalance of intestinal flora, alterations of

intestinal cell permeability, liver injury, endoplasmic reticulum
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stress, abnormal activation of cellular signaling pathway, as well as

dietary and genetic factors of patients, have all been implicated in

the occurrence of NAFLD (Williams et al.,; Mouzaki and Allard,

2012; Goodwin et al., 2013). The second part of the review aims to

comprehensively explore the intricate mediating mechanisms of

probiotics in NAFLD treatment, contributing to the development of

novel therapeutic approaches for the disease.
3.1 Maintaining the integrity of intestinal
epithelial cells: anti-oxidation and anti-
inflammation

3.1.1 Reactive oxygen species and Intestinal
inflammation

Intestinal inflammation can influence the intestinal-liver axis,

damaging the intestinal barrier, leading to bacterial translocation,

activating the immune system response, and triggering a series of

pro-inflammatory pathways in the liver, thereby accelerating the

process of NAFLD (Pierantonelli and Svegliati-Baroni, 2019).

ROS in human body is mainly produced in endoplasmic

reticulum, peroxisome, mitochondria and other organelles.

Specially, Reactive oxygen species (ROS) production mainly

occurs during the mitochondrial electron transport chain process

(Novak and Mollen, 2015). However, excessive ROS can impede

electron transfer, leading to mitochondrial damage and disruption

of biological function of mitochondria and cell homeostasis,

ultimately causing cell death (Kiffin et al., 2006; Scherz-Shouval

and Elazar, 2007; Novak and Mollen, 2015).

The excessive accumulation of ROS in cells result in oxidative

stress, characterized by an imbalance between ROS production and

clearance in cells and tissues. In response to oxidative stress, cells

activate various defense mechanisms or undergo cell death.

Oxidative stress can induce intestinal mucosal damage, increase

intestinal epithelial barrier permeability, facilitate bacterial

invasion, stimulate immune response and initiate the pathological

process of intestinal inflammation. The key manifestations of active

intestinal inflammation include immune cell infiltration and

neutrophilic granulocytosis (Goyette et al., 2007).
3.1.2 Probiotics prevent and treat NAFLD by
preventing intestinal inflammation and
antioxidation
3.1.2.1 Genetic engineering Escherichia coli

Escherichia coli Nissle 1917 (ECN) is a genetically engineered

oral probiotics with good safety and can assist in the treatment of

many kinds of diseases (Lynch et al., 2022; Zhou et al., 2022). ECN-

pE, an oral probiotic, was genetically modified to enhance the

expression of catalase and superoxide dismutase (SOD) for the

treatment of intestinal inflammation. ZhouJ et al. evaluated the

SOD competence of different ECN subtypes by assessing their

ability to scavenge superoxide. Notably, ECN-pE(C/A)2 exhibited

strong SOD activity, promoting significant colon tissue repair and

alleviating intestinal inflammation (Zhou et al., 2022).
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3.1.2.2 Bifidobacterium longum

Bifidobacterium longum have been demonstrated their ability to

inhibit the development of intestinal inflammation by regulating

immune system balance, enhancing acetate production and

improving intestinal mucosal barrier function (Underwood et al.,

2015; Chichlowski et al., 2020; Yao et al., 2021). In a study

conducted by F.A.Abrantes et al . , i t was shown that

Bifidobacterium longum B.longum51A effectively reverse colitis-

induced increase of intestinal permeability and reduce the degree

of colonic lesions (Abrantes et al., 2020). Its molecular biological

mechanism is alleviating a series of changes during intestinal

inflammation, such as decreased eosinophil peroxidase level,

increase of IL-1b level, the significant increase of immunoglobulin

concentration and the increase of inflammatory markers (Dvorak

et al., 1994; Abrantes et al., 2020).

S. Yan et al. confirmed that the metabolites of B.longum YS108R

contain antioxidant substances (Yao et al., 2021). Yusheng Wang

et al. demonstrated that the supernatant from cultured B.longum

CCFM752 exhibits antioxidant effect on cells, enhancing catalase

activity and decreasing NADPH oxidase activity. In addition, it has

been proved that Lactobacillus sake and other Lactobacillus

probiotics can also relieve the symptoms of NAFLD through

antioxidant mechanism (Wang et al., 2021).

Genetic engineering Escherichia coli and Bifidobacterium

longum can improve the antioxidant level of cells and tissues,

mitigate ROS-induced cell damage, protect intestinal mucosal

barrier and effectively inhibit NAFLD triggered by intestinal

inflammation. These findings highlight their significant clinical

application value.
3.2 Regulating lipid metabolism to relieve
NAFLD

3.2.1 Core pathological process
The main cause of NAFLD is the excessive accumulation of fat

in the liver (Kanuri and Bergheim, 2013; Zeigerer, 2021). The fat

accumulated in the liver can originate from various sources,

including fatty acids digested and absorbed by intestinal epithelial

cells from food, de novo synthesis of body fat, adipose tissue fat

transport and conversion of other substances (Jones, 2016; Alves-

Bezerra and Cohen, 2017; Carotti et al., 2020; Badmus et al., 2022).

The liver, as the central organ of fatty acid metabolism, will

experience fat accumulation when the production of fatty acids

exceeds their consumption, including fat transport (Alves-Bezerra

and Cohen, 2017). In the existing scientific research, it has been

found that some probiotics can alleviate NAFLD symptoms by

modulating lipid metabolism in the liver, offering potential avenues

for clinical treatment of NAFLD.

3.2.2 Mechanism of Lactobacillus sake regulating
lipid metabolism in liver

Lactobacillus sake has good antibacterial and antioxidant effects,

exhibiting excellent antibacterial efficacy, safety and tolerance in the
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body (Schillinger and Lücke, 1989; Amanatidou et al., 2001; DÜz

et al., 2020). Huong Thi Nguyen et al. evaluated the high anti-lipid

effect of Lactobacillus sake MJM60958 in HepG2 cells and its

therapeutic effect for high-fat diet induced NAFLD mouse model.

Among different strains, MJM60958 showed the most pronounced

effect in inhibiting lipid synthesis. It reduced lipid accumulation in

hepatocytes, relieving NAFLD by decreasing serum level of AST,

ALT, Triglyceride (TG) and total cholesterol (TCHO), which serve

as key markers of NAFLD (Nguyen et al., 2022a).

3.2.3 Mechanism of Lactobacillus salivarius
regulating lipid metabolism in liver

Peroxisome proliferator activated receptors (PPAR) a, b/d and

g regulate lipid homeostasis in the liver. Among them, PPARa is a

key nuclear receptor, which controls the oxidation rate of fatty acids

i n m i t o chond r i a and i s a l s o r e l a t ed t o c a rn i t i n e

palmitoyltransferase-1. Specifically, PPARa controls the oxidation

of fatty acids in mitochondria, and PPARg is involved in

adipogenesis and lipid storage. Additionally, the AMPK pathway,

which is activated in response to metabolic stress, plays a significant

role in regulating lipid metabolism (Wang Y. et al., 2020).

In the study of Lihui Zhu et al., the probiotic strain Lactobacillus

salivarius SNK-6 (L.salivarius SNK-6) demonstrated beneficial

effects in a lying hen model of NAFLD. The findings revealed

that the inhibition of miR-130a-5p significantly increased the

expression of PPAR a, PPAR g, fatty acid binding protein 4

(FABP4), SREBP1 and fatty acid synthase (FASN) related genes.

Conversely, the administration of L.salivarius SNK6 up-regulate the

expression of miR-130a-5p and down-regulate the expression of

MBOAT2. Through the miR-130a-5p/MBOAT2 pathway,

Lactobacillus salivary SNK-6 reduced the activity of ALT and

AST and inhibited hepatic fat deposition, thus relieving the

condition of NAFLD (Zhu et al., 2022).

3.2.4 Mechanism of Lactobacillus plantarum
regulating lipid metabolism in liver

Studies conducted by Chuan Li et al. have shown that

L.plantarum NCU116 alleviate hepatic fat accumulation by

downregulating fat production and upregulating the expression of

genes associated with fat decomposition and fatty acid oxidation.

The experimental group treated with L.plantarum NCU116 showed

increased expression of PPAR a, PPAR g, PPAR d, PGC1 a and

CPT1 a, leading to effective reduction of hepatic fat accumulation

(Li et al., 2014).

3.2.5 Mechanism of Lactobacillus reuteri
regulating lipid metabolism in liver

Carmen Tenorio-Jim é nez et al. conducted the clinical

evaluation trial of Lactobacillus reuteri V3401 on NAFLD. Sixty

participants (aged 18 to 65 years) diagnosed with IRS were

randomized in a 1:1 ratio to receive either a daily dose of placebo

or 5×109 colony-forming units of L. reuteri V3401. The study aimed

to explore the mediating mechanism of L. reuteri in relieving

NAFLD by detecting human serum level of LPS, insulin
Frontiers in Cellular and Infection Microbiology 07
resistance and liver steatosis after the application of L. reuteri.

Currently, the study is still in the stage of experiment and data

analysis (Tenorio-Jiménez et al., 2018).
3.3 Probiotics relieve NAFLD by regulating
the levels of different cytokines

3.3.1 Effect of Bifidobacterium on the level of
related cytokines

Tumor necrosis factor-a (TNF-a), interleukin 1 beta (IL-1b)
and interleukin-18 (IL-18) are the key cytokines in the pathogenesis

of NAFLD (Stojsavljević et al., 2014; Ezquerro et al., 2019).

Experiments evidence has demonstrated that Lactobacillus sake

MJM60958 relieved NAFLD by reducing the level of TNF-a
(Carotti et al., 2020). In a Study by Moon Ho Do et al., mice fed

with high-fat diet exhibited increased expression of genes encoding

inflammatory cytokines TNF-a, IL-1b and IL-6. However, mice

treated with a high dose of Bifidobacterium lactose MG741 reversed

the expression trend of these genes, improving intestinal

permeability and offering potential therapeutic benefits for

NAFLD (Do et al., 2022).

3.3.2 Effect of multiple probiotics combination on
the level of related cytokines

After clinical intervention with multiprobiotic “Symbiter” in

patients with NAFLD, the levels of AST and GGT which are related

with fat synthesis and the levels of TNF-a, IL-1b, IL-6, IL-8 and

INF-g decreased significantly. The fatty liver index (FLI) was

significantly improved (Kobyliak et al., 2018a; Kobyliak

et al., 2018c).

3.3.3 The function of IL-17
The regulation of cytokines and improvement of the tissue

microenvironment are important for treating liver inflammation

and alleviating autoimmune diseases. Interleukin-17 (IL-17) has

shown promising potential in both research and application (Zhang

et al., 2015). IL-17 serves as a key initiator of the inflammatory

response, promoting the release of inflammatory cytokines and

inducing an inflammatory cascade. Upon binding to its receptor,

IL-17 can play its biological role through mitogen-activated protein

kinase (MAPK) pathway and activating transcription factors such

as activator protein-1 (AP1), CCAAT-enhancer-binding proteins

(C/EBPs) and nuclear transcription factor kB (NF-kB) (Monin and

Gaffen, 2018).

The clinical studies of Chung-Hsing Wang et al. showed that

the serum levels of IL-8, IL-17, MIP-1b and TNF-a in patients with

type I diabetes treated with Bifidobacterium animalis, Akkermansia

muciniphila and Lactobacillus salivarius were significantly lower

than those without probiotics (Wang et al., 2022).

However, experimental study by Shuying He et al. has shown

that IL-17 from Th17 cells can restore the function of intestinal

epithelial tissue and barrier and maintain the integrity of intestinal

barrier (He et al., 2022). To some extent, this finding highlighted the
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dual regulatory effect of IL-17 varing depending on the

specific circumstances.

Currently, there is a scarcity of animal experiments and clinical

trials investigating the correlation between IL-17 level changes and

NAFLD improvement following probiotic use. Further research is

needed to clucidate the relationship between IL-17 levels

and NAFLD.

3.3.4 Blueberry combined with probiotics to
regulate the level of cytokines
3.3.4.1 Effects of bioactive substances from blueberry on
inflammation and oxidative stress

According to Felgus-Lavefve L et al., the bioactive molecules of

blueberry inhibited inflammation and oxidative stress by

downregulating NF-kB pathway, reducing ROS levels and

attenuating lipid peroxidation. The understanding of the main

molecular mechanisms of blueberry chemicals in the cell model is

progressively advancing (Felgus-Lavefve et al., 2022).

Tarfa Albrahim et al. showed that the contents of antioxidant

enzymes, glutathione and lipid peroxidation in rats fed blueberries

increased, while the activities of inflammatory mediators (TNF-a,
IL-6 and nuclear factor kappa light chain enhancer of activated B

cells) and fibrosis marker transforming growth factor b1 (TGF-b1)
in rat liver decreased significantly (Albrahim and Alonazi, 2022).

The studies above demonstrate the significant role of

blueberry’s biological activity in anti-oxidation and anti-

inflammation, leading to a notable reduction of inflammatory

mediators-related cytokines. When blueberry is used in

combination with probiotics, it exhibits distinct effects on the

level of cytokines in NAFLD model.

3.3.4.2 Blueberry in combination with probiotics &
important cytokine IL-22 and its molecular pathway

Studies by Juanjuan Zhu et al. have shown that blueberry

combined with probiotics can alleviate NAFLD through IL-22-

mediated Janus kinase 1 (JAK1)/signal transducer and activator of

transcription 3 (STAT3)/Bcl-2-associated X protein (BAX) signal

pathway (Zhu et al., 2018).

The expression of IL-22, JAK1 and STAT3 in NAFLD model

significantly decreased, while the expression of apoptosis factor

BAX showed a marked increase. However, the administration of

probiotics resulted in a substantial increase in the levels of IL-22,

JAK1 and STAT3 in NAFLD model, while decreased the level of

BAX. Similarly, the suppression of IL-22 hindered the ability of

probiotics to promote the expression of JAK1, STAT3 and BAX

(Zhu et al., 2018). Probiotics can activate the JAK1/STAT3 signal

pathway, inhibit the apoptosis factor BAX and reduce lipid

deposition in vitro through IL-22 (Zenewicz, 2018; Zhu et al., 2018).

In addition, IL-22, acts as a key regulator of epithelial

homeostasis, playing a critical role in preserving the function of

epithelial barrier (Zenewicz, 2018; Patnaude et al., 2021).

3.3.4.3 Microflora secreting IL-22

IL-22 secreted by engineered Lactobacillus reuteri significantly

reduced liver weight and triglyceride content in NAFLD model (Oh
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et al., 2020). It can be seen that IL-22 can alleviate the development

of NAFLD.

IL-22, a member of the IL-20 subfamily, controls lipid

metabolism in the liver by activating the above signaling

pathways (Pan et al., 2014). As a therapeutic protein, IL-22 holds

promising prospects for mitigating nonalcoholic fatty liver disease.
3.4 Probiotics relieve NAFLD by regulating
intestinal microflora

3.4.1 Intestinal microbiota and imbalance
Intestinal microbiota encompasses the diverse microbial

community residing in the human intestinal tract. These

microorganisms are involved in the regulation of metabolism and

physiological activities. Among the various microbial communities

in intestinal tract, the bacterial community is of utmost importance

(Pascale et al., 2018). Imbalance of intestinal microflora, or

intestinal microecological dysbiosis, refers to disruptions in the

composition, activity or distribution of microorganisms within the

intestines. Such ecological disturbances or alterations in normal

intestinal flora will affect intestinal permeability, intestinal mucosal

barrier integrity and normal intestinal peristalsis, consequently

resulting in a series of diseases (Canakis et al., 2020).
3.4.2 The relationship between intestinal
microbiome and NAFLD and related mechanism

Changes in intestinal microflora composition can alleviate or

aggravate NAFLD through a variety of mechanisms. The main

mechanisms include affecting fat production, modulating dietary

energy metabolism, impacting related gene expression in the cholic

acid metabolism signal pathway, and altering intestinal

permeability. However, further research is required to fully

understand the relationship between these factors and the

development or progress of NAFLD (Safari and Gérard, 2019).

In terms of dietary energy metabolism, researches by Bäckhed F

et al. have shown that germ-free mice, compare to those with

intestinal microbiota, are resistant to high-fat or high-sugar diet-

induced obesity. Intestinal bacteria produce secretory bacterial

enzymes that facilitate the breakdown and digestion of

polysaccharides in food, enhancing the absorption of food

nutrients (Bäckhed et al., 2004; Bäckhed et al., 2007).

Alterations in intestinal flora can impact the integrity of the

intestinal mucosal barrier including the structure of intestinal

mucous layer, antimicrobial peptides and tight junction proteins,

leading to increased intestinal permeability. This association is

closely linked to the severity, occurrence and progression of

NAFLD (Giorgio et al., 2014).

Bile acid can not only promote fat absorption, but also play the

role of signal molecules in self-metabolism (Jiang et al., 2015; Safari

and Gérard, 2019). In terms of bile acid composition changes,

intestinal flora changes can increase bile acid metabolites and

reduce liver triglyceride accumulation by inhibiting intestinal

farnesol X receptor (FXR) signal. These effects are primarily

achieved through the down-regulation of liver sterol regulatory
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element-binding protein 1C (SREBP1C) and decrease of de novo

synthesis of fat. Inhibition of intestinal FXR/ceramide axis can

mediate the development of NAFLD related with intestinal

microbiota (Jiang et al., 2015).

3.4.3 Potential probiotics in the treatment of
NAFLD based on regulation of intestinal
microbiota and its mechanism

In the study of Hu et al., F. prausnitzii strains (A2-165, LB8,

ZF21, PL45 and LC49) could alleviate the symptoms related to

glucose tolerance, liver steatosis, intestinal inflammation and

oxidative stress in the NAFLD model (Hu et al., 2022). Notably,

strains LC49 and LB8 were found to increase the production of

short-chain fatty acids (SCFA) and regulate the composition of

intestinal flora. The core microflora related to NAFLD include

Odoribacter, Roseburia, Erysipelatoclostridium, Tyzzerella,

Faecalibaculum, Blautia and Acetatifactor. Among them, the

effects of Erysipelatoclostridium, Tyzzerella, Faecalibaculum,

Blautia and Acetatifactor on the progress of NAFLD could be

reversed by F.prausnitzii LC49 and LB8.

Patients with NAFLD exhibited a significantly lower total

bacterial load compared to normal subjects, accompanied by a
Frontiers in Cellular and Infection Microbiology 09
reduction in the abundance of various normal bacteria in the

intestinal wall, including Bifidobacterium, Lactobacillus,

Lactococcus, True bacillus and Propionibacterium (Vakhrushev

et al., 2022).

F.prausnitzii LC49 and LB8 can enrich the abundance of

Lactobacillus, Enterobacter ileum, Bacillus faecalis, Duboxi and

Bifidobacterium, thus positively influences the metabolism of

carbohydrates, amino acids and fatty acids. Moreover,

F.prausnitzii LC49 and LB8 show significant anti-NAFLD effects

and possess microbial regulatory properties, suggesting their

potential as probiotic agents for the treatment of NAFLD (Hu

et al., 2022; Shu et al., 2025).
4 Conclusions

While significant progress has been made in understanding the

therapeutic potential of probiotics for NAFLD, several limitations

persist in the current body of research. First, many studies lack

long-term follow-up data, which is crucial to determine the

sustainability of probiotic effects. Additionally, variations in

probiotic strains and dosages across studies make it difficult to
FIGURE 1

The role of probiotics in regulating the gut-liver axis in MAFLD, including modulation of intestinal microbiota, improvement of intestinal barrier
integrity, alteration of lipid metabolism, and attenuation of inflammatory pathways.
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draw definitive conclusions about their optimal use. Most clinical

trials have small sample sizes, limiting their generalizability.

Furthermore, the mechanisms through which probiotics exert

their therapeutic effects in NAFLD are not fully understood, with

many studies relying on indirect markers of disease progression.

Despite promising therapeutic effects, challenges remain in

probiotic application for MAFLD, such as the strain-specific nature

of probiotics, host genetic and microbiota variability, and concerns

regarding long-term safety and regulatory standardization. These

issues underscore the need for rigorous clinical trials and mechanistic

studies to validate efficacy and safety across diverse populations.

Future research should focus on large-scale, multicenter trials

with longer follow-up periods. A more standardized approach to

the selection and dosage of probiotic strains is essential for

comparing results across studies. Furthermore, research into the

specific molecular mechanisms by which probiotics modulate gut

microbiota and influence liver function is crucial for developing

targeted therapies. There is also a need for studies that explore the

combined effects of probiotics with other therapeutic interventions,

such as dietary modifications or pharmaceutical agents. Addressing

these challenges will provide clearer insights into the role of

probiotics in managing NAFLD (Figure 1).
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