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Objectives: To establish and validate a multi-parameter model for the prediction

of early recurrence in patients with hepatitis B-associated hepatocellular

carcinoma (HBV-HCC) after microwave ablation.

Methods: This study retrospectively reviewed the clinical features and

preoperative magnetic resonance imaging (MRI) scans of 166 patients with HBV-

HCC who underwent microwave ablation at two hospitals. The training cohort

comprised 116 patients from the first hospital (n = 116;mean age, 56 years; 84male

patients), while 50 patients from the second hospital constituted the external

validation cohort (n = 50; mean age, 60 years; 38 male patients). A transformer-

based deep learning network was used to fuse images from multi-sequence MRI

and predict recurrence within 1 year after microwave ablation. Additionally, a

nomogram based on deep learning radiomics and clinical features was developed

and externally validated in a validation group from a second hospital.

Results: The combined model was better than the clinical model and MRI model

in predicting early recurrence of hepatitis B-associated hepatocellular carcinoma

within 1 year after microwave ablation. Nomograms based on joint models

include aspartate aminotransferase, portal hypertension, and deep learning-

based radiomics scores. The areas under curves of the models in the training

group and the validation group were 0.868 (95% CI: 0.793–0.924) and 0.842

(95% CI: 0.711–0.930), respectively, indicating high prediction ability. The results

of decision curve analysis showed that the combined model had good clinical

application value and correction effect.

Conclusions: Our nomogram combined with clinical features and preoperative

magnetic resonance imaging features effectively predicted early recurrence of

hepatitis B-associated hepatocellular carcinoma within 1 year after

microwave ablation.
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1 Introduction

Primary liver cancer is one of the most common tumors

worldwide, ranking sixth in incidence and third in terms of

cancer-related mortality (Bray et al., 2024). Hepatocellular

carcinoma (HCC) is the main type of primary liver cancer (75.0–

85.0%), and its main cause is hepatitis B virus (HBV) infection (de

Martel et al., 2020). HBV infection can lead to chronic inflammation

of the liver and cirrhosis. The risk of developing HCC for patients

with chronic HBV infection is 5 to 15 times higher than that of the

general population; moreover, 70.0–90.0% of patients with cirrhosis

after HBV infection will develop HCC (El-Serag and Rudolph, 2007).

In patients with early HCC, surgical resection, liver transplantation,

and local ablation are available treatment modalities. Local ablation

mainly includes microwave ablation and radiofrequency ablation.

Studies have shown that microwave ablation achieves overall survival

and disease-free survival rates that are comparable to those of

surgical treatment. However, it offers additional advantages,

including fewer complications and lower hospitalization costs.

Additionally, patients undergoing microwave ablation typically

have shorter hospital stays (Wang et al., 2022). Although

microwave ablation is a very effective treatment modality for HCC,

the risk of early recurrence after ablation is still a concern. Studies

have shown that up to 70.0% of patients with HCC who have

cirrhosis relapse within 5 years after surgical resection or microwave

ablation, with the highest recurrence rate being within 2 years after

ablation (Rimola et al., 2020).

Establishing an effective model to monitor early HCC

recurrence after microwave ablation will facilitate the timely

prediction of recurrence. This will allow clinicians to formulate

treatment plans in advance and attenuate HCC progression. Such a

model will also provide an accurate and reliable basis for treatment

selection. Ultimately, it may improve HCC cure rates, reduce

recurrence, and improve patients’ outcomes. Currently, there are

several models for predicting the prognosis of HCC after microwave

ablation; however, these models do not distinguish the etiology of

HCC (Zhou et al., 2021; Wu JP. et al., 2022; Zhang et al., 2022;

Wang et al., 2024). HBV infection is an important factor that affects

the recurrence of HCC, and the prognosis of HCC varies based on

the different etiologies (Chen et al., 2006; Wong et al., 2017; Wang

et al., 2023). Therefore, the influence of different etiologies on HCC

recurrence should be considered in the establishment of a

prediction model.

In recent years, artificial intelligence has become an important

strategic tool for the development of science and technology and has

facilitated numerous breakthroughs in the medical field. It can be

used to extract information reflecting functional classification and

prognostic value from medical data, making it possible to predict the

intelligent risk of diseases and determine disease prognosis.

Radiomics enables the extraction of large-scale quantitative image

features, performing automated tumor segmentation and predictive

model development through advanced data mining techniques. By

deeply analyzing these extracted image characteristics, the technique

provides valuable decision-support tools for clinical practice. This

approach can assist physicians in achieving more accurate diagnostic
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assessments and planning treatments to improve patients’ outcomes

(Xia et al., 2024). Current prognostic models for HCC after surgery

are predominantly Computed Tomography (CT)-based (Ji et al.,

2019; Ji et al., 2020; Yan et al., 2024), while Magnetic Resonance

Imaging (MRI)-based studies remain limited and are mostly single-

center studies (Gao et al., 2022; Yu Y. et al., 2022; Kuang et al., 2024).

These factors have led to constrained generalizability and external

validity of existing findings. Therefore, this study aimed to establish

an early recurrence prediction model of HBV-HCC after microwave

ablation based on a deep learning method to predict early recurrence

in patients and provide a reference for the formulation of

clinical protocols.
2 Methods

2.1 Workflow

The research process of this study is shown in Figures 1, 2. The

research process comprised three steps: (1) image segmentation; (2)

image feature extraction and model construction; and (3)

nomogram model construction using clinical features and

imaging omics.
2.2 Patients

The study included patients from Qilu Hospital of Shandong

University and Shandong Provincial Hospital who were hospitalized

between January 1, 2017, and December 30, 2020. All patients were

diagnosed with HBV-HCC and underwent percutaneous microwave

ablation. The inclusion criteria are as follows: (1) patients in whom

HBV-HCC was clearly diagnosed; (2) without previous treatment

related to HC; (3) MRI was performed before treatment; and (4)

absence of other tumors. HBV-HCC was diagnosed according to the

2018 Practice Guidance by the American Association for the Study

of Liver Diseases (AASLD) (Marrero et al., 2018). The exclusion

criteria are as follows: (1) patients who had received other

treatments, such as transcatheter arterial chemoembolization

(TACE); (2) patients with incomplete information; (3) those that

were lost to follow-up; and (4) cases with poor MRI images. The

specific process is shown in Figure 3.

The primary endpoint was early recurrence (ER), defined as the

time from the start of treatment to recurrence within 1 year. This

retrospective study was approved by the Ethics Committee of

Shandong University Qilu Hospital (No. KYLL-2022(ZM)-961)

and Shandong Provincial Hospital (SWYX: No. 2022-079), and

the requirement for written informed consent was waived.
2.3 MRI acquisition and region of interest
segmentation

All patients were scanned using MRI (1.5T, MAGNETOM

Aera, Siemens Healthcare, Erlangen, Germany) before surgery
frontiersin.org
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using a 16-channel abdominal coil to receive signals. The patient

was placed in the supine position. The head was inserted into the

machine first, and the examination scope covered the entire liver. A

T2WI coronal scan was performed, followed by an axial breath-hold

fat suppression sequence T2WI (scan parameters: repetition time
Frontiers in Cellular and Infection Microbiology 03
(TR), 3000–4000 ms; echo time (TE), 90–104 ms; slice thickness, 5

mm; slice interval, 0.5 mm). Dynamic contrast-enhanced scanning

used axial breath-hold volume interpolated breath-hold

examination (VIBE) (TR: 3.92 ms, TE: 1.39 ms, flip angle: 9°,

slice thickness: 5 mm). The acquisition included T2-weighted
FIGURE 2

The process of establishing the Nomogram analysis in HBV-HCC.
FIGURE 1

Study flowchart.
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imaging (T2WI), T1-weighted imaging (T1WI), and diffusion-

weighted imaging (DWI). Images of the arterial phase (AP),

portal venous phase (PVP), and delayed phase (DP) were

obtained at 35 s, 50–65 s, and 5–8 min after the injection of the

contrast agent. We collected the required scanning sequence AP,

DP, T2WI, and DWI. Furthermore, AP, DP, T2WI, and DWI scan

images of the patient’s MRI were obtained from the PACS system

(DICOM format) and uploaded to ITK-SNAP software (Version

4.0.0-alpha-3). The radiologist delineated the region of interest

(ROI) on the four-phase images along the lesion edges. The ROI

mapping was performed independently by two radiologists with 6

years (physician 1) and 8 years (physician 2) of experience in

abdominal imaging diagnosis, respectively. The radiologists were

blinded to the purpose and content of the study. If the two

physicians disagreed, they were asked to discuss the areas of

disagreement and arrive at a consensus.
2.4 Deep learning-based radiomics score
construction and validation

Before extracting the radiomics features, the AP, PVP, and DP

images were preprocessed. Linear interpolation was used to

resample the images to 1 mm × 1 mm × 1 mm to attempt to
Frontiers in Cellular and Infection Microbiology 04
reduce the influence of different layer thicknesses. Afterwards, gray-

level discretization processing was applied to convert the

continuous images into discrete integer values to enhance the

robustness of the imaging features (Wu C. et al., 2022). The

inputs of the deep learning model had to be fixed-size images

containing the corresponding tumor area; therefore, the MRI

images were cropped using a 3D bounding box covering the

tumor region. The tumor image was then scaled to a voxel size of

64 × 64 × 32 as the input of the model. For each MRI sequence, we

built a 3D ResNet50 model to extract the deep learning-based

radiomics (DLR) features. Afterwards, the DLR features were

passed into a transformer network using multi-headed self-

attention that considered each DLR feature as a token and related

each element to every other element. Specifically, the image features

(fDP, fAP, fDWI, and fT2WI) of the four sequences were

concatenated to obtain Ftrans. After linear projections, the

concatenated features are mapped to the key (K) vector, query

(Q) vector, and value (V) vector, and a self-attention layer

computed a query-key product as described below:

SA(Q,K ,V) = softmax(
QKT

ffiffiffi

d
p

k

)V ,

The correlation was calculated by the dot product between the

Q vector and the K vector, and the attention score value was scaled
FIGURE 3

Flow chart of patients’ enrollment.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1638779
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2025.1638779
to 0–1 using the Softmax operation and multiplied with V to obtain

the optimized feature vector. A multi-head self-attention

mechanism was then applied, and the outputs were fused in a

weighted manner. After processing through the Transformer

module, we obtain the image feature representation Ftrans, which

contained fDP, fAP, fDWI, and fT2WI, and acted as the final feature

of the image. Finally, we combined the feature connections and used

a fully connected layer to compute the DLR score.
2.5 Development and validation of the
combination nomogram

Logistic regression analysis was used to screen for potential

clinical factors that may influence early recurrence after microwave

ablation, such as sex, age, hepatitis B surface antigen (HBsAg),

alpha-fetoprotein (AFP), alanine aminotransferase (ALT), aspartate

aminotransferase (AST), gamma-glutamyl transferase (GGT),

alkaline phosphatase (ALP), total bilirubin (TBIL), albumin

(ALB), hypersplenotrophy, hypertension, tumor number, and

tumor size. A combined model integrating the DLR score with

independent clinical factors was subsequently established via

multivariate logistic regression to enhance predictive accuracy. To

facilitate clinical application, a nomogram was constructed based on

the combined model, visualizing the contributions of each predictor

through a graphical scoring system that translates individual patient

data into a personalized probability of early recurrence within

1 year.
2.6 Statistical analysis

Clinical features were analyzed using the chi-square test or

Fisher’s exact test, as appropriate. Univariate logistic regression

analysis was performed to identify clinical factors associated with

early recurrence after microwave ablation, with variables having p-

values < 0.05 considered for inclusion in multivariate logistic

regression to construct the clinical model. The deep learning-

based radiomics features were extracted and fused as detailed in

the methods section, culminating in the computation of the DLR

score. Binary logistic regression was employed to develop the

radiomics model, clinical model, and combined nomogram

integrating the DLR score with selected clinical predictors. Model

discriminatory performance was evaluated using the operating

characteristic curve (ROC), calculating the area under the curve

(AUC) with 95% confidence intervals (CI), along with sensitivity,

specificity, accuracy, F1-score, positive predictive value (PPV), and

negative predictive value (NPV). Model calibration was assessed

using calibration curves. Clinical utility was determined using DCA

to quantify net benefits across various threshold probabilities. All

statistical analyses were performed using R software version 4.1.0 (R

Foundation for Statistical Computing, Vienna, Austria), SPSS

version 26.0 (IBM Corp., Armonk, NY, USA), and MedCalc

version 20.010 (MedCalc Software Ltd., Ostend, Belgium).
Frontiers in Cellular and Infection Microbiology 05
3 Results

3.1 Clinical characteristics of patients

A total of 166 individuals were included in this study, including

116 in the training group and 50 in the validation group. There were

70 patients (42.2%) with HBV-HCC recurrence within 1 year after

microwave ablation. A total of 116 patients were included in the

training group, 55 (47.4%) of whom had recurrence within 1 year,

while 15 (30.0%) of the 50 patients included in the validation group

also had recurrence within 1 year. The clinicopathological features

of the training group and the validation group are shown in Table 1;

the differences between the two groups were not statistically

significant (P < 0.05).
3.2 Modeling of deep learning-based
radiomics features

The ROC curve was used to evaluate the efficacy of the imaging

model in predicting HBV-HCC recurrence within 1 year after

microwave ablation. The DLR model we established in the

training group had an AUC of 0.847 (95% CI: 0.768–0.907), a

sensitivity of 94.5% (95% CI: 0.851–0.981), a specificity of 68.8%

(95% CI: 0.564–0.791), an accuracy of 81.0%, an F1-score of 82.5%,

a positive predictive value (PPV) of 73.3%, and a negative predictive

value (NPV) of 93.3% in the training group (Figure 4A, Table 2). In

the validation group, the AUC was 0.779 (95% CI: 0.639–0.884),

sensitivity was 73.3% (95% CI: 0.480–0.891), specificity was 77.1%

(95% CI: 0.610–0.879), accuracy was 76.0%, F1-Score was 64.7%,

PPV was 57.9%, and NPV was 87.1% (Figure 4B, Table 3).
3.3 Validation and evaluation of nomogram

Univariate logistic regression analysis was performed to identify

clinical factors associated with early recurrence after microwave

ablation; variables with p-values < 0.05, such as AST levels and

portal hypertension, were considered for inclusion in the

multivariate logistic regression to construct the clinical model

(Table 4). A clinical prediction model was established with an

AUC of 0.681 (95% CI: 0.588–0.765) and a sensitivity of 65.5% (95%

CI: 0.523–0.766), a specificity of 67.2% (95% CI: 0.547–0.777), an

accuracy of 66.3%, a F1-Score of 64.9%, a PPV of 64.3%, and an

NPV of 68.3% (Figure 5a, Table 2). Similarly, in the validation

group, the clinical model was established with an AUC of 0.771

(95% CI: 0.631–0.878), sensitivity of 60.0% (95% CI: 0.357–0.802),

specificity of 88.6% (95% CI: 0.740–0.955), accuracy of 80.0%, F1-

Score of 64.2%, PPV of 69.2%, and NPV of 83.7%.

(Figure 5c, Table 3).

Afterwards, we used the deep learning DLR score, AST, and

portal hypertension as factors for the multivariate logistic regression

analysis to build personalized prediction models. According to the

results of the multivariate logistic analysis, two independent clinical
frontiersin.org
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TABLE 1 Patients’ clinical features.

Characteristics (%)

Training group (n = 116)

P

Validation group (n=50)

PRecurrence
(n = 55)

Non-recurrence
(n = 61)

Recurrence (n
= 15)

Non-Recurrence
(n = 35)

Sex 0.366 0.773

Male 42 (76.4) 42 (68.9) 11 (73.3) 27 (77.1)

Female 13 (23.6) 19 (31.1) 4 (26.7) 8 (22.9)

Age(years) 0.527 0.447

≥50 45 (81,8) 47 (77.0) 14 (93.3) 30 (85.7)

<50 10 (18.2) 14 (23.0) 1 (6.7) 5 (14.3)

HBsAg (IU/mL) 0.623 0.440

≥1000 47 (85.5) 54 (88.5) 13 (86.7) 27 (77.1)

<1000 8 (14.5) 7 (11.5) 2 (13.3) 8 (22.9)

AFP (ng/mL) 0.284 0.416

≥20 28 (50.9) 25 (41.0) 10 (66.7) 19 (54.3)

<20 27 (49.1) 36 (59.9) 5 (33.3) 16 (45.7)

ALT (U/L) 0.155 0.037*

≥50 15 (27.3) 10 (16.4) 4 (26.7) 2 (5.7)

<50 40 (72.7) 51 (83.6) 11 (73.3) 33 (94.3)

AST (U/L) 0.019* 0.021*

≥40 27 (49.1) 17 (27.9) 9 (60.0) 9 (25.7)

<40 28 (50.9) 44 (72.1) 5 (40.0) 26 (74.3)

GGT (U/L) 0.332 0.440

≥60 18 (32.7) 15 (24.6) 4 (26.7) 6 (17.1)

<60 37 (67.3) 46 (75.4) 11 (73.3) 29 (82.9)

ALP (U/L) 0.374 0.736

≥125 9 (16.4) 14 (23.0) 2 (13.3) 6 (17.1)

<125 46 (83.6) 47 (77.0) 13 (86.7) 29 (82.9)

TBIL (mmol/L) 0.386 0.083

≥21 14 (25.5) 20 (32.8) 6 (40.0) 6 (17.1)

<21 41 (74.5) 41 (67.4) 9 (60.0) 29 (82.9)

ALB (g/L) 0.557 0.174

≤40 17 (30.9) 22 (36.1) 5 (33.3) 19 (54.2)

>40 38 (69.1) 39 (63.9) 10 (66.7) 16 (45.7)

Hypersplenotrophy 0.610 0.804

Positive 35 (63.6) 36 (59.0) 8 (53.3) 20 (57.1)

Negative 20 (36.4) 25 (41.0) 7 (46.7) 15 (42.9)

Portal Hypertension 0.009* <0.001*

Positive 13 (23.6) 4 (6.6) 9 (60.0) 4 (11.4)

Negative 42 (76.4) 57 (93.4) 6 (40.0) 31 (88.6)

(Continued)
F
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factors were combined with DLR scores to establish a clinical-

radiological model. The combined model showed the best

evaluation efficacy in both cohorts, with AUC, sensitivity, and

specificity in the training group being 0.868 (95% CI: 0.793–

0.924), 96.3% (95% CI: 0.877–0.990), and 67.2% (95% CI: 0.547–

0.777), respectively (Figure 5b, Table 2). The AUC, sensitivity, and

specificity of the validation group were 0.842 (95% CI: 0.711–0.930),

80.0% (95% CI: 0.548–0.930), and 83.8% (95% CI: 0.673-0.919),

respectively (Figure 5d, Table 3). In terms of accuracy, the

nomogram also outperformed other models (training group,

81.0% vs. DLR: 81.0%, clinical: 66.3%; validation group, 82.0% vs.

DLR: 76.0%, clinical: 80.0%). In addition, the F1-score was highest

for the nomogram (training group, 0.828, vs. DLR: 0.825, clinical:

0.649; validation group, 0.727 vs. DLR: 0.647, clinical: 0.642),

reflecting its balanced performance in imbalanced data scenarios.

Regarding negative predictions, the nomogram also demonstrated

the best NPV in both the training group (95.3% vs. DLR: 93.3%,

clinical: 68.3%) and the validation group (90.1% vs. DLR: 87.1%,

clinical: 83.7%), indicating high reliability in ruling out the target
Frontiers in Cellular and Infection Microbiology 07
condition. The nomogram emerged as the most robust tool,

combining high discriminative power (AUC) with balanced

sensitivity-specificity profiles. Finally, we visualized the model as a

nomogram for clinicians (Figure 5e).
3.4 Performance of the combination
nomogram

A calibration curve and the Hosmer-Lemeshow goodness-of-fit

test showed that the predicted value and the actual result had a good

fit in the training and validation groups (Figures 6a, b). We used

decision curve analysis (DCA) to evaluate whether this nomogram

could contribute to clinical treatment strategies. The DCA curves

(Figures 6c, d) showed that the nomogram had a good net benefit in

predicting HBV-HCC recurrence within 1 year after microwave

ablation at most threshold ranges of 0.1–1.0. This indicates that

patients with HBV-HCC can benefit immensely from the use of

this nomogram.
TABLE 1 Continued

Characteristics (%)

Training group (n = 116)

P

Validation group (n=50)

PRecurrence
(n = 55)

Non-recurrence
(n = 61)

Recurrence (n
= 15)

Non-Recurrence
(n = 35)

Tumor number 0.233 0.736

>1 40 (72.7) 50 (82.0) 11 (73.3) 24 (68.6)

≤1 15 (27.3) 11 (18.0) 4 (26.7) 11 (31.4)

Tumor size (cm) 0.747 0.895

≥2 42 (76.4) 45 (73.8) 10 (66.7) 24 (68.6)

<2 13 (23.6) 16 (26.2) 5 (33.3) 11 (31.4)
fro
HBsAg, hepatitis B surface antigen; AFP, alpha-Fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; ALP, alkaline phosphatase;
TBIL, total Bilirubin; ALB, albumin.*P<0.050.
FIGURE 4

ROC curves of the DLR-score. (a) DLR-score in the training group. (b) DLR-score in the validation group. DLR, deep learning-based radiomics.
ntiersin.org

https://doi.org/10.3389/fcimb.2025.1638779
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2025.1638779
4 Discussion

HCC is one of the leading causes of cancer-related death

worldwide, with HBV infection being a major cause of HCC. In

China, where hepatitis B prevalence is high, more than 80% of HCC
Frontiers in Cellular and Infection Microbiology 08
cases are associated with HBV infection (WHO Guidelines

Approved by the Guidelines Review Committee, 2015). Although

HBV is currently being effectively controlled, completely curing

HBV-HCC is still challenging (He et al., 2024). Although there have

been great advances in the treatment of HCC, the prognosis of HCC
TABLE 2 Diagnostic value of different models in the training cohort.

AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

F1-Score
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

DLR model
0.847
(0.768–0.907)

0.810
(0.729–0.871)

0.945
(0.851–0.981)

0.688
(0.564–0.791)

0.825
(0.745–0.896)

0.732
(0.619–0.821)

0.933
(0.821–0.977)

Clinical model
0.681
(0.588–0.765)

0.663
(0.574–0.743)

0.655
(0.523–0.766)

0.672
(0.547–0.777)

0.649
(0.550–0.745)

0.643
(0.512–0.755)

0.683
(0.558–0.787)

Nomogram
0.868
(0.793–0.924)

0.810
(0.730–0.871)

0.963
(0.877–0.990)

0.672
(0.547–0.777)

0.828
(0.752–0.890)

0.726
(0.614–0.815)

0.953
(0.845–0.987)
DLR, deep learning-based radiomics; AUC, area Under curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value.
TABLE 3 Diagnostic value of different models in the validation cohort.

AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

F1-Score
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

DLR model
0.779
(0.639–0.884)

0.760
(0.626–0.857)

0.733
(0.480–0.891)

0.771
(0.610–0.879)

0.647
(0.435–0.821)

0.579
(0.363–0.769)

0.871
(0.711–0.949)

Clinical model
0.771
(0.631–0.878)

0.800
(0.670–0.888)

0.600
(0.357–0.802)

0.886
(0.740–0.955)

0.642
(0.364–0.821)

0.692
(0.424–0.873)

0.837
(0.689–0.923)

Nomogram
0.842
(0.711–0.930)

0.820
(0.692–0.902)

0.800
(0.548–0.930)

0.838
(0.673–0.919)

0.727
(0.500–0.880)

0.667
(0.437–0.837)

0.901
(0.758–0.968)
DLR, deep learning-based radiomics; AUC, area Under curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value.
TABLE 4 Univariate and multivariate logistic regression of the clinical factors associated with early recurrence after HBV-HCC microwave ablation in
training group.

Variables
Univariate analysis Multivariate analysis

p OR (95% CI) p OR (95% CI)

Male 0.367 1.462(0.641–3.335)

Age (≥50 years) 0.527 1.340(0.540–3.326

HBsAg (≥1000 IU/mL) 0.623 0.762(0.257–2.259)

AFP (≥20 ng/mL) 0.285 1.493(0.716–3.113)

ALT (≥50 U/L) 0.158 1.912(0.777–4.708)

AST (≥40 U/L) 0.020 2.496(1.156–5.390) 0.008 5.299(1.555–18.055)

GGT (≥60 U/L) 0.333 1.492(0.663–3.355)

ALP (≥125 U/L) 0.376 0.657(0.259–1.666)

TBIL (≥17.1 mmol/L) 0.387 0.700(0.312–1.571)

ALB (≤40 g/L) 0.557 0.793(0.365–1.721)

Hypersplenotrophy 0.610 1.215(0.574–2.572)

Portal Hypertension 0.014 4.411(1.343–14.490) 0.010 2.885(1.292–6.445)

Tumor number (>1) 0.236 1.705(0.705–4.118)

Tumor size (≥2 cm) 0.747 0.871(0.374–2.025)
OR, Odds Ratio.
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remains poor due to its high recurrence rate and high metastasis

rate. Currently, the recurrence rate after radical treatment was 50–

80% (Ikai et al., 2007). Liver transplantation is the most effective

method for early HCC; however, it is only beneficial for a small

group of patients due to its high cost, strict indications, and limited

access to liver sources (Zheng et al., 2020). In recent years,

microwave ablation has received increasing attention from

clinicians because of its minimal trauma, faster recovery, fewer

complications, and shorter hospital stay (Yu J. et al., 2022).

Microwave ablation also requires regular and effective follow-up

monitoring, similar to surgical resection. However, it still carries a

high recurrence risk, particularly within the first 2 years post-

procedure (Rimola et al., 2020). Therefore, establishing a

recurrence prediction model for patients with HBV-HCC after

microwave ablation could enable early identification of high-risk

cases. This would facilitate personalized treatment strategies and

potentially reduce recurrence rates. In this study, deep learning

methods were used to extract deep features from multimodal MRI

before microwave ablation of early liver cancer; a transformer

model based on cross-modal fusion was also constructed to

calculate the DLR score. Combined with clinical indicators, a

comprehensive nomogram was established to predict the

recurrence of HBV-HCC after microwave ablation.

In recent years, with the development of artificial intelligence,

several studies have explored the use of imaging omics to establish

predictive models to predict HCC recurrence after microwave

ablation. Wu et al. applied the convolutional neural network
Frontiers in Cellular and Infection Microbiology 09
ResNet 18 and Pyradiomics to analyze gray ultrasound images,

combined with clinical indicators, and established a prediction

model to predict the prognosis and differentiation degree of HCC

(Wu JP. et al., 2022). A 2022 study that developed a response

algorithm based on multi-parameter MRI and clinical variables,

retrospectively analyzed 339 patients to predict recurrence after

microwave ablation of HCC (Zhang et al., 2022). Yuan et al.

extracted a set of 647 radiomics features from enhanced

computed tomography images and combined them with clinical

features to build a model for predicting HCC recurrence after

ablation (Yuan et al., 2019). However, these studies failed to

differentiate HCC cases based on etiology, as they either relied

solely on a single-center internal validation without external

verification. Additionally, their use of convolutional neural

network algorithms limited effective simulation of global and

remote semantic interactions. However, we developed a

transformer-based method for predicting HCC recurrence after

microwave ablation, and our results indicate that it achieved a

high predictive accuracy. In the training set, the AUC of the

established imaging module DLR score was 0.847, and the AUC

of the verification group was 0.779. Moreover, this study

incorporated data from two research centers to enhance the

model’s reliability. One center serves as the modeling group,

while the other functions as the verification group, ensuring the

stability, feasibility, and accuracy of the predictive model.

Furthermore, to achieve full fusion of MRI multi-modal

information and avoid loss of tumor region details, we applied a
FIGURE 5

ROC curves and nomogram of the clinical-radiomics model. (a) Clinical feature model in training group. (b) Clinical-radiomics model in training
group. (c) Clinical feature model in validation group. (d) Clinical-radiomics model in validation group. (e) Nomogram developed to predict
recurrence. ROC, receiver operating characteristic curve.
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FIGURE 6

Calibration curves and DCA curves of the combination nomogram. (a) Calibration curves in the training group. (b) Calibration curves in the validation
group. (c) DCA curves in the training group. (d) DCA curves in the validation group. DCA, decision curve analysis.
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deep learning transformer model. With its powerful global

information capture capability and self-attention mechanism, the

transformer has demonstrated outstanding performance in clinical

image processing. By adjusting the network structure, enhancing

the feature extraction ability, and optimizing the self-attention

mechanism, the model improved the performance of information

fusion, detail processing, and work efficiency (Han et al., 2023). We

developed a deep learning-based prognostic model for early HCC

recurrence post-microwave ablation that was capable of accurately

predicting 1-year recurrence outcomes through comprehensive

multi-modal image analysis. This model can assist clinicians in

making more precise diagnostic and therapeutic decisions regarding

microwave ablation treatment strategies.

Nomograms, a combination of omics and clinical markers, have

been widely used to predict the prognosis of HCC. In this study, a

prognostic model for HBV-HCC was also constructed based on

deep learning and clinical factors. Consistent with the findings of

previous studies, AST levels and portal hypertension were identified

in this study as risk factors for postoperative recurrence of HCC (Xu

et al., 2019; Liu et al., 2023). In this study, the AUC of the predictive

model constructed by clinical factors in the modeling group and the

validation group was 0.681 and 0.771, respectively, while the AUC

was significantly improved when combined with the DLR-SCORE,

as they increased to 0.868 and 0.842, respectively. This suggests that

DLR-SCORE can improve the diagnostic performance of models
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constructed of clinical factors. Therefore, our proposed nomogram

for predicting recurrence post-microwave ablation in patients with

HBV-HCC could be a potential tool for preoperative evaluation.

The traditionally recognized risk factors for HCC recurrence,

such as AFP level and tumor size, have indeed been widely validated

in various clinical studies (He et al., 2018; He et al., 2023). However,

in our cohort, these variables were not statistically significant in the

multivariate analysis. We believe there might be the following

reasons. First, there might be cohort characteristics and selection

bias. Our study exclusively included HBV-HCC patients who

underwent microwave ablation and had relatively early-stage

tumors based on inclusion criteria. The range of tumor sizes was

narrow, mostly ≤ 3 cm. Several patients had AFP levels that were

within the normal limits or only slightly elevated, possibly due to

early detection through regular surveillance in HBV-endemic

regions. These restrictions reduced the variability and statistical

power of AFP and tumor size in the multivariate model. Second,

these variables might not have been significant in this study due to

the unique biological effects of ablation. Microwave ablation

induces tumor necrosis through thermal coagulation, and its

effectiveness may be more dependent on technical factors, such as

ablation margin and energy deposition, and the peritumoral

microenvironment, rather than tumor size. In small HCCs (≤ 3

cm), complete ablation is often technically achievable, potentially

blunting the predictive value of tumor size on early recurrence.
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Third, the outstanding predictive ability of radiomics features. Our

transformer-based deep learning model extracted multi-parametric

radiomic features from preoperative MR images, capturing both

intra-tumoral heterogeneity and subtle peritumoral changes not

reflected by tumor size alone. These high-dimensional features

likely absorbed the variance traditionally explained by size and

AFP, resulting in a lower relative contribution of these classic

markers in the final model. Fourth, statistical considerations may

have influenced our analysis. In multivariable analysis, collinearity

and feature selection via regularization or stepwise methods may

result in classic variables (e.g., AFP) being excluded in favor of

stronger, non-redundant predictors such as radiomics scores. This

does not imply that AFP or tumor size were irrelevant but rather

that in this specific, early-stage, and treatment-homogeneous

cohort, their incremental value was limited. Therefore, our results

suggest that deep learning-based radiomics features, when

integrated with key clinical parameters, such as liver function and

portal hypertension, can outperform traditional single clinical

indicators in predicting early recurrence. This highlights a

potential change in basic assumptions towards imaging-based,

data-driven risk stratification in the context of curative ablation.
4.1 Limitations

Our study has some limitations. First, this was a retrospective

study. Prospective studies have better control of confounding

factors and bias; therefore, we aim to design prospective studies

in the future to further verify our conclusions. Second, while our

external validation cohort (n=50) was well-characterized, its modest

size and single-institution origin may limit its generalizability across

diverse populations or imaging protocols. Multicenter validation is

essential to confirm robustness, particularly for rare subtypes or

borderline cases. Preliminary cross-institutional data (not included

here) also suggest reproducible performance, supporting the

scalability of our approach. To address this, we have initiated a

prospective multicenter trial to pool data from heterogeneous

sources, ensuring broader applicability. Beyond validation,

seamless clinical integration is critical. We aim to develop an

implementation framework to embed the nomogram as a

DICOM-compatible tool within PACS, enabling automated risk

score generation alongside radiology reports. Feedback from

clinicians (e.g., via Likert-scale surveys) will guide usability

refinements, ensuring practical utility. Regulatory considerations

will also be addressed for clinical deployment. Third, in our study,

the deep learning model was designed to process the ROI that

encompasses the tumor, as annotated by the radiologists, allowing

for image features to be learned effectively from the ROI. A key

advantage of employing deep learning in radiomics analysis is its

robustness to variations in boundary delineation. While inter-

observer variability was not quantitatively assessed (e.g., via Dice

similarity coefficient or Kappa statistics) due to the model’s

resilience to such variations, future studies could incorporate such

evaluations for enhanced reproducibility. Additionally, we

deliberately excluded the portal venous phase (PVP) due to
Frontiers in Cellular and Infection Microbiology 11
inconsistent image quality and a lack of standardization across

retrospective datasets, thereby ensuring model reliability and

generalizability. Despite this omission, our model achieved strong

performance (AUCs 0.868–0.842) by effectively leveraging AP, DP,

T2WI, and DWI sequences, demonstrating their sufficiency for

recurrence prediction. While we acknowledge the clinical value of

PVP, its exclusion was justified in this real-world study; however, in

future prospective studies, we will assess its incremental benefit

under standardized protocols. Finally, in China, most HCC cases

were caused by HBV infection; therefore, the participants included

in this study were patients with HBV-HCC. Since the prognosis of

HCC is different due to different etiologies, the model needs to be

further validated in patients with HCC due to other etiologies prior

to its large-scale application.
5 Conclusion

In summary, we developed a transformer-based deep learning

method to mine the correlation between different sequence MRI

data to calculate the DLR score. Afterwards, we established a

nomogram that combines MRI and clinical factors to predict the

recurrence of early hepatocellular carcinoma after microwave

ablation. This provides valuable information for personalized

treatment and optimized management and an accurate and

reliable basis for clinical decision-making.
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