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Nanobodies in animal
infectious disease control:
diagnosis and therapy
Jing Wang †, Tiejin Tong † and Qiang Wu*

School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
Animal infectious diseases threaten livestock productivity, public health, and food

security. Traditional monoclonal antibodies (mAbs) face limitations in diagnostics

and therapy due to their large size, instability, and high cost. Nanobodies (Nbs),

derived from camelid heavy-chain antibodies, offer superior properties—small size

(~15 kDa), high stability, deep tissue penetration, and cost-effective production.

Nbs feature extended CDR3 loops, enabling access to cryptic epitopes, and exhibit

exceptional thermal/pH stability. They are generated by immunizing camelids,

cloning VHH genes, and screening via phage/yeast display. High-throughput

methods (ELISA, flow cytometry) allow rapid isolation of high-affinity Nbs.

Compared to mAbs, Nbs are economically produced in prokaryotic systems and

engineered into multivalent or Fc-fused formats for enhanced efficacy. In

diagnostics, Nbs enable sensitive, low-cost detection of pathogens like PRRSV,

ASFV, and avian influenza. Nb-based competitive ELISAs and lateral flow assays

improve field surveillance. Therapeutically, Nbs neutralize pathogens by targeting

viral proteins (e.g., blocking PRRSV-CD163 entry) or bacterial toxins (e.g.,

Staphylococcus enterotoxins). Nb-Fc fusions degrade ASFV proteins via TRIM-

away, while intracellular Nbs disrupt Mycobacterium ESAT-6 or Toxoplasma actin

dynamics. Challenges remain in Nb affinity optimization, intracellular delivery, and

in vivo half-life. Solutions include fusion with cell-penetrating peptides or viral

vectors (e.g., adenoviruses). Reducing cross-species immunogenicity and scaling

production are critical for broader adoption. With advances in protein engineering,

Nbs hold transformative potential for preventing, diagnosing, and treating animal

diseases, offering scalable solutions for global health and food security.
KEYWORDS

nanobodies, animal infectious diseases, diagnostics, therapeutics, phage display,
PRRSV, ASFV
1 Introduction

Animal infectious diseases are major obstacles to the healthy development of the

livestock industry, posing serious threats to human health and public health security,

particularly with the increasing occurrence of emerging and re-emerging diseases in recent

years (Torres-Velez et al., 2019; Chala and Hamde, 2021). These emerging diseases are often
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characterized by sudden and large-scale outbreaks due to delayed

implementation of control measures or the lack of effective

diagnostic tools and vaccines, resulting in substantial economic

losses to the livestock sector and productivity (Pathakumari et al.,

2020). As the ideal approach for preventing and controlling animal

infectious diseases, vaccination is still the most effective way, yet,

limited by techniques, no effective vaccines have been prepared for

most animal diseases (Bezbaruah et al., 2022). Hence rapid, sensitive,

and specific diagnosis becomes particularly important in the

prevention and control of animal diseases. High specificity and

sensitivity of antibodies serve as reagents most suitable for

developing diagnostic sera, and provide great potential for

therapeutic applications. Therefore, antibody plays a key role in

the prevention and control of animal infectious diseases

(Thiviyanathan and Gorenstein, 2012). The antibodies

development has passed through three stages: polyclonal antibody,

monoclonal antibody, and small-molecule antibody (nanobody

represented antibody) (Lipman et al., 2005; Thiviyanathan and

Gorenstein, 2012; Medina Perez et al., 2024). The antibody used in

practice first time is polyclonal antibody, because the specificity of

the antibody is relative low, it is not very useful. In order to obtain

antibodies which possess higher specificity, monoclonal antibodies

were developed (Ramdani et al., 2022). These antibodies can bind to

specific antigens and showed tremendous promise in various clinical

uses such as alleviating viral infections and cancers. With the

development of genetic engineering tools, researchers have further

engineered antibodies to achieve better functional properties (Nema

and Nitika, 2023). Because of the complicated nature of the

traditional monoclonal antibodies, relatively large molecular

weight and expensive production cost, some limitations exist when

monoclonal antibodies are used in practice. Different with the

traditional monoclonal antibodies, small-molecule antibodies

(nanobodies, Nbs) is small with a simple structure and more

convenient to modify genetically, which are more conducive to

large scale production and application (Jin et al., 2023).
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2 Overview of Nbs

Nbs are natural heavy chain antibodies (HCAbs) devoid of their

light chains. This novel type of antibodies was originally identified

and christened by a team at the University of Brussels in 1989.

HCAbs are present in members of the Camelidae family and are

distinguished in that they do not feature the CH1 domain that

serves as a pairing partner of light chains (Muyldermans, 2013).

Rather, HCAbs are formed by two heavy chains each comprised of a

single variable antigen-binding domain (VHH) (Qin et al.,

2022) (Figure 1).

HCAbs can bind to almost any kind of antigen and are the

smallest naturally occurring, stable antigen-binding units, and thus

named “nanobody”. Nbs are small ellipsoidal proteins, that

structurally comprise a crystallizable Fc region, which is

homologous to other antibodies (Percipalle et al., 2021). They

have potential to operate as monomeric antibodies binding to a

wide variety of antigens. In comparison with traditional antibodies,

Nbs present various benefits:

Small Size:

Nbs are the smallest antibody fragments identified to date, at

about one tenth of the size of normal antibodies. Nbs are defined by

a longer-than-expected complementarity-determining region 3

(CDR3), responsible for the antigen-binding site. Because Nbs

have a very small size and a particular shape, they can access an

epitope, usually located deep in folded proteins (clefts, pockets,

grooves, exposed surface). Notably, small size doesn’t hamper their

binding affinity (Liu et al., 2023).

Favorable Biochemical Properties:

Besides the size benefits, there are other biochemical benefits

associated with Nbs. They are very stable even at high-temperature

stress, a feature attributed to long CDR3 sequences and ability to re-

fold after denaturation. Thermal stability can be further improved

with the choice of Nbs featuring an extra disulfide bridge, extending

the CDR3 area or replacement of certain amino acid residues at the
FIGURE 1

The differences between traditional monoclonal antibodies and Nbs. (A) Structural diagram of a conventional antibody, consisting of heavy and light
chains. (B) Structural diagram of a nanobody.
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N-terminus. In addition, Nbs are highly soluble. The hydrophilic

framework region 2 (FR2) prevents them from aggregating and

enables them to behave as monomers. They are furthermore

insensitive towards proteolytic activity and changes in pH, and on

account of their microsize tissue penetration is promoted (Mujic-

Delic et al., 2014).

Ease of Production:

Nbs can be conveniently expressed in conventional prokaryotic

expression system or in mammalian eukaryotic expression system.

If they are fused with affinity tag like a His-tag, they can be readily

purified by immobilized metal affinity chromatography (IMAC).

Alternatively, if Nbs are fused with Fc domains that are homologous

to human VH regions, they can be purified by protein A affinity

chromatography (Gonzalez-Sapienza et al., 2017).
3 Generation of Nbs

Owing to their incredible small size, Nbs have a number of

advantages in comparison to monoclonal antibodies (mAb) and

single-chain variable fragments (scFv), such as excellent affinity to

unveil hidden epitopes, exceptional stability at low pH and high

temperatures, genetic easiness in engineering, the ability of being

expressed in prokaryotic hosts and low production costs (Jin et al.,

2023). Due to these, Nbs are a promising alternative to generate

antibody-based therapy for medical use. To elicit an antigen-specific

Nb response, camelid animal (typically a llama or a camel) can be

immunized with the target antigen (Jovcevska and Muyldermans,

2020). The acquired Nb sequences are then further synthesized into

a phage or yeast display system to form an immune library and

subjected to downstream screening/selection. The standard

procedure for the selection of antigen-specific Nbs consists of the

following steps: Camelids (e.g., alpacas) are immunized repeatedly

over 3–10 weeks with the target antigen. Peripheral blood

mononuclear cells (PBMCs) are then harvested, total RNA is

isolated, complementary DNA (cDNA) is generated with random
Frontiers in Cellular and Infection Microbiology 03
primers and after a nested PCR, using primers specific for Nbs, the

VHHs are amplified. The amplified VHH fragments are inserted to

an appropriate expression vector and the recombinant plasmids are

transformed into Escherichia coli or yeast cell for expression. High-

affinity Nbs candidates are selected by highthroughput methods as

enzyme-linked immunosorbent assay (ELISA), or display

technologies based on flow cytometry (Ding et al., 2023). The

screening enables the qualitative selection of Nbs showing a high

binding to the target antigen (Figure 2).

Immunize llamas with target antigens, isolate peripheral blood

lymphocytes, extract RNA to construct VHH phage libraries via PCR

amplification, screen for antigen-specific Nbs, then express and purify

the selected Nbs for diagnostic or therapeutic applications.
4 Nb screening technologies

Surface display platforms that permit Nb screening are of

different types such as phage display, yeast surface display,

bacterial surface display, ribosome display and eukaryotic cell

display systems (Figure 3). These can be integrated with high

throughput identification systems like flow cytometry and next-

generation sequencing (NGS) systems, and can be used with

computer-assisted affinity maturation and in vitro optimization

systems to optimize the Nb function and reliability. Libraries of

Nbs can be of immune or non-immune source libraries (Tang

et al., 2024).

Nb can be displayed on three key platforms: (1) Phage display

(fusion of the VHH gene with phage coat proteins such as M13 pIII

to express Nbs on the phage surface, forming a selectable library);

(2) Yeast display (surface expression of Nbs in Pichia pastoris or

Saccharomyces cerevisiae by fusing the VHH gene with yeast cell

wall proteins like Aga2, followed by high-affinity clone screening via

FACS); and (3) Ribosome display (a cell-free in vitro technique that

immobilizes mRNA-ribosome-Nb ternary complexes for direct

VHH screening without transformation or host cells).
FIGURE 2

The preparation process of Nbs.
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4.1 Phage display

Phage display was an efficient technique to produce selective

antibodies for tumor-related antigens, viruses, bacteria and other

targets. Since being made by McCafferty et al. over 30 years, phage

antibody display has become a widely used method for Nb screening

(Liu et al., 2021). The construction and validation of camelid-derived

nanobody phage display libraries is a standard approach for isolating

Nbs against various antigens. Phage display is a method of clonal

protein display that inserts the coding DNA for a foreign peptide/

protein into the coding gene of phage coat protein gene, thus the

exogenous protein is expressed displayed on the phage surface when

the phage particle is assembled, and the expressed displayed peptides/

proteins can maintain original spatial configuration and biological

activity, which can specifically recognize and bind target molecules

(Salvador et al., 2019). This approach provides a quick screening

process on the large library with much higher efficiency and costs less

compared with the conventional hybridomas technique. It displays

various scFv libraries on the surface of filamentous phage, selectively

binding to the antigen. The in vitro evolution is achieved through

multiple rounds of biopanning that to enrich the high affinity clones to

the corresponding target antigen. Filamentous phage display, lytic

phage display and T4 phage display systems are the commonly used

phage display systems. Phage display has a broad range of

applications, although there are also a number of constraints with

regard to its practicality (Jin et al., 2023). Some of them are listed

as follows:

4.1.1 Library size and diversity constraints
Phage display requires bacterial transformation and phage

packaging, and in some systems, a transmembrane secretion

process, which significantly limits the size and molecular diversity
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of the constructed libraries. Yuan Dong et al. enhanced the scalability

of the phage display library by constructing a human scFv phage

display library based on the Cre-LoxP recombination system.

Advances in biotechnology will enable the development of novel

methods to improve the scalability of phage display systems.

4.1.2 Expression bottleneck
There is no guarantee all series can be easily expressed into the

phage system because some protein need correct folding, trafficking

and insertion into membrane or even complex formation to work.

Selective pressure for screening needs to be applied. For instance,

disordered folded proteins may be degraded quickly in bacteria cells

which requires strenuous control of experimental condition to keep

the displayed library intact.

4.1.3 Limited post-construction modifiability
Once a phage display library is constructed, it is difficult to

introduce effective in vitro mutagenesis or recombination, which

restricts the molecular diversity and evolutionary potential of

the library.

4.1.4 Toxicity of target molecules
Because phage display is dependent on intracellular gene

expression, it is challenging to express and display molecules that

are toxic to host cells, such as certain biotoxins.
4.2 Bacterial surface display

Bacterial surface display is a technique that utilizes genetic

engineering to present functional peptide or protein fragments

(target proteins) on the cell surface by fusing them with bacterial
FIGURE 3

Nb screens different surface display platforms.
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outer membrane proteins (carrier proteins). This method relies on

membrane-anchoring motifs, which facilitate the translocation of

heterologous peptides across the cell membrane to the extracellular

surface. Bacterial display offers several advantages, including high

transformation efficiency, rapid growth rates, and genetic stability

(Duan et al., 2021). In addition, this technique can be combined

with flow cytometry for the screening of antibodies specific to target

antigens. Fusion of the exogenous protein with the carrier protein

can be achieved in three main formats: C-terminal fusion (with the

N-terminus anchored in the outer membrane), N-terminal fusion

(with the C-terminus anchored), and sandwich fusion (insertion of

the foreign protein at a permissive internal site within a carrier

protein that contains both a signal peptide and outer membrane

anchor sequence). In traditional bacterial surface display systems,

the exogenous protein is typically fused to bacterial outer

membrane proteins, lipoproteins, or structural subunits of surface

appendages (such as pili and flagella). More recently, alternative

anchoring scaffolds such as ice nucleat ion proteins ,

autotransporters, and S-layer proteins have also been utilized.

Early studies primarily focused on Gram-negative bacteria due to

their well-characterized genetic backgrounds, which facilitate

precise control over protein display. However, from an

application standpoint, Gram-positive bacteria offer several

advantages: they can tolerate the insertion of larger exogenous

proteins, have only a single cytoplasmic membrane to traverse,

and possess a thick but accessible cell wall, making them more

amenable to surface display (Jovcevska and Muyldermans, 2020).

When combined with fluorescence-activated cell sorting

(FACS) or flow cytometric analysis, bacterial surface display

becomes a powerful high-throughput screening method. The

main advantages of this approach include:
Fron
1. The ability to determine the functional properties of each

clone within a mutant library and quantitatively analyze

enzymatic activity;

2. Currently the only method capable of quantitatively

assessing catalytic activity at the single-cell level across

large mutant populations;

3. Simultaneous detection of multiple parameters with the

capacity to record and track each individual clone.
Compared to phage display, bacterial surface display offers

unique advantages in vaccine development, enabling faster and

more efficient screening. However, it also presents certain

limitations, such as size constraints of displayed proteins,

mislocalization, inclusion body formation, and outer membrane

instability. Therefore, ongoing efforts are required to develop novel

display systems and further optimize the technology for

broader applications.
4.3 Yeast surface display

Yeast surface display is a eukaryotic protein expression system

that has developed rapidly in recent years. The basic principle
tiers in Cellular and Infection Microbiology 05
involves fusing a gene encoding a foreign target protein with the C-

terminal coding sequence of a yeast-encoded agglutinin (which

contains a GPI anchor signal sequence), and inserting the fusion

gene downstream of a signal peptide in a plasmid vector. Upon

induction, the fusion protein is directed for extracellular secretion

via the signal peptide, and the C-terminal GPI-anchored agglutinin

sequence facilitates anchoring of the protein to the yeast cell wall,

thereby displaying the protein on the yeast cell surface. This system

was developed following the success of phage display technologies.

Yeast cells are relatively large, which makes them well-suited for

screening and sorting by flow cytometry. Currently, the most

commonly used yeast surface display systems are: (1) target

protein–a-agglutinin fusions, and (2) a-agglutinin–target protein
fusions. In the former, the target protein is fused to the N-terminus

of the C-terminal portion of a-agglutinin, and the complex is

displayed on the yeast cell surface. The agglutinin is covalently

linked to the glucan network of the cell wall through its C-terminal

320 amino acid residues, which are rich in serine/threonine (Ser/

Thr) residues. These Ser/Thr-rich regions are extensively O-

glycosylated, forming a rod-like structure that acts as a spatial

scaffold for display. To date, multiple heterologous proteins have

been successfully displayed using the C-terminal domain of a-
agglutinin, with the first reported example being a-galactosidase
(Muyldermans, 2013).

Currently, yeast surface display has been widely applied in

protein–protein interaction studies, directed evolution, and novel

vaccine development. In terms of directed evolution, this system has

been successfully used to evolve proteins for improved affinity and

stability, with one of the earliest applications being antibody affinity

maturation (McMahon et al., 2018). In vaccine development, yeast

cells can serve as live oral vaccines. Proteins displayed on the yeast

surface are readily accessible to antibodies and thus easily

recognized by the immune system. Even small peptides can

become immunogenic when displayed on the cell surface, making

yeast a promising platform for expressing heterologous antigenic

proteins for vaccine development. Yeast surface display offers

several advantages. It mimics the natural process of antibody

selection that occurs in the human immune system and enables

the identification of polyclonal populations with different binding

specificities in a single experiment (Kajiwara et al., 2020).

Compared to phage and bacterial display systems, yeast enables

post-translational modifications and correct folding of complex

eukaryotic proteins. Moreover, glycosylation improves antibody

solubility, and co-expression of chaperone proteins facilitates

proper folding in the endoplasmic reticulum. Although the library

capacity is relatively limited (~107–109 clones), the diversity is high,

and unique high-affinity antibodies can be readily isolated with

simple screening steps.
5 The application of Nbs

Nbs have shown broad application prospects in multiple fields

such as biomedicine, diagnosis, treatment and biotechnology due to

their unique structural advantages, stability and good affinity. The
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following is an overview of its application value from several

main directions:
5.1 Application in inhibition and monitoring
of virus infection

PRRSV (Porcine Reproductive and Respiratory Syndrome

Virus) is a significant swine pathogen. As of now, it is lack of

broadly applicable anti-PRRSV strategies. Recently, Deng et al.

identified several high affinity anti-CD163 Nbs. Of interest, Nb2

exhibited substantial inhibitory effects on diverse PRRSV lineages

and suppressed virus-related NF-kB signaling by interfering with

viral attachment and reducing CD163 transcription. In particular,

the SRCR5 domain of CD163, a critical region implicated in PRRSV

infection, was recognized by these Nbs, thereby facilitating the

establishment of broad-spectrum approaches against PRRSV.

Similarly, Yang et al. developed Nb-peptide conjugates (NPCs) by

fusing PRRSV-specific, non-neutralizing Nbs with peptides derived

from CD163 that recognize the receptor-binding domain (RBD) of

PRRSV proteins. These NPCs showed potent inhibitory activities

against diverse lineages of PRRSV (Yang H. et al., 2024). In

addition, Zhou et al. screen a nanobody with the neutralizing

activities for PRRSV. By integrating the adhesion protein and Nb,

the probiotics enhanced its adhesion to IPEC-J2 cells and thus was

utilized to prevent PRRSV fecal transmission (Zhou et al., 2024).

Notably, Nbs were also employed to develop enzyme-linked

immunosorbent assay for PRRSV, indicating high sensitivity and

accuracy (Duan et al., 2021; Sun et al., 2024). Importantly, the Nb

could suppress PRRSV replication by inhibiting self-interaction of

the viral nucleocapsid protein (Duan et al., 2024).

African swine fever virus (ASFV) is a virulent swine pathogen

that causes huge losses to the swine industry. ASFV is large in size,

thus vaccines of great efficacy are in urgent needed; however, Nbs

targeting ASFV proteins are developed by many research groups of

monitoring. Nbs of CD2v, p54, and p72 have been used to develop

ELISA kit to monitor ASFV infection (Zhang et al., 2022; Zhao H.

et al., 2022; Zhao J. et al., 2022; Zhu et al., 2024). Interestingly, Nbs

are also helpful to identify epitopes of host immnuno-recognization.

Zhao et al. screened one Nb via utilizing ASFV P54. The epitope

recognized by this Nb also was reactive to the inactivated serum of

ASFV naturally infected pigs (Zhao et al., 2023). Similarly, Wei et al.

identified an epitope by utilizing ASFV K205R under the Nb

verification (Wei et al., 2025). Notably, the structural proteins of

ASFV, including p30, p54, and p72, were utilized to generate Nb-

based TRIM-aways. These constructs exhibited significant potency

in degrading viral structural proteins, thereby underscoring

potential pathways for the development of novel antiviral

strategies against ASF (Yang F. et al., 2024).

Highly pathogenic avian influenza viruses present significant

threats to the poultry industry, public health, and have the potential

to induce global pandemic risks. Nbs have extensive applications in

the detection, differential diagnosis and prevention of avian

influenza viruses. For example, Xu et al. developed a Nb of

broadly neutralizing versatile clades of IAV H5 subtype by
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binding to HA1 (Xu et al., 2025). Chen et al. isolated a Nb with

cross-group neutralization across various IAV subtypes. Critically,

the epitope recognized by this Nb could elicits cross-reactive

antibodies and provides partial protection by lethal viral

challenges (Chen et al., 2025). In addition, Ji et al. established a

Nb-based competitive ELISA (cELISA) in monitoring anti-IAV

antibodies (Ji et al., 2022). Interestingly, a Nb-based reporter

system was used for living cell sensing of IAV infection,

providing a robust and advanced tool for the analysis of

IAV infections.

Notably, besides interfering with viral infection, the Nb was also

utilized as the cellular delivery vehicle. For instance, the FMDV

particles were delivered by Nbs into dendritic cells to enhance host

immune responses (Cheng et al., 2023).
5.2 Application in inhibition and monitoring
of bacteria infection

Staphylococcus aureus (S. aureus) is capable of producing a

variety of toxins, including staphylococcal enterotoxin type B and C

(SEB/C), which play a critical pathogenic role in host infections and

foodborne intoxications. As described above, Nbs were also

employed to detect SEB/C (Graef et al., 2011; Ming et al., 2023)

and clumping factor A (ClfA) (Mei et al., 2024). Nbs were also

proved to neutralize SEB and thus hold promises for combating

SEB-relative diseases. Detailed information demonstrated Nbs

bound to SEB at the T-cell receptor interface, blocking the SEB

toxicity (Zong et al., 2024). Zhang et al. develop a Nb (plus

RNAbody)-based sandwich ELISA system, which could readily

detect S. aureus a-hemolysin in milk and pork (Zhang et al., 2024).

Bacillus anthracis (B. anthracis) is a zoonotic spore-forming

pathogen, can lead to anthrax, which is a highly resilient and deadly

for animals and humans. It can secret toxins into the bloodstream

once the infection occurred. Cecil et al. characterized a group of Nbs

against the anthrax toxins via binding to the B. anthracis edema

factor and lethal factor, which thus prevented entry of the toxin into

the cells. Interestingly, Nbs with neutralizing function protected

mice against the lethal anthrax spore infection, indicating a potent

blocking role in in vivo tests (Vrentas et al., 2016).

Nbs inhibited the self-assembly of the S-layer proteins Sap of B.

anthracis attenuated its growth and pathology in vivo .

Subcutaneous delivery of these inhibitory Nbs cleared B. anthracis

infection and prevented mice lethality, highlighting a therapeutic

intervention of B. anthracis infection (Fioravanti et al., 2019).

Recent work established a system of molecular dynamics

simulations of these inhibitory Nbs, paving a road for Nb

therapeutics (Cecil et al., 2024).

In addition, Nbs targeting the protective antigen of anthrax

toxin were also developed. Nbs fused with the b-gal targeted the

Bacillus collagen-like protein of anthracis (BclA) enabled sensitive

detection of B. anthracis.Mycobacterium tuberculosis (M.

tuberculosis), the etiological agent responsible for tuberculosis,

exhibits high pathogenicity and results in severe morbidity

and mortality.
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Recently, Fay et al. developed a system by using the anti-ALFA

Nb fused with a fluorescent protein to recapitulate the protein

localization by fluorescent microscopy in living cells, serving as a

versatile platform for the discovery of protein biology in

mycobacteria (Fay et al., 2025). It was found that the Nb specific

for ESAT-6 could inhibit M. tuberculosis growth in macrophages

(Bates et al., 2024). Nb was also utilized to stabilize the M.

tuberculosis to dissect the cryo-EM structure of its adenylyl

cyclase transmembrane region (Mehta et al., 2022). Nbs were also

applied to detection of Escherichia coli (E. coli) in food samples (He

et al., 2025). They were also generated to bind to the extracellular

fimbriae of enterotoxigenic E. coli (ETEC)/Shiga toxin producing E.

coli (STEC) and thus blocked their adhesion in the gastrointestinal

tract (Moonens et al., 2014).

It should be noted that E. coli and Lactobacillus could be utilized

as delivery vectors to display the Nbs. Many researches applied

these systems to produce and purify Nbs. For example, the E. coli

could be utilized as a tool to screen Nbs capable of binding to and

neutralizing severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) and bovine viral diarrhea virus (BVDV) (Liu

et al., 2024; Ma et al., 2024; Zhao et al., 2025).

Oral administration of Nbs was utilized to prevent GI E.coli

infection. Lactococcus lactis was used to deliver Nbs to inhibit

norovirus infection (Yuki et al., 2022).
5.3 Application in inhibition and monitoring
of parasite infection

In addition to their applications in viruses and bacteria research,

Nbs were also used to inhibit parasite infection. For example, the

Nbs could suppress the trypanosomatid pyruvate kinases activity by

an allosteric mechanism (Pinto Torres et al., 2025). Trypanosoma

brucei is a parasitic protozoan causing African trypanosomiasis, or

sleeping sickness, transmitted by infected tsetse flies to animals and

humans. Neutralization of Trypanosoma brucei Q586B2 Nbs

hampered myeloid-derived IL-10 production and lowered

parasitemia (Stijlemans et al., 2024). Genetically engineered

Sodalis glossinidius expressing Nbs significantly compromised

Trypanosoma brucei development in the tsetse fly midgut (De

Vooght et al. , 2022). Interestingly, Broster Reix et al.

demonstrated Nbs also were able to suppress Trypanosoma

brucei propagation. They screened one Nb targeting the T. brucei

cytoskeletal protein Tb BILBO1, which could killed parasites

producing phenotypes similar to the RNA knockdown, suggesting

Nbs should be used to prevent T. brucei infection (Broster Reix

et al., 2021). Notably, because Nbs do not contain the Fc fragments,

they should hold less background interference in the ELISA assay.

Another commonly causing agent of African trypanosomiasis is

Trypanosoma congolense, which continues to impose a heav

burden in livestock of Sub-Saharan Africa. Nbs were employed to

establish the ELISA assay and improved Nb-based lateral flow assay

to monitor Trypanosoma congolense infection, which showed

increased sensitivity in detection of cattle samples (Odongo et al.,

2016; Pinto Torres et al., 2018). Similarly, Abeijon et al. established
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an ELISA assay using Nbs specific for visceral leishmaniasis-an

important zoonotic parasite, which was beneficial to increase the kit

sensitivity (Abeijon et al., 2018).

Toxoplasma gondii (T. gondii) is a critical zoonotic pathogen

which can infect a broad range of hosts, including cats, dogs and

humans. Pathogenic mechanism study could help uncover the

cellular processes of T. gondii within the hosts. By employing the

actin Nbs, Periz et al. revealed how the dynamic F-actin networks

connected Toxoplasma progeny and spread in the replicative

vacuole (Periz et al., 2017), which should provide hints for novel

strategies to decline intracellular T. gondii infection.
6 Summary and outlook

Although conventional monoclonal antibodies remain the

primary molecular tools in biomedical research, disease diagnosis,

and therapy, their high production cost, poor stability, large

molecular size, and limited tissue penetration restrict their

applications in certain fields. Nbs, as a novel class of antibody

fragments, overcome these limitations by exhibiting small

molecular size, excellent thermal stability, high expression

efficiency, strong tissue penetration, and the ability to recognize

hidden epitopes (Muyldermans, 2013). Consequently, Nbs have

attracted considerable attention in cancer, neurological disorders,

autoimmune diseases, infectious diseases such as HIV, toxin-related

diseases, and fundamental research. In the field of animal infectious

diseases, researchers worldwide have targeted whole pathogens, viral

structural and non-structural proteins, and viral replication

enzymes to screen a variety of Nbs using phage display, yeast

display, and bacterial display technologies. These efforts have

significantly advanced the development of diagnostic and

therapeutic tools for animal disease prevention and control

(Salvador et al., 2019). Notably, advances in artificial intelligence

enable more precise identification of Nbs with potential pathogen-

binding affinity, significantly accelerating their development in

clinical applications.

Conventional antibody-based kits in the diagnostics, however, are

fragile with poor thermal stability, require the cold-chain logistics,

high detection price, and not fully specific/sensitive that does not

support early/differential diagnosis. The high affinity and great

thermal stability of Nbs allows the preparation of low cost but high

specificity/sensitivity and room temperature stable diagnostic

reagents for easy detection at the field. In therapy, pathogens such

as foot-and-mouth disease virus (FMDV) and influenza A virus

(IAV) exhibit multiple serotypes and high antigenic variability,

posing challenges for vaccine-induced immunity. Due to their

small size and elongated CDR3 loops, Nbs can recognize conserved

and functionally critical hidden epitopes located within protein

conformational clefts that are inaccessible to conventional

antibodies, making Nbs ideal candidates for broad-spectrum

neutralizing agents. Moreover, Nbs demonstrate remarkable

resistance to proteolytic enzymes like pepsin and trypsin and

tolerate harsh physicochemical conditions, allowing administration

via inhalation or oral routes at large doses, which is advantageous for
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mass treatment in livestock and poultry, especially for respiratory and

gastrointestinal diseases such as respiratory syncytial virus (RSV) and

porcine epidemic diarrhea virus (PEDV).

As a promising intracellular antibody format, Nbs have shown

preliminary success in antiviral applications inside cells. Future efforts

may focus on screening Nbs against intracellular pathogens such as

Brucella spp., utilizing intracellular Nb delivery to control such

infections. However, safe and efficient intracellular delivery remains a

major bottleneck; viral vector-based delivery systems, such as

adenovirus vectors, offer promising solutions for large-scale

intracellular Nb application.
Fron
1. Despite these advances, several challenges remain in the

practical use of Nbs:

2. How to obtain Nbs with even higher affinity and

neutralization potency;

3. How to enhance Nb cell membrane penetration for

intracellular targeting;

4. How to prolong Nb half-life in vivo to improve

therapeutic durability;

5. How to address infections where cellular immunity plays a

predominant antiviral role;

6. How to establish efficient screening platforms for broad-

spectrum neutralizing Nbs;

7. How to reduce Nb immunogenicity across different

animal species.
Strategies such as engineering multivalent, multispecific, or

biparatopic Nbs, and fusing Nbs with Fc fragments or cell-

penetrating peptides (CPPs), provide new avenues to tackle these

challenges. With continued improvements in screening techniques,

expression systems, and protein engineering, Nbs are poised to play

a pivotal role in animal disease prevention and control, with their

applications in diagnostics, therapeutics, and research expected to

expand significantly in the near future.
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