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Mycobacteria pose significant global health burdens, with Mycobacterium

tuberculosis complex causing tuberculosis-a leading infectious killer claiming

over 1.25 million lives annually-and NTM driving pulmonary and ulcerative

infections, particularly in immunocompromised populations. Autophagy, a

conserved cellular degradation pathway, serves as a critical mechanism of host

defense against mycobacteria by delivering bacteria to the lysosome. As a

response, mycobacteria have evolved intricate strategies to subvert or exploit

autophagy for survival. Consequently, autophagy exhibits a dichotomous role in

mycobacterial infection: functioning as a protective mechanism of host while

simultaneously serving as a virulence determinant hijacked by bacteria for their

survival. This review synthesizes current insights into the molecular mechanisms

mediating host-initiated autophagy during mycobacterial infection, as well as the

bacterial strategies for subverting or hijacking autophagic pathways. While

autophagy may be hijacked by mycobacteria, substantial evidence from

numerous studies demonstrates that autophagy-activating agents may be

beneficial in restricting mycobacteria infection, even with multidrug-resistant

strains. This review also systematizes promising agents that enhance autophagy

to improve bacterial clearance. By synthesizing the latest research findings, this

article aims to enhance our understanding of the intricate relationship between

autophagy and mycobacteria, paving the way for efficient host-directed

therapies (HDTs) against this severely harmful pathogen.
KEYWORDS

mycobacterium, autophagy, molecular mechanism, host-pathogen interaction, host-
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1 Introduction

Mycobacteria include the Mycobacterium tuberculosis complex

and nontuberculous mycobacteria (NTM). The Mycobacterium

tuberculosis complex can cause tuberculosis, which is a grave

worldwide public health peril, claiming over 1.25 million lives each

year. NTM can act as causal pathogens causing pulmonary and

ulcerative human diseases (Crilly et al., 2020; Johansen et al., 2020;

Kilinç et al., 2021). As successful intracellular bacteria, mycobacteria

primarily resides within macrophages and phagocytes. Macrophages

and phagocytes, which are the host cells of mycobacteria, activate

multiple immune pathways to eliminate the invading bacteria.

However, mycobacteria have developed diverse tactics to

circumvent host immune elimination. The emergence of drug-

resistant strains has reduced the cure rate of treating mycobacterial

infections with antibiotics alone (Falkinham, 2018). Progress in the

design of next generation antimycobacterial vaccines and agents

demands a systematic understanding of the crosstalk between

mycobacteria and host immune signaling pathways, which is

complex and many aspects still need to be explored in more detail.

Autophagy represents an evolutionarily conserved biological

process in eukaryotes, spanning from yeast to humans. Autophagy

is employed to sustain cellular homeostasis by degrading organelles,

proteins, nucleic acids, and lipids and recycling their components

when the cell is subjected to nutrient deficiencies or invasion by

pathogenic microorganisms (Lam et al., 2017). As a pivotal

mechanism for sustaining cellular homeostasis, autophagy is

involved in the prevention of multiple diseases. Besides, autophagy

plays a vital role in the regulation of multiple immune responses,

encompassing inflammation, innate and adaptive immunity, and

antibacterial defenses. Therefore, it is not a wonder that under

many pathological conditions perturbed autophagy can be

implicated in a variety of diseases, including neurodegeneration,

infection, inflammation, metabolic derangement, neoplasia and

aging-related pathologies (Dikic and Elazar, 2018).

Within the context of host resistance to multiple intracellular

bacterial pathogens, including mycobacteria, autophagy exerts a

critical function by delivering endogenous and exogenous cargo to

lysosome (Gutierrez et al., 2004; Yoshimori and Amano, 2009; Yuk

et al., 2012; Manzanillo et al., 2013; Gomes and Dikic, 2014; Siqueira

et al., 2018). Accumulating research show that autophagy affects both

innate and adaptive immune responses (Yang et al., 2021; Nieto

Ramirez et al., 2024). As a hedge, mycobacteria have also evolved

various strategies to modulate autophagy and other immune pathways

to evade host clearance (Chai et al., 2020). However, there is also study

showing that autophagy is not relevant to the outcomes of

mycobacterial infections. Autophagy genes protect the host against

mycobacteria by reducing immune damage after infection rather than

by enhancing autophagy (Kimmey et al., 2015). Although there is still

debate about the specific role of autophagy in the eradication of

mycobacteria, many autophagy-inducing drugs/agents can help better

eliminate bacteria and reduce inflammatory damage, making

autophagy induction a promising target for host-directed therapy

(HDT) synergizing with existing therapies against mycobacteria

(Yang, 2017; Kilinç et al., 2021; Zhao et al., 2023; Liu et al., 2024).
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In this review, we summarize the mechanistic insights into autophagy

duringmycobacterial infection and briefly discuss recent discoveries of

autophagy-modulating agents that facilitate mycobacterial restriction.
2 Classification and processes of
autophagy

Based on the different ways of transporting unwanted or harmful

cytoplasmic cargo to lysosomes, autophagy in eukaryotic cells can be

subdivided into three major types: microautophagy, molecular

chaperone-mediated autophagy (CMA), and macroautophagy. During

microautophagy, the lysosomal membrane invagination directly wraps

intracytoplasmic cargo (Mijaljica et al., 2011) or these substances directly

enter multivesicular bodies (MVBs) (Sahu et al., 2011). During CMA,

intracytoplasmic unfolded proteins, recognized by molecular

chaperones, enter the lysosome for degradation in a lysosomal-

associated membrane protein 2A (LAMP2A)-dependent manner

(Orenstein and Cuervo, 2010; Wang Y. et al., 2025). Macroautophagy

is characterized by the appearance of a special double-membrane vesicle

(DMV) called autophagosome that envelops the cargo to facilitate its

delivery to the lysosome for degradation. Macroautophagy is the most

extensively studied type and will be denoted as “autophagy” for brevity

in the following part of this article. Autophagic degradation can be either

non-selective or selective. Autophagic receptors serve as key

determinants for selective autophagy, as they specifically recognize

intracellular cargoes and mediate autophagosome formation. Cargoes

include intracellular pathogens, mitochondria, endoplasmic reticula,

peroxisomes, protein aggregates and lipid droplets, with their

degradation via selective autophagy termed xenophagy, mitophagy,

ER-phagy, pexophagy, aggrephagy and lipophagy, respectively.

The autophagy process is molecularly orchestrated by a series of

proteins known as autophagy-associated proteins (ATGs). ATGs,

first identified in yeast research, function through their mammalian

homologs by forming five distinct complexes to mediate autophagy

(Nakatogawa et al., 2009; Harnett et al., 2017).

ULK1 complex, which is composed of serine-threonine kinase,

Unc-51 like kinase-1(ULK1), focal adhesion kinase family-

interacting protein of 200 kDa (FIP200), ATG13 and ATG101

(Bento et al., 2015; Dikic and Elazar, 2018).

Class III phosphatidylinositol 3-kinase (PI3KC3) complex,

which is composed of vacuolar protein sorting 34 (VPS34),

autophagy and beclin 1 regulator 1 (AMBRA), ATG6, ATG14,

phosphoinositide-3-kinase-regulatory subunit 4 (PIK3R4), and UV

radiation resistance-associated gene protein (UVRAG) (Kametaka

et al., 1998; Liang et al., 2006; Matsunaga et al., 2009; Bento et al.,

2015; Dikic and Elazar, 2018).

WD repeat domain phosphoinositide-interacting (WIPI)

proteins (Proikas-Cezanne et al., 2004; Polson et al., 2010;

Harnett et al., 2017).

ATG12-ATG5-ATG16L complex (Mizushima et al., 1998, 1999;

Bento et al., 2015; Dikic and Elazar, 2018).

Microtubule-associated 1 light chain 3 (LC3), a core autophagic

protein, exists in two isoforms: LC3-I and LC3-II. LC3-II formed via

conjugation of phosphatidylethanolamine (PE) to LC3-I by ATG3
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and ATG7 (Kirisako et al., 1999; Weidberg et al., 2010; Bento et al.,

2015; Dikic and Elazar, 2018; Frudd et al., 2018).

The above five complexes are sequentially involved in five stages

of autophagy, including signal induction, nucleation, elongation,

fusion and degradation (Figure 1).
2.1 Signal induction

The pivotal modulators of autophagy are two proteins with

antagonistic effects, mechanistic/mammalian target of rapamycin

(mTOR) and AMP activated protein kinase (AMPK) (Kim et al.,

2011; Shang andWang, 2011; Suzuki et al., 2025). mTOR is a serine/

threonine protein kinase that regulates autophagy in response to

hormones, nutrients, energy levels and oxygen content (Shang and

Wang, 2011; Singh and Subbian, 2018). When nutrients are

abundant, AMPK switches to an inactive state while mTOR

undergoes activation. Activated mTOR binds to ULK1 and

phosphorylates particular amino acid residues to inactivate it,

thereby blocking ULK1-mediated autophagy initiation. Under

nutrient deprivation, AMPK is activated, activating ULK1, ATG6,

and VPS34 while inactivating mTOR, thereby enabling autophagy

initiation (Hosokawa et al., 2009; Langer et al., 2024).
2.2 Nucleation

The activated ULK1 complex phosphorylates PI3KC3 complex

and recruits it to phagophore assembly site (PAS). PAS is generally

located in the endoplasmic reticulum, especially at the endoplasmic
Frontiers in Cellular and Infection Microbiology 03
reticulum–mitochondria contact sites. The PI3KC3 complex recruited

to the PAS catalyzes the production of phosphatidylinositol-3-

phosphate (PI3P) (Nascimbeni et al., 2017). With the increase of

PI3P in the PAS, WIPIs, as PI3P effector proteins, are also recruited to

the PAS (Nair et al., 2010; Zhao et al., 2022). WIPIs can interact with

ATG16L to facilitate recruitment of the ATG12-ATG5-ATG16L

complex, which is indispensable for LC3 lipidation and

autophagosome assembly (Strong et al., 2021).
2.3 Expansion

The ATG12-ATG5-ATG16L complex is an E3-like enzyme that

plays a scaffolding role in LC3-I lipidation at sites where phagosomal

membranes are to be formed (Fujita et al., 2008; Zhao et al., 2022). Upon

autophagic induction, LC3-I is connected to PE through the catalysis of

the E1-like enzyme ATG7 and the E2-like enzyme ATG3, forming LC3-

II. Then LC3-II attaches to the inner and outer membranes of the

phagosome and is removed from the autophagosome membrane by

ATG4 prior to fusion with the late endosome/lysosome (Hussey et al.,

2009; Carneiro and Travassos, 2013). Lipolysis of LC3 is in association

with the ATG16L complex assembly as ATG12-ATG5 conjugation

decreased significantly with the loss of LC3-II in ATG3-deficient cells

(Sou et al., 2008; Lystad et al., 2019).
2.4 Fusion

Preceding the fusion of autophagosomes and lysosomes, ATGs

are removed while fusion-associated molecules are recruited to
FIGURE 1

Molecular mechanism of autophagy.(A) Signal induction. Activation of AMPK or inhibition of mTOR leads to ULK1 complex activation and autophagy
initiation. (B) Nucleation. Activated ULK1 complex phosphorylates PI3KC3 complex, producing PI3P, recruiting WIPIs and ATG12-ATG5-ATG16L
complex. (C) Expansion. Recruited ATG12-ATG5-ATG16L complex conjugates PE to LC3-I to form LC3-II, expanding phagophore to form the
autophagosome. (D) Fusion. Autophagosome fuses with lysosome to form autophagolysosome under the mediation of fusion proteins.
(E) Degradation. The cargo in the autophagolysosome is degraded for recycling.
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autophagosomes. The autophagosomal membrane-anchored

Syntaxin 17 (STX17), synaptosomal-associated protein 29

(SNAP29) and Rab7 interact with lysosomal membrane-anchored

vesicle-associated membrane protein 8 (VAMP8), enabling fusion

of au tophagosomes with lysosomes and subsequent

autophagolysosome formation (Furuta et al., 2010; Itakura et al.,

2012; Hyttinen et al., 2013; Morelli et al., 2014; Zhao et al., 2021).
2.5 Degradation

When the autophagolysosome is formed, degradation of cargo

inside autophagosome begins (Yang and Klionsky, 2010).
3 Autophagy against mycobacteria

3.1 Autophagy against M. tuberculosis

Host cells generate autophagy primarily by recognizing

bacterial damage-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs) (Deretic et al.,

2015; Shibutani et al., 2015). When DAMPs and PAMPs are

recognized, the cell generates signaling cascades that rapidly lead

to the co-localization of autophagy machinery and cargo (van der

Vaart et al., 2014a). The calcium signal is a DAMP. A recent study

identified the tumor necrosis factor-like weak inducer of apoptosis

(TWEAK) as pivotal mediator of calcium-associated autophagy.

TWEAK binding to fibroblast growth factor-inducible 14 (Fn14)

promotes calcium channel activation, leading to calcium influx and

downstream activation of AMPK signaling to induce autophagy.

Persistent TWEAK-Fn14 signaling also triggers mitochondrial ROS

accumulation and cell death in late infection. Genetic depletion of

Fn14 or TWEAK blockade suppresses autophagy and cell death,

significantly enhancing mycobacterial survival in macrophages

(Chen et al., 2022). The transcription of autophagic genes is

further enhanced by the engagement of transcription factors,

including nuclear factor-kB (NF-kB) and transcription factor EB

(TFEB), which in turn promotes autophagy (van der Vaart et al.,

2014b; Pastore et al., 2016). Notably, additional evidence from a

separate study indicates that in non-immune epithelial cells,

mycobacterial infection upregulates the expression of TLR2/4/7 to

inhibit ROS, autophagy, and apoptosis in a MyD88-dependent

manner, thereby promoting bacterial survival. This suggests that

the TLR pathway exhibits dual regulatory roles in host defense

across different cellular contexts (Singh et al., 2025).

In addition to DAMPs and PAMPs, cytokines also regulate host

cell autophagy during M. tuberculosis infection. Stimulation of

autophagic pathways by IFN-g in mycobacteria infected

macrophages causes colocalization of autophagy factors LC3 and

mycobacterial autophagosome, indicating that intracellular

mycobacteria may be target of host autophagy. IFN-g also induces

maturation of mycobacterial autophagosome, reducing intracellular

viability of mycobacteria (Gutierrez et al., 2004; Songane et al., 2012;

Dey et al., 2015; Watson et al., 2015; Ning et al., 2021; Yang et al.,
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2021). Subsequent study confirmed this finding and further

revealed that although starvation and IFN-g can trigger

autophagy in host macrophage during M. tuberculosis infection, T

helper (Th) 2 cytokines can reverse this anti-mycobacteria

mechanism through AKT signaling and transcription 6 (STAT6)

pathways respectively (Harris et al., 2007). It is seen that different

cytokines may exhibit distinct autophagy-inducing effects.

Furthermore, autophagy plays a role in additional anti-

tuberculosis mechanisms such as increasing lysosomal bactericidal

activity (Alonso et al., 2007; Purdy, 2011), modulating expression of

scavenger receptors (SRs) (Bonilla et al., 2013) and increasing

mycobacterial antigen presentation (Jagannath et al., 2009; Khan

et al., 2021; Wu et al., 2022). In conclusion, these studies confirm

the contribution of autophagy to host innate and adaptive immune

defense against mycobacterial pathogens.

Furthermore, miRNAs may additionally modulate autophagy in

mycobacteria-infected host cells. MiR-155 exhibits the opposite

regulation of autophagy in different cells. In M. tuberculosis-

infected dendritic cells, miR-155 impedes the formation of

autophagosome and autophagolysosome (Etna et al., 2018),

whereas in infected macrophages, miR-155 augments autophagic

flux by interacting with Ras homologue enriched in brain (Rheb),

which negatively regulates autophagy (Wang et al., 2013). The

autophagy induced in M. tuberculosis infected macrophage is

greatly repressed by miR-142-3p overexpression, which also

prevents phagolysosome formation and enhances M. tuberculosis

viability in macrophages. Additionally, by specifically targeting the

3’-UTR, miR-142-3p negatively regulates ATG16L1 and ATG4

expression, resulting substantial abatement of autophagy (Qu

et al., 2021). Analogous to miR-142-3p, miR-874-3p and miR-

129-3p also reduce macrophage autophagy through inhibiting

ATG16L1 and ATG4 expression respectively (Qu et al., 2019; Luo

et al., 2021). Apart from ATG16L1, ULK and ATG7 are also targets

of miRNA to regulate autophagy in mycobacterial host cells. MiR-

106a and miR-20a both downregulate ATG7 and ATG16L1

expression, whereas miR-106a also downregulates ULK

expression to repress autophagy and facilitate M. tuberculosis

survival (Guo et al., 2016; Liu et al., 2020). MiR-1958 exhibits

similar inhibitory effect on autophagy and promotional effect onM.

tuberculosis survival in macrophages. The mechanism is that miR-

1958 directly targets the 3’UTR of ATG5, downregulates ATG5

expression, blocks autophagosome-lysosome fusion, impairs

autophagic flux, and thus facilitates intracellular M. tuberculosis

survival (Ding et al., 2019). ATGs are not the only target that

miRNAs regulate to influence autophagy during mycobacteria

infection. The flow of calcium ions from the endoplasmic

reticulum toward the cytoplasmic matrix can cause autophagy.

MiR-27a, which is increased in M. tuberculosis infection context,

targets the ER-located Ca2+ transporter channel auxiliary subunit,

downregulates Ca2+ signaling, thus inhibits autophagosome

maturation, promotes M. tuberculosis survival (Liu et al., 2018).

MiRNA possesses 3p and 5p arms. different arm of miR-30a plays

contrary role on autophagy and anti-M. tuberculosis activity. MiR-

30a-3p inhibits autophagosome and autophagolysosome formation

and favors M. tuberculosis survival, whereas miR-30a-5p has the
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exact opposite effect (Behura et al., 2019, 2021). Similar to miR-30a,

the role that the 3p and 5p arm of miR-125a plays in modulating is

also opposite. MiR-125a-3p inhibits autophagy activation and anti-

mycobacteria effect by targeting UVRAG, miR-125a-5p enhances

autophagy activation and antimicrobial effects by inhibiting STAT3

(Kim et al., 2015; Wang Y. et al., 2020). MiR-17, another miRNA

targeting STAT3, increases autophagy against M. tuberculosis by

inhibiting upstream and downstream signaling of STAT3 (Kumar

et al., 2016). Tumor necrosis factor (TNF)-like weak inducer of

apoptosis (TWEAK), a factor that plays a role in promoting

autophagy, is inhibited on expression by miR-889, resulting

survival of M. tuberculosis (Chen et al., 2020). It has been

reported that increased miR-23a-5p triggered by M. tuberculosis

infection dramatically prevented autophagy in macrophages.

Mechanistically, miR-23a-5p can inhibit TLR2/MyD88/NF-kB
signaling by decreasing TLR2 expression (Gu et al., 2017). MiR-

18a, belonging to the miR-17 family, demonstrates increased

expression during M. tuberculosis infection and inhibits

autophagy by downregulating ATM-AMPK signaling, resulting in

increased bacterial survival (Yuan et al., 2020). A study has

confirmed that miR-207 inhibited macrophage autophagy by

directly binding to lysosome-associated membrane protein 2

(LAMP2), thus enhancing the survival of M. tuberculosis (Du

et al., 2025). Damage-regulated autophagy modulator 2

(DRAM2), which interacts with UVRAG, is relevant to the

promotion of autophagy. MiR144* can decrease DRAM2

expression and formation of autophagosomes, facilitate M.

tuberculosis survival, by targeting 3’-untranslated region of

DRAM2 (Kim et al., 2017). Additionally, a recent study revealed

that miR-25-3p promotes macrophage autophagy by targeting dual

specificity phosphatase 10 (DUSP10) to activate ERK1/2

phosphorylation, significantly increasing the expression of

autophagy-related proteins like LC3-II and Beclin1, thereby

reducing intracellular M. bovis survival (Yuan et al., 2023).

Interestingly, different mycobacteria differ in their ability to

induce autophagy in host cells. proteomics revealed that M. bovis

significantly increased the expression of 51 autophagy- and

inflammation-related genes and activated the NF-kB pathway

while M. tuberculosis only upregulated 8 energy metabolism-

related proteins with weaker autophagy activation (Cai et al.,

2023). Variations in the capacity to activate autophagy may not

only partially dictate the survival outcomes of distinct

mycobacterial strains but also underlie differences in their

pathogenic potential.
3.2 Autophagy against NTM

As the mechanism of host resistance against pathogens,

autophagy is also seen in nontuberculous mycobacterial infection

(Daley andWinthrop, 2020).M. avium complex (MAC) is one of the

most prevailing NTM species. Similar to M. tuberculosis-infected

host cells, autophagy appears in MAC-infected macrophages

through miR-125a-5p induced STAT3 (Wang Y. et al., 2020). Due

to evolutionary conservation (Zhang et al., 2024), M. marinum can
Frontiers in Cellular and Infection Microbiology 05
infect both humans and ectotherms and is often used as a model

microbe of M. tuberculosis (Menon et al., 2025). Similar to M.

tuberculosis, M. marinum also induces autophagy in host for the

removal of intracellular bacteria (Chen et al., 2018; Kjellin et al.,

2019). Researches on zebrafish models reveals that mediating by

STING and p62, the DRAM1 functions downstream of TLR to

activate autophagy, inducing defensive autophagy against M.

marinum (van der Vaart et al., 2014a, 2014b; Zhang et al., 2020).

Research onM. marinum infected dictyostelium discoideum reveals

that, in addition to direct phagocytosis and removal of bacteria, the

autophagy mechanism can repair disruption at the mycobacteria-

containing vacuole in parallel with the endosomal sorting complex

required for transport (ESCRT), thereby suppresses M. marinum

proliferation (López-Jiménez et al., 2018). M. smegmatis and M.

fortuitum are both fast-growing non-pathogenic NTMs, and both

can induce strong autophagy independent mTOR pathway in host

cells (Zullo and Lee, 2012). The autophagy induced byM. smegmatis

in THP-1 macrophages relies on cell surface recognition receptor

TLR2 but not bacterial ubiquitination, suggesting that host cells may

remove M. smegmatis through non-selective autophagy (Bah et al.,

2016). M. terrae is a slow-growing NTM that can cause intractable

debilitating disease due to its antibiotic resistance (Wang et al.,

2019). During M. terrae infection, autophagy induced by IL-17 is

indispensable for antibacterial reaction in macrophages (Orosz

et al., 2016).
3.3 Xenophagy against mycobacteria

In early studies, researchers believed that autophagy was a non-

selective process, which indiscriminately wrapped all organelles and

macromolecular complexes within a region of the cytoplasm into

autophagosome for degradation. More recently, researchers observed

that autophagy could act as a selective pathway that delivers specific

organelles, invading organisms, or macromolecular complexes to

autophagic machinery. During selective autophagy, recognition of

cargo tends to be achieved by ubiquitylation that does not occur

during non-selective autophagy (Gubas and Dikic, 2022). The

ubiquitinated cargo is then bound to receptors proteins. Receptors

contain LC3interacting region (LIR) domains and ubiquitinbinding

domains that anchor the LC3-containing phagophore to the cargo for

engulfment (Kirkin and Rogov, 2019; Abdrakhmanov et al., 2020).

Host selective autophagy for invading organisms is termed

“xenophagy” (Galluzzi et al., 2017). Xenophagy is pivotal in

orchestrating the host immune defense against mycobacteria

because deletion of related genes allows the bacterium to proliferate

abundantly (Shariq et al., 2023).

3.2.1 Ubiquitination of mycobacteria
The mycobacterial ubiquitylation mediated by ubiquitin-

ligating enzyme is the critical step for xenophagy origination.

Two E3 ubiquitin ligases, parkin and smurf1, attach ubiquitin to

bacteria during mycobacteria infection.

Parkin, as a member of the RBR ubiquitin ligase family, harbors

multiple conserved domains, such as RING1, RING2, UBL, RING0,
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REP, and IBR (Dove and Klevit, 2017). Phosphorylation at S65 of

the UBL domain and Ub elicits dramatic conformational changes

and activation of parkin (Gladkova et al., 2018; Sauvé et al., 2018).

In addition to its role in apoptosis, lipid metabolism, and

inflammatory responses, parkin is involved in xenophagy against

mycobacteria (Manzanillo et al., 2013; Romagnoli et al., 2023). M.

tuberculosis utilizes its ESX-1 type VII secretion system to disrupt

the phagosome membrane and enter the cytosol, where parkin

catalyzes the K63-linked polyubiquitination to bacteria or bacteria-

related membrane structures via its E3-Ub ligase activity.

Autophagy receptors bind to ubiquitinated bacteria or membrane

structures via the ubiquitinbinding domain and then recruit LC3-

containing phagophore via the LIR domain. Parkin knockout in

macrophage reduces LC3 lipidation and increases survival of M.

tuberculosis, whereas parkin overexpression reduces bacterial

proliferation (Manzanillo et al., 2013). Animal experiments have

yielded consistent results. Parkin knockout mice exhibit more

severe symptoms and higher mortality compared to wild-type

mice. Meanwhile, parkin knockout increases mycobacterial

replication and proliferation in the lung, spleen, and liver of mice

(Manzanillo et al., 2013). These results suggest that ubiquitination

and subsequent xenophagy facilitated by parkin play an essential

role in the control of mycobacteria. Intriguingly, in macrophage

infected with M. tuberculosis, only a portion of the intracellular

bacteria is linked to the K63-linked Ub chains, the other portion is

attached to the K48-linked Ub chains. These results suggest that

other E3-Ub ligase are implicated in the ubiquitination of

mycobacteria and relevant structures in addition to parkin.

Smurf1, an additional E3 ubiquitin ligase, mediates

ubiquitination of intracellular mycobacteria. In addition to the

E3-Ub ligase domain, smurf1 has a C2 phospholipid-binding

domain, and both domains are involved in xenophagy against M.

tuberculosis, as mutation in either of the two domains exhibits a

deficiency in recruiting polyubiquitin, the autophagy receptor, the

LC3 protein and the lysosome toM. tuberculosis relevant structures

and exhibits increased mycobacterial survival in host cells (Franco

et al., 2017). Analogous to parkin, smurf1 activity depends on ESX-

1-driven translocation of M. tuberculosis from phagosomal

compartments to the cytoplasmic matrix (Chandra and Philips,

2025). Contrary to parkin, smurf1 connects K48-linked Ub chains,

not K65-linked ones, to M. tuberculosis. During chronic infection,

smurf1-deficient mice display increased mycobacteria proliferation

in the lungs and spleens compared to wild-types, whereas during

acute infection, smurf1-deficient exhibit no effect on mycobacterial

proliferation. Intriguingly, during acute infection, parkin-deficient

mice display more M. tuberculosis proliferation. Whether these

results are related to the different ubiquitin linkages catalyzed by

parkin and smurf1 needs to be further explored.

Recently, tripartite motif 32 (TRIM32), another E3-Ub ligase

belonging to the TRIM proteins family, was identified to be engaged

in the ubiquitination of M. tuberculosis in host cells. TRIM32

knockdown in THP1 cells induces enhanced M. tuberculosis

replication, owing to blocked bacterial ubiquitination, decreased

autophagy recruitment and reduced autophagosome formation

(Romagnoli et al., 2023). Another study identified a TRAF-like E3
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ubiquitin ligase, TrafE, which integrates ESCRT and autophagy

pathways by recruiting ALIX and Vps32 to damaged membranes

during M. marinum infection. TrafE deficiency leads to reduced

K63-polyubiquitination, impaired xenophagy, and premature host

cell death, highlighting its critical role in membrane repair and

bacterial restriction (Raykov et al., 2023). An in vitro

autoubiquitination investigation revealed that the E3-Ub ligase,

makorin ring finger protein 1 (MKRN1), in coordination with the

ubiquitin-activating enzyme E1 (UBE1) and ubiquitin conjugating

enzyme E2 D3 (UBE2D3), catalyzed the ubiquitination of M.

tuberculosis, but not B. subtilis suggesting that MKRN1 may be a

M. tuberculosis-specific E3-Ub ligase (Subrahmanian et al., 2020).

However, whether MKRN1 catalyzes intracellular ubiquitination of

M. tubercu los i s or other mycobacter ia needs to be

further investigated.

In addition to being catalyzed by E3-Ub ligase, the M.

tuberculosis can directly anchor to host ubiquitin chains through

the mycobacterial surface protein Rv1468c, which harbors the

eukaryotic-like ubiquitin-associated (UBA) domain (Chai et al.,

2019). During Salmonella typhimurium infection, host galectin-8

identifies bacterially disrupted phagosomes, recruiting the

autophagy receptor and LC3, inducing xenophagy (Thurston

et al., 2012). These findings suggest that host can initiate

xenophagy in a ubiquitin-independent manner. Considering that

M. tuberculosis disrupted phagosomes may also be recognized by

galectin (Schnettger et al., 2017; Morrison et al., 2023), it is not hard

to understand that the host can also initiate xenophagy during

mycobacteria infection through a galectin (rather than ubiquitin)-

dependent manner (Bell et al., 2021). Furthermore, given the

expanding number of eukaryotic-like effectors found in M.

tuberculosis (Forrellad et al., 2013; Chai et al., 2018; Krause and

Dikic, 2022), it is not implausible that M. tuberculosis may directly

initiate host xenophagy by utilizing bacterial structural proteins that

can be recognized by autophagy receptors or LC3 family members

through protein–protein interaction.

3.2.2 Autophagy receptors of xenophagy against
mycobacteria

Beyond the pivotal roles of E3 ubiquitin ligases and diverse

initiation mechanisms in xenophagy against mycobacteria, a set of

specialized autophagy receptors further orchestrates the selective

engulfment and elimination of intracellular mycobacteria,

representing a critical downstream framework in this immune

response. Autophagy receptors SQSTM1, CALCOCO2, NBR1,

OPTN, and TAX1BP1 play crucial roles in mediating the attachment

of intracellular mycobacteria to phagophores during xenophagy.

SQSTM1 was initially found to be a selective autophagy receptor

for cytosolic protein aggregates (Komatsu et al., 2007; Pankiv et al.,

2007; Tung et al., 2010; Chen et al., 2024). SQSTM1 contains not only

a dimerization domain, a LIR domain, and a UBA domain, which are

common to xenophagy receptors, but also a PB1 domain, a Ub ligase-

interacting region and zinc finger. SQSTM1 self-oligomerization via

the PB1 domain is indispensable for its function in selective autophagy

(Itakura and Mizushima, 2011; Kim et al., 2016). To efficiently deliver

cargo to the phagophore, SQSTM1 needs to interact with not only
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ubiquitin-modified cargo, but also other effector proteins (Clausen

et al., 2010; Filimonenko et al., 2010; Chai et al., 2019; Zhang et al.,

2019). The UBA domain of SQSTM1 is phosphorylated and

ubiquitinated, which in turn binds to K63 linked cargo ubiquitin

chains (Pilli et al., 2012; Lee et al., 2017; Lee and Weihl, 2017). The

ubiquitination of SQSTM1 is catalyzed by effector proteins that bind

to it. These effector proteins are primarily E3-Ub ligases like tripartite

motif containing 50 (TRIM50), TNF receptor associated factor 6

(TRAF6), SMURF2, RNF166 and kelch-like ECH-associated protein 1

(KEAP1) (Komatsu et al., 2010; Lau et al., 2010; Heath et al., 2016; Lee

et al., 2017). SQSTM1 participates in autophagic degradation of N-

terminal arginylated proteins (Cha-Molstad et al., 2017; Zhang et al.,

2018). SQSTM1 is involved in xenophagy of mycobacteria. SQSTM1

binds ubiquitinated Rv1468c protein on the surface ofM. tuberculosis

and brings M. tuberculosis to LC3-associated autophagosomes for

xenophagy clearance (Chai et al., 2019). In M. marinum infected

zebrafish model, SQSTM1 increases co-localization of LC3 with

mycobacteria and inhibites bacteria multiplication (Zhang et al.,

2019). Intriguingly, the antimycobacterial activity of SQSTM1 is not

limited to xenophagy. SQSTM1 can deliver specific ribosomal and

bulk ubiquitinated cytosolic proteins from the cytoplasm to

autolysosomes for processing into molecules with antimycobacterial

activity (Ponpuak et al., 2010). In addition, SQSTM1 is involved in the

regulation of cyclic GMP-AMP synthase (cGAS)- Stimulator of

Interferon Genes (STING) pathway. cGAS-STING pathway sensing

to DNA induces phosphorylation of TBK1, which in turn activates

IRF3, causing type-1 interferon expression. Phosphorylated TBK1

catalyzes the phosphorylation of SQSTM1, which induces the STING

translocating to phagophores and degrading and avoids the

overproduction of type-1 interferon (Prabakaran et al., 2018). TBK1

is a very specific molecule, which acts as a downstream of STING and

participates in the generation of type-1 interferon (Wang et al., 2018)

and also participates in mitophagy and xenophagy within

mycobacteria-infected macrophages (Song et al., 2022). Given that

type-I interferon, mitophagy, and xenophagy all modulate host-

mediated clearance of mycobacteria, TBK1 emerges as a promising

target for developing non-antibiotic therapeutics against

these pathogens.

TAX1BP1 contains the LIR structural domain common to

autophagy receptors for binding LC3, and unlike SQSTM1,

TAX1BP1 does not contain the UBA domain. TAX1BP1 relies on

the C-terminal overlapping Ub and myosin VI (MYO6) interacting

domain to recognize ubiquitin (Ceregido et al., 2014; Whang et al.,

2017; Fu et al., 2018). As with other autophagy receptors, TAX1BP1

targets ubiquitylated M. tuberculosis to LC3-containing

phagophores, resulting clearance of bacteria (Budzik et al., 2020).

CALCOCO2 relies on the LIR and the unique CLIR to bind to

LC3 and on the C2H2 zinc finger to recognize ubiquitin (Xie et al.,

2015). CALCOCO2 delivers ubiquitinated M. tuberculosis to the

phagosome, a process that requires the mycobacterial ESX-1type

VII secretion system. BCG lacking ESX-1 cannot be delivered to the

phagosome, and restoration of ESX-1 in BCG reverses this process

(Watson et al., 2012).

OPTN, as an autophagy receptor, is involved in xenophagy,

aggrephagy and mitophagy (Qiu et al., 2022). The LIR structural
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domain of OPTN is located between the two coil domains at the N-

terminus, while the ubiquitin binding domains UBAN and zinc finger

are located at the c-terminus. The UBAN domain preferentially

recognizes linear ubiquitin chain (Li et al., 2018; Herhaus et al.,

2019). The terminal coil domains of OPTN assemble into a

heterotetrameric complex with the TBK1 C-terminus, thereby

regulating OPTN function in selective autophagy (Morton et al.,

2008; Li et al., 2016). OPTN has different phosphorylation sites and

performs different functions. Phosphorylation of the S172 residue

positioned close to the LIR by TBK1 leads to increased binding

affinity of OPTN for LC3-family proteins. Phosphorylation of S473

in the UBAN domain by TBK1 potentiates OPTN binding to Ub,

facilitating selective autophagy (Heo et al., 2015; Richter et al., 2016; Li

et al., 2018). Phosphorylated OPTN exhibits co-localization with M.

tuberculosis in macrophages (Budzik et al., 2020). Zebrafish model

studies show that OPTN deficiency diminishes LC3-mycobacteria co-

localization, thereby promoting bacterial proliferation, whereas OPTN

overexpression augments LC3-bacterial co-localization, leading to

reduced bacterial replication (Zhang et al., 2019). OPTN -deficient

macrophages infected with high MOI mycobacteria exhibit enhanced

cell death, reduced LC3-II levels, and altered Pro-IL-1b expression

(Ramachandran et al., 2024). These results suggest that OPTN may

play a role in xenophagy against mycobacteria.

NBR1 harbors a coiled-coil domain enabling its dimerization, a

PB1 domain that interacts with the corresponding domain of

SQSTM1, in addition to LIRs and a UBA domain (Lamark et al.,

2003; Lange et al., 2005; Whitehouse et al., 2010; Rogov et al., 2014).

Although NBR1 can act independently of and even antagonize

SQSTM1 (Kirkin et al., 2009; Deosaran et al., 2013; Nishimura et al.,

2024), the assembly of NBR1-SQSTM1 complex significantly

enhances the efficacy of pexophagy and simaphagy (Deosaran

et al., 2013; Migliano et al., 2024). Interaction with SQSTM1 may

have altered the conformation of NBR1, thereby modulating its

affinity for ubiquitin and LC3. Similar to SQSTM1 and TAX1BP1,

NBR1 is engaged in xenophagy against M. tuberculosis, as NBR1

can recognize and bind the ubiquitinated M. tuberculosis surface

protein PE_PGRS29 (Chai et al., 2019).

Exploring autophagy receptors plays a pivotal role in unraveling

the molecular mechanisms of selective autophagy. With the

increasing identification of these receptors, researchers have

progressively turned their focus toward the interactions and

regulatory networks among different autophagy receptors.

Zebrafish models showed that the autophagic receptors OPTN

and p62 function complementarily to independently restrict

mycobacterial growth, while the autophagy modulator Dram1 can

restore the association of autophagosomes with bacteria and

lysosomal acidification even in the absence of both receptors,

indicating that the three factors function independently yet

synergistically in anti-mycobacterial immunity (Xie and Meijer,

2023). TBK1 phosphorylates autophagy receptors, enhancing their

binding affinity to ubiquitinated substrates and promoting the

occurrence of selective autophagy. Our study found that

mitophagy competitively recruited TBK1 to mitochondria,

reducing the translocation of TBK1 to mycobacteria and thereby

inhibiting xenophagy (Song et al., 2022).
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4 Mycobacteria regulate host
autophagy for survival
While the host employs intricate autophagy mechanisms

involving selective and non-selective autophagy to combat

mycobacterial invasion, mycobacteria have evolved elaborate

evasion strategies to subvert or exploit autophagy for their

survival (Figure 2; Table 1), highlighting a dynamic interplay

between host defense and pathogen evasion.

Determinants that inhibit host autophagic clearance are often

virulent factors of mycobacteria. As a classical virulence factor in

mycobacteria, the ESX-1 secretory system is involved in the

modulation of host autophagy. ESX-1 secretion-associated protein B

(EspB) of M. tuberculosis reduces mRNA and protein levels of IFN-g
receptor 1 and decreases IFN-induced STAT1 phosphorylation in

murine ANA-1 macrophage cells, thereby inhibiting LC3 expression

and autophagosome maturation (Huang and Bao, 2016).

Macrophages infected with ESAT-6-expressing mycobacteria

exhibited elevated levels of SOD-2, decreased autophagosome-

lysosome fusion, and increased survival of bacteria. These effects of

ESAT-6 may be related to the SOD-2-mediated reduction of ROS

(Yabaji et al., 2020).M. ulcerans is the etiological agent of Buruli ulcer,

the third most prevalent mycobacterial infection worldwide. A study
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shows that M. ulcerans secretes mycolactone to induce necrotic cell

death in macrophages, promoting bacterial escape while maintaining

mTOR activation to suppress autophagy, as demonstrated by restored

pathogenicity in a tetracycline-inducible mycolactone expression

system (Strong et al., 2022). Phenolic glycolipid (PGL) is one of the

virulence factors of M. africanum. Because Euro-American clades of

M. tuberculosis lack the gene required for PGL biosynthesis, these

clades are readily cleared by host autophagy enhanced by IRGM

mutations. In contrast, this enhanced autophagic response is

suppressed by M. africanum, which harbors an intact pks1/15 gene

to produce PGL (Intemann et al., 2009). Since PGL reduces the

synthesis of cytokines capable of inducing autophagy, like IL-6 and IL-

12 (Reed et al., 2004; Cambier et al., 2017), it is hypothesized that the

inhibition of autophagy by PGL may be partially mediated by the

reduction of these cytokines.

The PE/PPE family, which can disrupt the host immune

response, has a higher virulence compared to other mycobacterial

proteins (Sharma et al., 2022). PE6 induces phosphorylation of

mTOR and ULK1, thereby inhibiting the conversion of LC3I to

LC3II and reducing autophagy (Sharma N. et al., 2021). Six PE/PPE

family proteins with activating effect on mTOR and inhibitory effects

on autophagy were screened by loss-of-function screening of an M.

tuberculosis transposon mutant library. Expression of these proteins

in M. smegmatis confirmed their autophagy inhibitory effect. The
FIGURE 2

Antimycobacterial autophagy and xenophagy: processes and regulators. (A) Autophagy against mycobacteria. Cells sense nutritional or infection
signals via the AMPK/mTOR pathway, activate the ULK1 complex, and recruit LC3-II to the phagophore with the assistance of ATGs. The phagophore
embedded with LC3-II expands into an autophagosome, which engulfs components such as bacteria, cytosolic organelles, and macromolecules.
This autophagosome then fuses with the lysosome to form an autophagolysosome where the cargo is degraded. Thus, autophagy against
mycobacteria also involves steps including signal induction, nucleation, expansion, and fusion, each of which is inhibited or promoted by factors
derived from the host and bacteria. (B) Xenophagy against mycobacteria. Upon entering the host cytoplasm, mycobacteria are ubiquitinated by host
E3 ubiquitin ligases. The ubiquitinated bacteria are then recognized by autophagy receptors. These receptors bind ubiquitinated pathogens via their
UBA domain while simultaneously anchoring to LC3 on the phagophore through their LIR domain . This dual binding recruits the pathogens to the
phagophore, which subsequently elongates under the mediation of ATGs to envelop the mycobacteria, forming an autophagosome. The
autophagosome then fuses with a lysosome to generate an autolysosome, wherein the bacteria are degraded. Host-derived factors are marked in
blue, whereas bacterial factors are marked in red.
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inhibition of autophagy conferred higher survival and replication of

mycobacteria in host cells. The expression of these PE/PPE proteins

varied under different stress conditions, suggesting that PE/PPE may

confer adaptability of M. tuberculosis to a wide range of conditions

(Strong et al., 2020). PE_PGRS20 and PE_PGRS47 inhibit autophagy

initiation by binding to Rab1A of host cells, thereby increasing

bacterial survival. Intriguingly, PE_PGRS20 and PE_PGRS47 also

inhibit antigen presentation of host cells. This may be due to the fact

that antigen presentation is dependent on phagocytic degradation of

the mycobacteria by the host cell, and the inhibition of autophagy by

PE_PGRS20 and PE_PGRS47 reduces the amount of antigen

available for presentation from bacteria degradation (Saini et al.,

2016; Strong et al., 2021). Additionally, PE_PGRS47 can

synergistically inhibit macrophage autophagy and apoptosis by

downregulating IL-1a secretion and inhibiting the MAPK signaling
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pathway (particularly p38 and ERK1/2), thereby promoting the

survival of M. smegmatis within macrophages. This indicates that

the multifunctional virulence factor PE_PGRS47 can evade host

immunity such as autophagy through multiple pathways (He et al.,

2025). PE_PGRS41 is also an autophagy inhibitor because

PE_PGRS41 knock-in M. smegmatis reduced autophagy in infected

macrophages (Deng et al., 2017). Under the pressure of adapting to

the host, some PE/PPE family genes of M. bovis may be deleted or

mutated, so that M. bovis has evolved a strategy to evade host

autophagy without relying on PE/PPE family proteins. M. bovis

inhibits autophagic clearance and promotes its intracellular survival

by disrupting autophagosome-lysosome fusion and exploiting host

energy metabolism remodeling (Cai et al., 2023).

In addition to the PE/PPE family, certain enzymes in

mycobacteria can also inhibit autophagy, thereby facilitating
TABLE 1 Strategies of mycobacteria to regulate host autophagy.

Factors Mechanism Study model References

CtpF Activates mTOR THP-1 and mouse peritoneal macrophages (Garg et al., 2020)

Eis Inhibits ROS production BMDM (Shin et al., 2010)

ESAT-6 Inhibits ROS production J774 A.1 (Yabaji et al., 2020)

EspB Inhibits IFN-g-STAT1 axis ANA-1 (Huang and Bao, 2016)

HBHA
Downregulates the expression of LC3 and Beclin-1, reducing
autophagosome formation

A549 (Zheng et al., 2017)

HSP16.3 Inhibits autophagosome formation RAW 264.7 (Yang et al., 2018)

KatG Inhibits ROS production RAW 264.7 and BMDM (Siregar et al., 2022)

LprE
Reduces cathelicidin, ROS, IL-12 and IL-22, inhibiting
phagolysosome fusion

THP-1, PBMC and BMDM (Padhi et al., 2019)

mycolactone Activates mTOR THP-1 and BMDM (Strong et al., 2022)

nuoG Inhibits autophagosome formation and fusion with lysosome THP-1 (Gengenbacher et al., 2016)

PE_PGRS20 Activates mTOR; Binds to Rab1A RAW 264.7, THP-1 and BMDM (Strong et al., 2020, 2021)

PE_PGRS21 Activates mTOR RAW 264.7 (Strong et al., 2020)

PE_PGRS30 Activates mTOR RAW 264.7 (Strong et al., 2020)

PE_PGRS41 Inhibits ATG-8 expression THP-1 (Deng et al., 2017)

PE_PGRS47 Activates mTOR; Binds to Rab1A; Inhibits IL-1a-MAPK axis RAW 264.7, THP-1 and BMDM
(Strong et al., 2020, 2021; He
et al., 2025)

PE6 Induces phosphorylation of mTOR and ULK1 RAW264.7, THP-1 (Sharma N. et al., 2021)

PGL Inhibits IRGM-mediated autophagy initiation THP-1, U937 (Intemann et al., 2009)

PknG
Binds RAB14 and phosphorylates TBC1D4, inhibiting
autophagosome maturation

U937 and BMDM (Ge et al., 2022)

PPE44 Activates mTOR RAW 264.7 (Strong et al., 2020)

PPE51 Activates mTOR RAW 264.7 (Strong et al., 2020)

RipA Activates PI3K-AKT-mTORC1 axis RAW264.7 (Shariq et al., 2021)

Rv3242c Inhibits ROS production
RAW 264.7, THP-1 and mouse
peritoneal macrophages

(Mohanty et al., 2015)

Rv3416
Augments SUMOylation of Beclin-1 and LC3, inhibiting
autophagosome formation

BMDC (Anang et al., 2023)

SapM Binds Rab7, blocking autophagosome-lysosome fusion Raw264.7 (Hu et al., 2015)
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bacterial survival. M. tuberculosis-secreted acid phosphatase SapM

can inhibit autophagy by reducing phagosome-lysosome fusion and

lysosomal acidification. SapM interacts with GTPase Rab7 through

CT domain, thereby inhibiting autophagosome maturation and

enhancing autophagosomes accumulation (Hu et al., 2015). RipA

is a peptidoglycan hydrolase of M. tuberculosis. Survival of

RipA-expressing M. smegmatis is increased in macrophages.

Mechanistically, RipA interacts with the LIR of autophagy

receptors and inhibits ULK by activating PI3K-AKT-mTORC1

signaling, thereby inhibiting antibacterial autophagy (Shariq et al.,

2021). The enhanced intracellular survival (Eis) gene, which is an

acetyltransferase, can increase the bacterial viability of mycobacteria,

as literally indicated. Eis knockout M. tuberculosis causes infected

macrophages to produce more ROS and autophagosomes, suggesting

that Eis may inhibit autophagy by reducing ROS production. Genetic

recombination assays showed that the inhibitory effect of Eis on ROS

and autophagosomes production is dependent on its N-

acetyltransferase domain (Shin et al., 2010). A calcium transporting

P2A ATPase ofM. tuberculosis, CtpF, inhibits autophagy by affecting

calcium efflux. During the early stage of M. tuberculosis infection of

macrophages, CtpF expression is elevated under conditions of

macrophage stress, like hypoxia, elevated nitric oxide

concentrations, and acidic environments. Elevated CtpF allows

calcium efflux and activates mTOR, thus inhibiting autophagy and

enhancing mycobacteria survival (Garg et al., 2020). Visfatin of host

cells is associated with autophagy and ROS production during M.

tuberculosis infection. Rv3242c of M. tuberculosis, encoding a

phosphoribosyltransferase, can inhibit visfatin level in infected

macrophages, thereby suppressing autophagy and ROS production.

Rv3242c-expressingM. smegmatis activates MAPK and increases IL-

10 production, suggesting that the inhibitory effect of Rv3242c on

autophagy may be mediated through the MAPK pathway and IL-10

(Mohanty et al., 2015). KatG also inhibits host autophagy by reducing

ROS. KatG, a catalase-peroxidase, is upregulated in the M.

tuberculosis Beijing strain but not in H37Rv. The upregulated KatG

neutralizes mitochondrial ROS generated during M. tuberculosis

Beijing strain infection, thereby blocking autophagosome

maturation and enhancing intracellular bacterial survival (Siregar

et al., 2022). Protein kinase G (PKnG), the eukaryotic-like serine/

threonine protein kinase, is secreted by pathogenic mycobacteria in

infected macrophages, where it initiates autophagy but prevents

fusion of the autophagosome and lysosome (Walburger et al., 2004;

Ge et al., 2022). For autophagy initiation, PKnG binds directly to the

pleckstrin homology domain of AKT, thereby reverting the inhibitory

effect of AKT for autophagy. For autophagosome maturation

inhibition, PKnG binds directly to host small GTPase RAB14 and

inhibits the GTPase activity of RAB14. In addition, PKnG

phosphorylates TBC1 domain family member 4 (TBC1D4),

depriving it of the ability to activate RAB14 (Ge et al., 2022).

Xenophagy against mycobacteria is associated with NADH

dehydrogenase. NuoG, which encodes NADH dehydrogenase I

subunit G, was previously recognized as an anti-apoptotic virulence

factor of M. tuberculosis. However, knockout of NuoG allows more

LC3 to be recruited to intracellularM. bovis, suggesting that NuoG is

also involved in the inhibition of xenophagy (Gengenbacher et al.,
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2016). Regulation of NADH dehydrogenase determines the ability of

different strains to induce bactericidal xenophagy.

Some other functional proteins apart from enzymes can also

inhibit host autophagy. Latent mycobacteria infection is dependent

on the balance between host and pathogenic bacteria, and heat shock

proteins (HSPs) of M. tuberculosis play a key role in this process.

Autophagosomes in HSP16.3 mutant M. tuberculosis infected

macrophages are significantly more than that in wild strain infected

cells, suggesting that HSP16.3 may increase bacterial survival by

inhibiting host autophagy (Yang et al., 2018). Heparin-binding

hemagglutinin (HBHA) of M. tuberculosis is another autophagy

inhibitor. In A549 cells, HBHA avoids phagosome maturation by

inhibiting LC3 expression, thereby increasing the survival of M.

smegmatis expressing HBHA (Zheng et al., 2017). The inhibition of

autophagy by M. bovis or Rv3416 of M. tuberculosis may be mediated

through enhanced SUMOylation rather than ubiquitination. Inhibiting

SUMOylation enhances the expression of autophagy markers and

promotes autophagy, whereas M. bovis or Rv3416 of M. tuberculosis

augment the SUMOylation of these autophagic molecules to suppress

autophagy in infected bone marrow derived dendritic cells (BMDCs)

(Anang et al., 2023). Mb3523c, a structural protein of M. bovis

belonging to the Mce4 family, promotes bacterial evasion of

clearance by inducing host CMA and ferroptosis. Mechanistically,

Mb3523c protein promotes CMA by interacting with host HSP90 at

Y237 and G241 sites, stabilizing LAMP2A on lysosomes to facilitate

GPX4 degradation via the CMA pathway, thereby inducing ferroptosis

to enhance bacterial pathogenicity and dissemination (Wang H. et al.,

2025). Lipoprotein is a critical class of virulence proteins of M.

tuberculosis, and its virulence is associated with the manipulation of

autophagy. LprE mutant M. tuberculosis causes more autophagy-

associated protein expression and more recruitment of lysosomal

and phagosomal proteins in infected macrophages, suggesting that

LprE inhibits autophagosome formation and fusion of

autophagosomes with lysosomes. LprE inhibits phago-lysosome

fusion because of downregulation of IL-12 and IL-22 (Padhi et al.,

2019). As an important virulence protein of M. tuberculosis, the

mechanism by which lipoproteins inhibit autophagy and increase

intracellular bacterial load has been ambiguous and more

investigation is needed.

Mycobacteria can also regulate autophagy by phosphorylating/

dephosphorylating upstream molecules of autophagy.

Phosphoproteome analysis revealed that M. tuberculosis infection

induces extensive dephosphorylation of host proteins in

macrophages, particularly in MAPK and PI3K signaling pathways

critical for autophagy activation, whereas avirulent M. bovis infection

elicits milder phosphorylation changes and preserves partial

autophagic signaling (Choudhary et al., 2020). A recent study

revealed the role of potassium ion in the induction of autophagy.

Mycobacterial infection can upregulate the surface expression of

potassium ion channel Kir2.1 in epithelial cells and macrophages.

Inhibition of Kir2.1 can promote autophagy and apoptosis by

enhancing oxidative burst and activating the MAPK/NF-kB
pathway, significantly reducing bacterial survival, suggesting that

Kir2.1 may assist mycobacterial immune escape by regulating ion

homeostasis (Sinha et al., 2024). However, the specific factors by
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which mycobacteria regulate host protein phosphorylation status and

enhance potassium channel protein expression remain to

be elucidated.

Although many studies have shown that autophagy is an

important part of the host’s response to clear mycobacteria, a

growing amount of research has challenged this opinion. On the

one hand, in addition to autophagy, autophagy genes are also

involved in non-autophagic processes (Galluzzi and Green, 2019),

and it is difficult to conclude that the changes in intracellular

mycobacteria survival after the deletion of a certain host

autophagy gene are necessarily related to autophagy. For instance,

an ingenious investigation showed no change in mycobacteria

proliferation after abrogating host autophagy by knocking out the

autophagy genes ATG3, ATG7, ATG12, ATG14, or ATG16l1,

suggesting that autophagy is dispensable for inhibiting

mycobacteria proliferation. Concurrently, the deletion of ATG5

resulted in a marked increase in bacterial proliferation, ultimately

leading to the demise of all infected mice. The research team put

forth the hypothesis that ATG5 exerts its antimycobacterial effects

through preventing neutrophil-mediated immunopathology, rather

than autophagy (Kimmey et al., 2015). So, further investigation is

required to elucidate the precise function of autophagy genes in

combating mycobacteria. On the other hand, certain virulence

factors associated with mycobacteria species have been observed

to induce autophagosome formation while simultaneously

inhibiting the fusion of these autophagosomes with lysosomes. In

addition to the previously mentioned PKnG, ESX-1 secretory

system can also be considered as a virulent factor of this kind.

ESX-1 secretory system is necessary for the induction of host

xenophagy during early stages of M. tuberculosis infection

(Watson et al., 2012, 2015); however, it also inhibits the fusion of

autophagosomes with lysosomes during the late infection stages

(Romagnoli et al., 2012; Chandra et al., 2015). The dysregulation of

organelles has the potential to induce the secretion of antimicrobial

and inflammatory cytokines (Zhou et al., 2011; Liao et al., 2019) and

autophagy may assist in the removal of dysregulated organelles,

thereby reducing the secretion of these cytokines (Nakahira et al.,

2011; Di Rita et al., 2021; Han et al., 2021).In the event of M.

tuberculosis inhibiting the entirety of the autophagic flux, this would

result in dysregulated organelles remaining incompletely cleared

and an increase in cytokine secretion. To prevent the maturation of

bacteriophage-containing autophagosomes, while allowing for the

maturation of bacteriophage-free autophagosomes, M. tuberculosis

employed a subtle strategy to expel Rab7 from M. tuberculosis-

containing autophagosomes. This approach ensured the

uninterrupted progression of entire autophagic fluxes (Chandra

and Kumar, 2016). This evidence suggests that autophagosomes

may serve as a niche for mycobacteria replication.
5 Agents targeting autophagy against
mycobacteria

The ability of mycobacteria to inhibit autophagy may be

negatively correlated with their pathogenicity (Gonzalez-Orozco
Frontiers in Cellular and Infection Microbiology 11
et al., 2022). Faced with the sophisticated strategies employed by

mycobacteria to regulate autophagy for survival, the development of

therapeutic interventions that modulate autophagy in the host has

emerged as a promising approach in combating mycobacterial

infections (Table 2). This type of approach is generally called HDT.
5.1 Classic autophagy inducers

Rapamycin is one of the most extensively researched autophagy

inducers. Indeed, in an experimental context, rapamycin

demonstrated notable inhibitory activity against mycobacterial

infections (Greenstein et al., 2008; Bhatt et al., 2021). However, the

absorption of rapamycin in the gastrointestinal tract exhibits

considerable fluctuations, necessitating monitoring during

administration and causing significant inconvenience in the clinical

use of the drug. The administration of rapamycin has been observed

to induce interstitial pneumonitis, which may potentially offset some

of the positive antimicrobial effects observed in cases of mycobacteria

pulmonale infection. Additionally, rifampicin, a standard treatment

for tuberculosis, stimulates expression of the hepatic enzyme

CYP3A4, which metabolizes rapamycin. These factors restrict the

clinical application of rapamycin in the treatment of mycobacteria

infections. Everolimus, as a rapamycin analog, also targets mTOR

and can significantly reduce the intracellular M. tuberculosis burden

in granulomas (Ashley et al., 2020). However, experiments in M.

tuberculosis-infected THP-1 macrophages, a different picture

emerged. Everolimus stimulated autophagy by increasing ROS and

autophagosome formation, but it did not promote autolysosome

generation or significantly inhibit intracellular M. tuberculosis

replication (Bianco et al., 2023). This contradiction highlights the

importance of more preclinical experiments when everolimus comes

to drug repurpose. Ibrutinib, as another agent targeting the mTOR

pathway, can significantly increase the colocalization of LC3 and M.

tuberculosis as well as auto-lysosome fusion, significantly reducing the

M. tuberculosis load in the mediastinal node and spleen of infected

mice (Hu et al., 2020). If further research can confirm that everolimus

and ibrutinib do not have the clinical limitations of rapamycin, then

these agents could be promising HDT drugs.

Metformin, renowned for its AMPK-mediated inhibitive role in

mTOR signaling pathway, is prevalent in managing type-2 diabetes,

and it triggers ROS generation, phagosome maturation, autophagy

in vitro (Singhal et al., 2014; Yang, 2017; Russell et al., 2019). The

administration of metformin to healthy human volunteers led to a

notable downregulation of genes associated with the mTOR

signaling pathway and an upregulation of genes associated with

phagocytosis and the generation of ROS. In vitro, the metformin

treatment in mononuclear cells isolated from peripheral blood of

healthy donors resulted in enhancement of cellular metabolism and

suppression of mTOR downstream effectors, p70S6K and 4EBP1

(Lachmandas et al., 2019). Several clinical studies have shown that

the use of metformin effectively reduces the risk of active

tuberculosis and mortality in patients with diabetes mellitus and

effectively promotes sputum culture conversion in cavitary

pulmonary patients (Degner et al., 2018; Lee M. et al., 2018; Lee
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TABLE 2 Agents targeting autophagy against mycobacteria.

Agents Mycobacteria
Study
setting

Mechanism Reference

2062 M. tuberculosis
In vivo;
In vitro

Improves autophagy by TFEB (Bryk et al., 2020)

Ambroxol M. tuberculosis
In vivo;
In vitro

Increases autophagosomes production (Choi et al., 2018)

Amoxapine
M. bovis;
M. tuberculosis

In vivo;
In vitro

Inhibits mTOR (Wang et al., 2022)

Baicalin M. tuberculosis In vitro Inhibits PI3K/AKT/mTOR pathway (Zhang et al., 2017)

Bazedoxifene M. tuberculosis In vitro Increases ROS and phosphorylation of AKT/mTOR signaling (Ouyang et al., 2020)

Bedaquiline M. tuberculosis In vitro Increases ROS
(Genestet et al., 2018; Giraud-
Gatineau et al., 2020)

Carbamazepine M. tuberculosis
In vivo;
In vitro

Activates AMPK and induces autophagy in an mTOR independent manner
(Cárdenas-Rodrıǵuez et al.,
2013; Schiebler et al., 2015)

Degarelix
M. marinum;
M. tuberculosis

In vivo;
In vitro

Increases IFN-g expression and autophagy initiation (Li et al., 2024)

Everolimus M. tuberculosis In vitro Inhibits mTOR (Ashley et al., 2020)

Furamidine M. bovis; M. smegmatis In vitro Activates Ca2+/AMPK/SIRT1/FOXO3a pathway (Patel et al., 2025)

Gliotoxin M. tuberculosis In vitro Increases Atg5 expression and autophagy initiation (Fu et al., 2023)

GP M. tuberculosis In vitro Enhances ROS and NO production and autophagolysosome maturation (Upadhyay et al., 2019)

H2S M. tuberculosis In vitro Activates CCAR2-SIRT1-LC3 axis (Iqbal et al., 2021)

Ibrutinib M. tuberculosis
In vivo;
In vitro

Facilitates phagosome-lysosome fusion (Hu et al., 2020)

Imiquimod M. tuberculosis In vitro Increases ROS and NO production (Lee et al., 2020)

Isoniazid
M. tuberculosis;
M. marinum

In vivo;
In vitro

Increases ROS; Activates Ca2+-AMPK pathway (Kim et al., 2012)

Linezolid M. tuberculosis In vitro Reduce the inhibition of autophagy by bacteria (Genestet et al., 2018)

Loperamide M. tuberculosis In vitro Increases colocalization of LC3 with M. tuberculosis (Juárez et al., 2016)

Metformin M. tuberculosis In vitro Increases AMPK expression, inducing phosphorylation of ULK1 (Singhal et al., 2014)

Nitazoxanide M. tuberculosis
In vivo;
In vitro

Inhibits mTOR (Lam et al., 2012)

Pyrazinamide
M. tuberculosis;
M. marinum

In vivo;
In vitro

Increases ROS; Activates Ca2+-AMPK pathway (Kim et al., 2012)

Rapamycin
M. avium, M.
smegmatis,
M. tuberculosis

In vivo;
In vitro

Inhibits mTOR
(Greenstein et al., 2008; Bhatt
et al., 2021)

Resveratrol M. tuberculosis
In vivo;
In vitro

Inhibits mTOR
(Liu et al., 2010; Park et al.,
2016; Cheng et al., 2017)

Rosuvastatin M. tuberculosis
In vivo;
In vitro

Reduces membrane cholesterol levels, increasing autophagic flux (Parihar et al., 2014)

Rufomycin M. abscessus
In vivo;
In vitro

Improves autophagy by TFEB (Park et al., 2021)

Se NPs
M. tuberculosis;
M. bovis

In vitro Inhibits mTOR; Increases ROS (Pi et al., 2020)

Simvastatin M. tuberculosis
In vivo;
In vitro

Reduces membrane cholesterol levels, increasing autophagic flux (Parihar et al., 2014)

Soybean lectin M. bovis In vitro Activates JAK2/STAT3/Mcl-1 and P2RX7-NF-kB pathway (Mishra et al., 2021, 2023)

(Continued)
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Y. et al., 2018). Consistent with the above studies, Singhal et al.

showed that metformin restricted the growth of drug-resistant M.

tuberculosis strains in an AMPK-dependent manner, alleviated lung

lesions in infected mice, increased ROS production and phagosome

maturation, and improved the efficacy of anti-tuberculosis drugs

(Singhal et al., 2014). However, another experiment conducted by

Dutta et al. showed that the combination of metformin did not

improve the activity of first-line anti-tuberculosis drugs in mice

(Dutta et al., 2017). This discrepancy cannot be explained by the

dose of metformin because the same dose was used in both

experiments (250 mg/kg). It is speculated that this difference may

be related to the different experimental mouse strains used in the

two experiments. Given that Dutta et al. used RHZE and rifampicin

while Singhal et al. used isoniazid or ethambutol, another seemingly

more plausible theory is that the powerful drug RHZE utilized in the

Dutta’s experiment masked the effects of metformin, or that

rifampicin sped up the clearance of metformin.

As classic autophagy inducers, rapamycin and metformin have

shown the potential to eliminate mycobacteria, but issues such as side

effects, drug interactions and consistency of therapeutic efficacy have

restricted their clinical application. Future research needs to focus on

analogue optimization, delivery system innovation and combined

therapeutic strategies to promote the clinical transformation of host-

directed therapy in the fight against mycobacterial infections.
5.2 Antibiotics

Commonly used anti-tuberculosis antibiotics isoniazid and

pyrazinamide have the effect of inducing autophagy and ROS

production in host cells infected by M. tuberculosis (Kim et al., 2012).

Isoniazid and pyrazinamide increase cellular and mitochondrial ROS

and facilitate phagosome-lysosome fusion in M. tuberculosis-infected

host cells. In vivo, its antimycobacterial efficacy relies on host autophagy,

as autophagy-defective models show reduced survival in the context of

administering antibiotics (Kim et al., 2012). Another antibiotic that can
Frontiers in Cellular and Infection Microbiology 13
induce host cell autophagy is nitazoxanide. Nitazoxanide can directly

restrain M. tuberculosis proliferation in vitro, and it exerts a stronger

inhibitory effect within host cells. Mechanistically, nitazoxanide

suppresses the quinone oxidoreductase in host cells, thereby blocking

the mTOR signaling pathway and enhancing autophagy (Lam et al.,

2012). Bedaquiline and 2062, respectively a new antibiotic and a small

molecule substance, can both increase autophagy and phagosome-

lysosome fusion by activating TFEB (Bryk et al., 2020; Giraud-

Gatineau et al., 2020). Given the effectiveness of autophagy in clearing

intracellular bacteria, it is worth exploring whether first-line anti-

tuberculosis drugs, which have abundant safety evaluation data, can

be used as adjunctive medication against NTMs, even if they do not

have significant activity direct against NTMs.

Rufomycin can partially restore the expression and nuclear

translocation of TFEB in BMDMs infected with the M. abscessus,

activate the mRNA expression of autophagy/lysosome-related genes

downstream of TFEB, and increase the colocalization ofM. abscessus

phagosomes and lysosomes, indicating that rufomycin can enhance

autophagy during M. abscessus infection (Park et al., 2021).

Antibiotic-induced autophagy is not necessarily due to direct

stimulation of host cells. After macrophages are infected with M.

tuberculosis pre-treated with rifampicin, linezolid or bedaquiline,

autophagy activation and efficacy are enhanced, indicating that

antibiotics can promote host cell autophagic clearance by altering

bacterial protein synthesis or energy metabolism (Genestet et al.,

2018). Exposure to isoniazid, bedaquiline, rifampicin, and O-

floxacin causes M. tuberculosis to exhibit higher NADH: NAD+

ratios in infected macrophages, facilitating the production of more

ROS (Bhat et al., 2016). ROS is an inducer of autophagy. The ROS

produced by M. tuberculosis exposed to antibiotics may be released

into the infected host cells, thereby inducing autophagy. It is

speculated that this is at least part of the mechanism by which

antibiotics are effective againstM. tuberculosis (Piccaro et al., 2014).

Although some commonly used anti-tuberculosis antibiotics

show the potential to induce autophagy, the association between

their antibacterial activity and autophagy remains unclear, and the
TABLE 2 Continued

Agents Mycobacteria
Study
setting

Mechanism Reference

Tamoxifen
M. marinum;
M. tuberculosis

In vivo;
In vitro

Improves autophagy by TFEB (Boland et al., 2023)

Trehalose
M. avium;
M. fortuitum

In vivo;
In vitro

Activates PIKFYVE-MCOLN1-TFEB pathway (Sharma V. et al., 2021)

Valproic acid M. tuberculosis In vitro Increases colocalization of LC3 with M. tuberculosis (Schiebler et al., 2015)

Vitamin A M. tuberculosis In vitro
Metabolite of vitamin A increases autophagy through the STING/TBK1/
IRF3 axis

(Coleman et al., 2018)

Vitamin D M. tuberculosis In vitro
Activates autophagy through PI3K, calcium, cathelicidin, calmodulin-
dependent kinase kinase-beta and AMP-activated protein kinase

(Jo, 2010)

ZnO NPs
M. tuberculosis;
M. bovis

In vivo;
In vitro

Increases LC3-II/I ratio and the decreases the SQSTM1/p62 level (Geng et al., 2023)

ZnO-Se NPs M. tuberculosis In vitro
Increases intracellular ROS; Disrupts mitochondrial membrane potential;
Inhibits the PI3K/AKT/mTOR signaling

(Lin et al., 2022)
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mechanism of action needs to be refined. In the future, efforts

should be focused on mechanism analysis and exploration of the

potential for adjuvant therapy.
5.3 Other chemical agents

Multidrug-resistant M. tuberculosis has evolved mechanisms to

resist autophagy, resulting in basal autophagy being insufficient to

eliminate the bacteria. The anticonvulsant drug carbamazepine can

induce sufficient autophagy to clearM. tuberculosis through a pathway

that does not rely on mTOR but reduces intracellular myoinositol

(Schiebler et al., 2015). In addition, carbamazepine can also activate

AMPK. Although this result does not come from M. tuberculosis

infection experiments, it does not rule out the possibility that AMPK is

involved in the process of carbamazepine-induced autophagy in

infected cells (Cárdenas-Rodrı ́guez et al., 2013). Another

anticonvulsant medication valproic acid and the anti-diarrhea drug

loperamide can also enhance autophagy, and this enhancement is

evidenced by the increased co-localization of LC3 andM. tuberculosis

(Schiebler et al., 2015; Juárez et al., 2016). Furamidine, a minor groove

binder of DNA, is also an autophagy inducer that acts on AMPK.

Furamidine induces autophagy in differentiated THP-1 cells via the

Ca2+/AMPK/silent mating type information regulation 1 (SIRT1)/

forkhead box O3 (FOXO3a) signaling pathway, reducing intracellular

M. tuberculosis burden through enhanced autophagic flux, as

evidenced by LC3-II conversion, autophagic vacuole accumulation,

and activation of autophagic markers (Patel et al., 2025).

Degarelix, a synthetic decapeptide GnRH antagonist, inhibits

luteinizing and follicle-stimulating hormone production to reduce

testosterone and estrogen synthesis, and was clinically approved for

prostate cancer treatment (Devos et al., 2023). A recent study shows

that degarelix induces autophagy initiation in macrophages via a

PI3K-dependent pathway, potentially synergizing with IFN-g
upregulation to enhance antimycobacterial activity, without

altering classical autophagic flux. These findings highlight

degarelix as a novel host-directed therapeutic candidate for TB by

targeting early autophagic mechanisms (Li et al., 2024). Gliotoxin, a

metabolite derived frommarine fungi, is a bioactive compound with

potential antibacterial properties. Experiments showed that

gliotoxin significantly increased the LC3-II/LC3-I ratio and ATG5

expression to promote autophagy, and the autophagy inhibitor 3-

MA could suppress the induced autophagy and restore gliotoxin-

inhibited M. tuberculosis infection. Since 3-MA mainly inhibits the

initiation of autophagy, gliotoxin might suppress M. tuberculosis

infection in macrophages by promoting autophagy initiation (Fu

et al., 2023). The study found that amoxapine can inhibit mTOR

activation, induce autophagy in macrophages, increase the level of

LC3B-II, promote autophagosome formation without affecting

autophagic flux. After inhibiting autophagy with 3-MA or

knocking down ATG16L1, the antibacterial effect of amoxapine

against intracellular mycobacteria was significantly weakened,

indicating that autophagy plays a crucial role in the process of

amoxapine inhibiting the growth of intracellular mycobacteria

(Wang et al., 2022). Dimethyl itaconate is another agent that can
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induce autophagy initiation, but it has not been approved

for clinical treatment. Dimethyl itaconate can enhance autophagic

flux and phagolysosomal fusion in macrophages infected

with mycobacteria, as evidenced by increased autophagic

LC3-II accumulation and bacterial colocalization with lysosomes

(Kim et al., 2023).

The decrease of membrane cholesterol levels mediated by

simvastatin and rosuvastatin promotes autophagy and

phagosomal maturation, reduces bacterial load and lung burdens,

and improves histopathologic changes (Parihar et al., 2014).

Fluvastatin, another member of statins, possesses moderate

antimycobacterial activity against M. tuberculosis (Battah et al.,

2019). It is plausible to hypothesize that fluvastatin reduces

membrane cholesterol synthesis by inhibiting hydroxy-methyl-

glutaryl-CoA (HMG-CoA) reductase, thereby promoting

phagosomal maturation and autophagy to reduce intracellular

bacterial burdens in infected host cells.

Selective estrogen receptor modulators, such as tamoxifen and

bazedoxifene, have been shown to exhibit the effect of inhibiting the

growth of M. tuberculosis within macrophages. In vitro and in vivo,

tamoxifen increases autophagy related vesicles, enhances mycobacterial

localization in lysosomes, and its antimycobacterial effect is associated

with autophagy -lysosomal pathway modulation, as inhibition of

lysosomal activity reduces its efficacy (Boland et al., 2023). Treatment

with bazedoxifene increases autophagosome formation and the

expression of LC3B-II protein in infected macrophages. This

indicates that the anti-mycobacterial activity of bazedoxifene might

be related to autophagy. Autophagy indeced by bazedoxifene is

associated with an increase in ROS and the phosphorylation of the

AKT/mTOR signaling pathway (Ouyang et al., 2020).

Imiquimod, a drug for treating superficial basal cell carcinoma,

induces BNIP3-mediated mitophagy through stimulating TLR7 of

macrophage. On the other hand, imiquimod induces NO

production through the GSK-3b-mediated signaling pathway,

which leads to autophagy in the late stage. The autophagy

triggered by imiquimod can effectively eliminate M. tuberculosis

within macrophages (Lee et al., 2020).

Ambroxol, a lead compound identified from screens for

autophagy-inducing drugs, represents a potential host-directed

therapy adjunct to conventional antibiotic chemotherapy against

M. tuberculosis. At clinically relevant doses, ambroxol elicited

autophagy both in vitro and in vivo, thereby promoting the

elimination of mycobacteria by host. Moreover, ambroxol

additionally potentiated the antimicrobial activity of rifampin in

vivo, demonstrating synergistic effects in combating mycobacterial

infection (Choi et al., 2018).

A study found that H2S can sulfhydrate GAPDH and cause its

translocation to the nucleus, where it interacts with cell cycle and

apoptosis regulator 2 (CCAR2), disrupts the CCAR2-SIRT1

complex, activating SIRT1. Subsequently, SIRT1 deacetylates

LC3B, enabling its translocation to the cytoplasm and inducing

autophagy. Moreover, H2S-induced autophagy can promote the

trafficking of M. tuberculosis to lysosomes and restrict its

intracellular growth. This process depends on the sulfhydration of

GAPDH, and SIRT1 is crucial for H2S-induced autophagy and the
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inhibition of M. tuberculosis growth (Iqbal et al., 2021). Since

GAPDH is widely present in various types of cells, autophagy

dependent on the sulfhydration of GAPDH may occur in various

cells, enabling H2S to serve as a broad-spectrum autophagy inducer.

However, considering the toxicity of H2S, developing low-toxicity

analogs might be a better strategy.

Clinically approved chemical drugs with validated safety profiles,

particularly those indicated for patients with comorbidities involving

their primary approved indications and mycobacterial infections,

warrant mechanistic exploration of their synergistic therapeutic

potential and precise druggable targets to advance rational

combination therapies.
5.4 Natural products

The catalytic product of vitamin D-1-hydroxylase, calcitriol,

exhibits antibacterial effects. By activating TLR to upregulate

vitamin D-1-hydroxylase, cathelicidin can be induced, indicating

that calcitriol may exert its antibacterial effect through cathelicidin

(Liu et al., 2006; Periyasamy et al., 2020). Cathelicidin may induce

autophagy through pathways such as TFEB, AMPK, ULK1 and

MAPK (Ikutama et al., 2023; Xi et al., 2024; Yang et al., 2024).

Although studies have shown that vitamin D can induce

autophagy through multiple pathways (Jo, 2010), based on meta-

analyses from multiple randomized controlled trials, vitamin D

does not have consistent efficacy in the HDT against tuberculosis

(Wu et al., 2018; Jolliffe et al., 2019; Tang et al., 2020). Although a

meta-analysis shows that vitamin D deficiency may be a risk factor

for tuberculosis (Huang et al., 2017), high-dose use of vitamin D

cannot effectively accelerate the sputum culture conversion process

in the entire trial population, but it is only effective in MDR-TB

cases or patients with a specific genotype, such as polymorphisms in

the vitamin D receptor gene (Tukvadze et al., 2015; Ganmaa et al.,

2017). The combined use of vitamin D and phenylbutyrate (PBA)

can induce the expression of cathelicidin and cathelicidin-induced

autophagy in macrophages, reducing M. tuberculosis proliferation

(Coussens et al., 2015; Rekha et al., 2015). However, the effect of this

combined therapy on increasing cathelicidin expression is only

observed at very specific doses of PBA (Mily et al., 2013). It is

possible that due to the specific doses of PBA, multiple randomized

controlled trials of the combined use of vitamin D and PBA cannot

yield consistent results (Mily et al., 2015; Bekele et al., 2018), leading

to vitamin D not being able to become an effective HDT for treating

mycobacterial infections.

Similar to vitamin D, vitamin A may be involved in host

resistance to M. tuberculosis. Vitamin A deficiency was

significantly associated with elevated tuberculosis incidence

among HIV-infected individuals (Tenforde et al., 2017).

Mechanistically, the metabolite of vitamin A, all-trans retinoic

acid, increases autophagy through the STING/TBK1/IRF3 axis,

enhancing the colocalization of M. tuberculosis autophagic

vesicles and acidified lysosomes (Coleman et al., 2018). Although

vitamin A can reduce the mycobacterial load in mice, there is a

shortage of consistent evidence regarding its benefits in tuberculosis
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patients (Karyadi et al., 2002; Lawson et al., 2010; Visser et al., 2011;

Wang J. et al., 2020). As a result, whether vitamin A can be used as

an adjunct therapy for tuberculosis remains indeterminate.

Many studies have confirmed the protective effects of autophagy

in alleviating the excessive inflammatory response caused by M.

tuberculosis (Castillo et al., 2012). Excessive activation of

inflammasomes can lead to the excessive secretion of pro-

inflammatory cytokines. The excessive secretion of these

cytokines triggered by M. tuberculosis infection can lead to lung

damage, which is detrimental to recovery. Excessive inflammasome

activation can be mitigated by the autophagic clearance of

endogenous stimuli and inflammasome components (Nakahira

et al., 2011; Zhou et al., 2011; Shi et al., 2012). In this way,

autophagy exerts protective effects in mycobacterial infections

from two aspects: on one hand, autophagy can engulf and

eliminate pathogens; on the other hand, autophagy can reduce

inflammatory damage caused by the infection. Baicalin induces

autophagy in M. tuberculosis-infected macrophages through the

PI3K/AKT/mTOR pathway while simultaneously reducing

inflammasome activation by inhibiting the PI3K/AKT/NF-kB
pathway. Induced autophagy can also clear inflammasomes,

thereby reducing the production of inflammatory cytokines.

Therefore, baicalin can be considered a candidate drug for

eliminating M. tuberculosis and reducing inflammatory lung

damage (Zhang et al., 2017).

Resveratrol induces autophagy by directly binding to the ATP-

binding pocket of mTOR or promoting the interaction between

mTOR and its inhibitor DEPTOR, thereby suppressing mTOR

signaling (Liu et al., 2010; Park et al., 2016). Resveratrol, a SIRT1

activator, reduces intracellular growth of drug-susceptible and

drug-resistant M. tuberculosis strains by inducing phagosome-

lysosome fusion and autophagy in a SIRT1-dependent manner

while dampening M. tuberculosis-mediated inflammatory

responses via deacetylation of RelA/p65. In M. tuberculosis-

infected mice, Resveratrol ameliorates lung pathology, reduces

chronic inflammation, and enhances the efficacy of anti-TB drugs,

highlighting its potential as a host-directed therapy for tuberculosis

(Cheng et al., 2017).

Granulocyte-macrophage colony-stimulating factor (GM-CSF)

is an agent that can reduce the M. tuberculosis and Mav burden. In

hosts infected with either M. tuberculosis or Mav, GM-CSF

enhanced phagosome maturation and inhibited bacterial growth.

Autophagy might play a significant role in GM-CSF activated

immunity against M. tuberculosis and NTM (Kedzierska et al.,

2000; Nannini et al., 2002; de Silva et al., 2007; Hariadi and

Blackwood, 2017).

Soybean lectin, a glycoprotein isolated from soybean seeds with

immunomodulatory activity, triggers IL-6 secretion through the

P2RX7-dependent PI3K/AKT/CREB pathway, which activates the

JAK2/STAT3/Mcl-1 pathway in an autocrine manner to induce

autophagy and eliminate intracellular mycobacteria in differentiated

THP-1 macrophages (Mishra et al., 2023). Furthermore, there is

also a study showing that soybean lectin induces autophagy in

differentiated THP-1 cells via a P2RX7-NF-kB-dependent pathway,
increasing ROS generation and enhancing autophagic flux, thereby
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restricting intracellular M. tuberculosis growth in infected cells

(Mishra et al., 2021).

Trehalose is a naturally occurring disaccharide with mTOR-

independent autophagy-inducing properties. HIV infection was

shown to inhibit autophagy flux in macrophages, promoting the

survival ofM. tuberculosis and NTM. Conversely, trehalose induced

autophagy via a phosphoinositide kinase-FYVE finger containing

(PIKFYVE)- Transient receptor potential channel mucolipin-1

(TRPML1)-dependent pathway, promoting TFEB nuclear

translocation, upregulating autophagy and lysosomal genes,

enhancing phagosome-lysosome colocalization, and thus

restricting intracellular mycobacterial survival during both single

and HIV co-infection (Sharma V. et al., 2021).

Exploring efficacy variability from the perspective of genetic

polymorphisms and developing genotype-matched optimized

protocols may facilitate the promotion of natural products in

mycobacterial disease treatment.
5.5 Nanoparticles

ZnO nanoparticles (ZnO NPs) exhibit antibacterial effects

against various M. tuberculosis strains, including multidrug-

resistant strains. Moreover, ZnO NPs can dose-dependently

induce autophagy and reduce mycobacteria load within

macrophages. However, high-dose ZnO NPs can cause

ferroptosis. Studies have shown that the combination of

ferroptosis inhibitor and ZnO NPs can induce sufficient levels of

autophagy to eliminate M. tuberculosis while avoiding acute lung

injury that may be caused by ferroptosis in vivo (Geng et al., 2023).

Se nanoparticles (Se NPs) are another type of nanoparticles that

not only have antibacterial activity (Huang et al., 2019; Estevez et al.,

2020) but also activate host cell immune responses, such as

autophagy (Pi et al., 2020). The autophagy activated by Se NPs is

related to the alteration of ROS production, mitochondrial

membrane potential, and the PI3K/AKT/mTOR signaling

pathway, playing a crucial role in clearing intracellular

M. tuberculosis.

The novel zinc oxide selenium nanoparticles (ZnO-Se NPs)

made by combining ZnO NPs and Se NPs, like ZnO NPs or Se NPs,

have the ability to directly suppress extracellularM. tuberculosis and

stimulate the host cell immune response for intracellular M.

tuberculosis elimination. ZnO-Se NPs induce host cell autophagy

by increasing intracellular ROS, disturbing mitochondrial

membrane potential, and blocking the PI3K/AKT/mTOR

signaling pathway (Lin et al., 2022). Thus, nanoparticles like ZnO

NPs, Se NPs and ZnO-Se NPs, which combine direct bactericidal

and autophagy-activating effects, have the potential to develop into

new therapeutic agents against mycobacteria.

Similar to ZnO-Se NPs, b-Glucan particles (GP) can trigger

strong immune responses, including autophagy, within M.

tuberculosis-infected macrophages. Unlike ZnO-Se NPs, GP

cannot directly eliminate bacteria, but it can serve as a delivery

system to transport Rifabutin (RB) nanoparticles into macrophages,

enhancing the bactericidal efficacy of RB (Upadhyay et al., 2019).
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Graphene oxide (GO) nanoparticles cannot directly kill bacteria

extracellularly, nor can they induce autophagy or other immune

responses within M. tuberculosis-infected macrophages. However,

they can serve as drug delivery vehicles to transport drugs with

autophagy-inducing or bactericidal activities into host cells, thereby

achieving and maintaining high intracellular drug concentrations,

which facilitates the clearance of M. tuberculosis (Saifullah et al.,

2017; Pi et al., 2019; De Maio et al., 2020). Curcumin is an effective

autophagy inducer, but poor bioavailability limits its application

prospects (Lopresti, 2018). Encapsulating curcumin in a polylactic

acid-glycolic acid shell to obtain polymerized in situ curcumin

nanoparticles can effectively improve the bioavailability of

curcumin and significantly increase autophagy in M. tuberculosis-

infected macrophages (Gupta et al., 2023).

In addition to chemical drugs, nanoparticles can also deliver

nucleic acids to induce autophagy. Nucleic acids are widely involved

in the regulation of autophagy in host cells infected by M.

tuberculosis. Liposomal nanoparticles can simultaneously deliver

chemical drugs and nucleic acids into cells, combining the

advantages of chemotherapy, nanotechnology, and nucleic acid

therapy for autophagy induction. Delivering a certain concentration

of siRNA and anti-tuberculosis drugs into THP-1 cells infected with

M. tuberculosis through liposomal nanoparticles can significantly

increase the proportion of autophagic cells (Niu et al., 2015).

Nanomedicines demonstrate remarkable advantages in

therapeutic, preventive, and diagnostic applications for diseases.

Numerous nanomaterials exhibit promising potential in enhancing

mycobacterial clearance through direct or indirect modulation of

autophagy. Continued exploration of their anti-tuberculosis

mechanisms, in vivo metabolic profiles, biosafety, and degradation

patterns will facilitate the development of novel therapeutic

strategies against mycobacteria.
6 Conclusion and prospects

Autophagy, a conserved cellular mechanism, plays a pivotal role

in the host’s defense against mycobacterial infections, encompassing

both non-selective and selective pathways. However, mycobacteria,

including M. tuberculosis and NTM, have evolved sophisticated

strategies to subvert autophagy, such as deploying PE/PPE family

proteins, SapM, and ESX-1 secretion systems to inhibit

autophagosome-lysosome fusion or activate mTOR signaling.

HDT targeting autophagy has emerged as a promising

approach. Classic autophagy inducers, antibiotics, natural

products and nanomaterials have shown efficacy in preclinical

models by enhancing autophagic flux or bacterial clearance.

Notably, nanomedicines offer dual advantages of direct

bactericidal activity and autophagy induction, overcoming

limitations like poor bioavailability.

Key challenges and future directions include:

Mechanistic clarification. Disentangling the specific roles of

autophagy genes from their non-autophagic functions and

understanding how mycobacterial virulence factors differentially

modulate autophagy at distinct infection stages.
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Multi-omics integrated modeling. Integrating transcriptome,

proteome, and metabolome data to construct a predictive

biomarker model for autophagy regulation therapy.

Therapeutic optimization. Developing autophagy-inducing

agents with minimal side effects and addressing drug interactions.

Combination therapies and nanocarrier-based delivery systems

may enhance efficacy and reduce toxicity.

Translational research. Advancing preclinical findings to

clinical trials, particularly for NTM and drug-resistant

tuberculosis. Genotype-specific therapies and personalized

medicine approaches warrant exploration.

In summary, autophagy represents a critical nexus of host-

pathogen interaction in mycobacterial diseases. Future research

integrating molecular mechanisms, innovative drug delivery, and

clinical translation will unlock its full potential for developing

effective, host-centric therapies against these persistent pathogens.
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