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Whole-genome sequencing and
machine learning reveal key
drivers of delayed sputum
conversion in rifampicin-
resistant tuberculosis
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Yvette Wu4, Yi Chen5* and Yang Che5*

1Departments of Pulmonary Medicine, The First Affiliated Hospital of Ningbo University, Ningbo,
Zhejiang, China, 2Jiaxing Key Laboratory of Clinical Laboratory Diagnostics and Translational
Research, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China, 3Cosmos Wisdom Mass
Spectrometry Center of Zhejiang University Medical School, Hangzhou, Zhejiang, China, 4Fountain
Valley School, Colorado Springs, CO, United States, 5Institute of Tuberculosis Prevention and Control,
Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
Rifampicin-resistant tuberculosis (RR-TB) remains a major global health

challenge, with delayed sputum culture conversion (SCC) predicting poor

treatment outcomes. This study integrated whole-genome sequencing (WGS)

and machine learning to identify clinical and genomic determinants of SCC

failure in 150 RR-TB patients (2019–2023). Phenotypic and genotypic analysis

revealed high rates of isoniazid resistance (74.0%) and rpoB mutations (97.3%,

predominantly Ser450Leu), with 90% of strains belonging to Lineage 2 (Beijing

family). While 64.7% achieved 2-month SCC, 18.0% remained culture-positive at

6 months. Univariate analysis linked 2-month SCC failure to smear positivity,

resistance to isoniazid, amikacin, capreomycin, and levofloxacin, and pre-XDR-

TB status, though only smear positivity (aOR=2.41, P=0.008) and levofloxacin

resistance (aOR=2.83, P=0.003) persisted as independent predictors in

multivariable analysis. A Random Forest model achieved robust prediction of

SCC failure (AUC: 0.86 ± 0.06 at 2 months; 0.76 ± 0.10 at 6 months), identifying

levofloxacin resistance (feature importance: 6.37), embB_p.Met306Ile (5.94), and

smear positivity (5.12) as top 2-month predictors, while katG_p.Ser315Thr (4.85)

and gyrA_p.Asp94Gly (3.43) dominated 6-month predictions. These findings

underscore smear positivity, levofloxacin resistance, and specific resistance

mutations as critical drivers of SCC failure, guiding targeted RR-TB

treatment strategies.
KEYWORDS

rifampicin-resistant tuberculosis, whole-genome sequencing, sputum culture
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Introduction

Tuberculosis (TB) remains a major global health challenge, with

an estimated 10 million new cases and 1.5 million deaths annually

(Bagcchi, 2023). Rifampicin-resistant tuberculosis (RR-TB) is

defined as TB resistant to at least rifampicin (RIF). The

emergence of drug-resistant TB, particularly RR-TB, poses a

significant threat to global TB control efforts. RR-TB, which

includes multidrug-resistant TB (MDR-TB) and extensively drug-

resistant TB (XDR-TB), is associated with higher mortality rates,

prolonged treatment durations, and increased healthcare costs. In

2020, almost half a million individuals developed RR-TB,

contributing to an estimated 6.9 million disability-adjusted life

years (DALYs) (Menzies et al., 2023). The global burden of RR-

TB underscores the urgent need for improved diagnostic and

treatment strategies to address this growing public health crisis.

Sputum culture conversion (SCC), defined as the absence of

Mycobacterium tuberculosis (MTB) growth in sputum culture, is a

key indicator of treatment efficacy in TB management (Holtz et al.,

2006). In RR-TB, SCC is often delayed due to drug resistance,

highlighting the need to identify factors influencing conversion to

optimize treatment outcomes. Delayed SCC is associated with

treatment failure, relapse, and poor prognosis, underscoring its

prognostic significance (Wenlu et al., 2024). Clinically, SCC is

typically assessed at two critical time points: 2 and 6 months after

treatment initiation. While 2-month SCC reflects early bacterial

suppression, its predictive value for long-term outcomes is limited,

especially in patients with comorbidities such as HIV (Kurbatova

et al., 2015). In contrast, 6-month SCC serves as a reliable predictor

of sustained bacterial clearance and treatment success, providing

critical guidance for clinical decision-making and outcome

prediction (Meyvisch et al., 2018).

Prior studies have explored demographic, clinical, and resistance-

related factors influencing SCC in TB, yet research specific to RR-TB

remains limited (Liu et al., 2018). The impact of genetic mutations on

SCC outcomes in RR-TB is particularly underexplored. Emerging

evidence suggests that specific MTB mutations, such as those in

inhA and katG, are associated with increased second-line drug

resistance and delayed SCC, highlighting the critical role of genetic

factors in treatment response (Click et al., 2020). Whole-genome

sequencing (WGS) provides a robust tool for comprehensive

mutation detection and phylogenetic lineage classification, which

may affect bacterial fitness and therapeutic outcomes (Meehan et al.,

2019; He et al., 2020). Moreover, machine learning (ML) algorithms

can effectively integrate high-dimensional clinical and genomic data to

predict treatment outcomes with precision and prioritize key

predictors, complementing traditional statistical approaches (Chafai

et al., 2024). However, the combined application of WGS and machine

learning to identify SCC determinants in RR-TB remains in its early

stages, with the impact of specific resistance mutations on SCC timing

still poorly understood (Kurbatova et al., 2015). Addressing these gaps

is crucial for developing targeted interventions to enhance RR-TB

treatment success.
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This study aims to elucidate the clinical and genetic

determinants of SCC in RR-TB using a WGS-based approach.

We analyzed clinical data and isolates from 150 RR-TB patients

diagnosed between January 2021 and September 2023, assessing the

association of demographic, clinical, and microbiological

characteristics with 2- and 6-month SCC outcomes. Phenotypic

and genotypic resistance profiles were characterized through drug

susceptibility testing and WGS, with a focus on identifying specific

resistance mutations linked to SCC. By integrating clinical,

genomic, and machine−learning–driven insights, this study seeks

to uncover factors contributing to delayed SCC, inform precision

treatment strategies, and ultimately advance RR−TB management

and control.
Materials and methods

Study design and sample enrollment

The study was a retrospective study that included all the

culture-positive patients diagnosed with RR-TB at local TB

dispensaries in Ningbo, China from Jan 1, 2021, to Dec 31, 2023.

Patients aged above 18 years with sputum culture-positive,

pulmonary, RR-TB were assessed for eligibility, and those with

consent to standardized RR-TB regimen were included. Patients

were excluded if they were pregnant or infected with HIV, hepatitis

B or C virus, or refused to participate. Records related to

demographics, clinical and microbiology were retrieved from the

national TB information management system.
Main definitions

The response to treatment in this study was evaluated by: 2-

month sputum culture conversion as a marker of early treatment

response, 6-month culture conversion (previously reported to be

predictive of treatment outcome). Sputum culture conversion was

defined as two consecutive negative cultures of samples taken at

least 30 days apart (Mirzayev et al., 2021). This definition was

strictly maintained for all timepoint evaluations (2/6 months).
Drug susceptibility test

Drug susceptibility tests of four first-line anti-TB drugs and five

second-line drugs were conducted on solid media (Lowenstein-

Jensen) based on WHO recommendations (Bagcchi, 2023). The

drug concentrations are isoniazid (INH) 0.2 μg/ml, rifampicin (RIF)

40 μg/ml, ethambutol (EMB) 2 μg/ml, streptomycin (SM) 4 μg/ml,

levofloxacin (LVX) 2 μg/ml, amikacin (AM) 30 μg/ml, capreomycin

(CM) 40 μg/ml, prothionamide (PTO) 40 μg/ml, and para-

aminosalicylic acid (PAS) 1 μg/ml. H37RV strains were used as a

reference for quality control.
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WGS and bioinformatics analysis

MTB culture products were inactivated, and genomic DNA was

isolated using a bacterial DNA extraction kit (QIAGEN Inc.,

Dusseldorf, Germany), according to the manufacturer’s instructions.

The isolated and purified DNA products were transported via a cold

chain to a sequencing facility. The purified genomic DNA was

quantified using a TBS-380 fluorometer (Turner BioSystems Inc.,

Sunnyvale, CA, USA) to ensure that the DNA met the quality

requirements for library preparation, sequencing, and detection. At

least 1 mg of genomic DNA per sample was used as the input material

for DNA sample preparation. The DNA samples were treated and

fragmented to a size of ~400 bp. Sequencing libraries were generated

using the NEXTflex™ Rapid DNA-Seq Kit. The prepared library was

multiplexed and loaded on Illumina NovaSeq 6000 PE150 system (San

Diego, CA92122, USA). Sequencing was carried out using a 2×150

paired-end (PE) configuration. Raw sequencing data were processed

using fastp (v0.20.1) to remove adapter sequences and filter out low-

quality bases (Chen et al., 2018). High-quality sequence data were then

input into Kraken v2 for species identification, and samples identified

as other species or with anMTB proportion below 90%were rejected as

contaminated samples (Wood et al., 2019). Finally, the sequencing data

from the remaining samples were aligned to the H37Rv reference

genome (NC_000962.3) using BWA (v0.7.17) (Li, 2013). Samples with

an average sequencing depth > 20� and average genome coverage

>95% were selected for subsequent data analysis. The SAMtools/

BCFtools suite was used for calling fixed (frequency ≥90%) SNPs at

loci where the alternate alleles were supported by at least five reads

(including both forward and reverse reads) (Danecek et al., 2021).
Resistance mutation analysis

Clean sequencing data were input into the local version of TB-

Profiler (v6.5.0) with its strict implementation of the V2 catalog

(database name: who) to identify the genotype of resistance-

associated mutations and detect the resistance profile of 15 anti-TB

drugs, including Amikacin (AM), Bedaquiline (BDQ), Capreomycin

(CM), Clofazimine (CFZ), Delamanid (DLM), Ethambutol (EMB),

Ethionamide (ETO), Isoniazid (INH), Kanamycin, Levofloxacin

(LVX), Linezolid (LZD), Moxifloxacin (MFX), Pyrazinamide

(PZA), Rifampicin (RIF), Streptomycin (SM). Mutations with a

frequency of less than 10% were excluded. WGS-based drug

susceptibility testing (DST) results were determined by assessing

the presence or absence of resistance-associated mutations in a

WHO-recommended database, which classified mutations into Tier

1 (those most likely to confer resistance) and Tier 2 (genes with a

reasonable pretest probability of resistance) (Walker et al., 2022).

Hetero-resistance was defined based on the frequency of resistant

alleles in the sequence reads <99% in this study.
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Phylogeny construction

The fixed SNPs, excluding those in SNPs in PE/PPE areas,

insertion elements, repetitive regions, and drug resistance-

associated genes, were combined into a concatenated alignment

(Luo et al., 2014). Maximum-likelihood (ML) phylogenetic trees

were inferred from the concatenated alignment using IQ-Tree v2

(Nguyen et al., 2015). The best-scoring ML tree were rooted using

M. canettii (RefSeq: NC_015848.1) as the outgroup and visualized

with the Interactive Tree of Life (iTOL) (Letunic and Bork, 2021).
Association analysis

Statistical analyses were performed in R package gtsummary

(Sjoberg et al., 2021). To compare multiple categorical variables,

binary logistic regression was employed where appropriate, with

results reported as odds ratios (ORs) and 95% confidence intervals

(CIs). Variables showing a significant association (P < 0.05) in

univariate logistic regression were included in the multivariate

analysis. Forward stepwise logistic regression was then performed

to identify whether these statistically significant covariates were

independently associated with SCC.
Machine learning analysis

A Random Forest (RF) model was implemented in R v4.0 with a

fixed seed of 27 to identify genetic mutations and clinical factors

associated with delayed SCC at 2 and 6 months in RR-TB. RF was

chosen for its ability to handle high-dimensional, nonlinear data,

robustness to overfitting, and capacity to rank feature importance,

making it well-suited for integrating clinical and genomic predictors

compared to other models like logistic regression or support vector

machines. Mutations in DR related genes and clinical metadata

from 150 isolates were merged. Clinical and phenotypic DST

features were encoded, and mutations imputed with 0. Mutations

in ≥5% of samples were selected. Class imbalance was addressed

using SMOTE (DMwR package) (Kumari et al., 2020). The RF

model was trained using the caret package’s train function

(randomForest method, 100 trees) with an 80/20 train-test split

and 5-fold cross-validation (ROC-AUC). Hyperparameter tuning

was performed with tuneLength = 3, optimizing the number of

variables sampled at each split (mtry). Feature importance in the RF

models was assessed using mean decrease in accuracy (MDA), with

standard deviations estimated from 100 bootstrap iterations to

quantify variability. Test-set AUC and its standard deviation were

estimated using 100 bootstrap iterations. Feature importance and

ROC curves were visualized using ggplot2 (Villanueva and

Chen, 2019).
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Results

Study population and characteristics of
RR-TB patients

Between January 2021 and September 2023, a total of 2,704

patients were diagnosed with sputum culture-positive tuberculosis,

among whom 225 were identified as having RR-TB. From 177

initially enrolled patients, 48 were excluded: 11 lost to follow-up

pre-treatment, 22 declined treatment, 2 died pre-enrollment, and 13

transferred. During WGS processing, 27 additional cases were

excluded: 17 from culture failure, six due to contamination (<90%

MTBC sequences), and four confirmed as NTM infections (threeM.

intracellulare, one M. abscessus) by Kraken2 analysis. Ultimately,

150 patients with successful WGS results were included in the final

analysis (Figure 1). Among the 150 RR-TB patients, 97 patients

(64.7%) achieved SCC after 2 months of treatment. By 6 months of

treatment, the number of patients who successfully achieved SCC

increased to 123 (82.0%).

As shown in Table 1, the mean age of patients was 45 years, and

117 (78.0%) were male. A total of 72 patients (48.0%) were smear-

positive. Retreatment cases accounted for 44.0% (n = 66).

Underlying health conditions were reported in 62 patients

(42.7%), with diabetes (53.2%, 33/62) and hypertension (35.5%,

22/62) being the most common. Additionally, 24 patients were

smokers, and 21 reported alcohol consumption. Migrant

individuals comprised 46.0% (n = 60) of the cohort. Regarding
Frontiers in Cellular and Infection Microbiology 04
occupation, the largest groups were workers (32.7%, n = 49),

unemployed individuals (29.3%, n = 44), and farmers (20.0%, n =

30).
Phenotypic and genotypic profiles of RR-
TB isolates

Excluding RIF, phenotypic DST revealed that resistance rates

for the remaining eight anti-tuberculosis drugs ranged from highest

to lowest as follows (Table 1): isoniazid (INH), 74.0% (111/150);

streptomycin (SM), 62.0% (93/150); levofloxacin (LVX), 36.0% (54/

150); ethambutol (EMB), 33.3% (50/150); para-aminosalicylic acid

(PAS), 16.7% (25/150); prothionamide (PTO), 15.3% (23/150);

amikacin (AM), 8.7% (13/150); and capreomycin (CM), 6.7%

(10/150).

A total of 133 mutations were identified by WGS across 19

antibiotic resistance genes related to RIF, INH, EMB, PZA, ETO,

SM, PAS, aminoglycosides, and fluoroquinolones resistance

(Supplementary Table S1). Genomic analysis revealed RIF-resistance-

associated mutations in 98.7% (148/150) of isolates, predominantly in

rpoB (146 strains), with rare rpoC mutations (2 strains). The most

frequent rpoBmutation was Ser450Leu, accounting for 58.2% (85/146)

of cases, followed by Leu452Pro (12.3%, 18/146), with other low-

frequency mutations (e.g., Leu430Pro, Asp435Ala). Additionally, two

strains carried rpoC mutations (Ile435Thr, Phe452Ser). Beyond RIF,

mutations conferring resistance to other drugs were detected, including
FIGURE 1

Flowchart of this study.
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embB_p.Met306I le (EMB), katG_p.Ser315Thr (INH),

gyrA_p.Asp94Gly (fluoroquinolones), and rrs_n.1401A>G

(aminoglycosides), reflecting the multidrug-resistant nature of the

cohort. Based on WGS results and WHO’s updated definitions, the

150 RR-TB strains were further categorized into 65 MDR-TB, 51 pre-

XDR-TB, and 34 RR-TB cases. These findings highlight the genetic

diversity of resistance in RR-TB and underscore the utility of WGS in

identifying critical mutations driving treatment challenges.

To elucidate the evolutionary relationships of the 150 RR-TB

strains, we constructed a ML phylogenetic tree based on

concatenated sequences from non-redundant SNP loci (Figure 2).

Genotyping analysis revealed that 90.0% (135/150) of the strains

were classified into lineage 2 (L2), with the majority falling under

the L2.2.1 (n = 125) and L2.2.2 (n = 9) sublineages (Beijing family),

accounting for a total of 134 strains. The remaining 10.0% (15/150)

belonged to lineage 4 (L4), comprising sublineages L4.4 (n = 7),

L4.5 (n = 6), and L4.2 (n = 2), respectively.
Frontiers in Cellular and Infection Microbiology 05
Demographic and clinical factors
influencing the SCC in RR-TB

Univariate analysis of 150 RR-TB patients identified factors

associated with the SCC failure at 2- and 6-month post-treatment

initiation (Table 2). At 2-month, SCC failure showed significant

associations ( OR = 3:15,   95%  CI :   1:58 − 6:46,   P = 0:001) with

smear-positive status, phenotypic resistance to (INH OR = 3:24,  

95%  CI :   1:38 − 8:55,   P = 0:011), AM ( OR = 7:29,   95%  CI :  

2:11 − 33:7,   P = 0:004), CM ( OR = 8:44,   95%  CI :   2:02 − 57:5,  

P = 0:009), LVX ( OR = 4:53,   95%  CI :   2:23 − 9:45,   P < 0:001),

and genotypic pre-XDR-TB ( OR = 4:70,   95%  CI :   1:80 − 13:5,  

P = 0:002). However, by 6-month, only smear-positive status and

LVX resistance remained significantly associated with delayed

c o n v e r s i o n ( OR = 3:25,   95%  CI :   1:39 − 7:86,   P = 0:007) ,

indicating that other resistance profiles became less influential

over time.

To identify independent predictors of delayed SCC, we

constructed multivariable logistic regression models. For 2-month

conversion failure, the model was adjusted for smear-positive

status, phenotypic resistance to INH, AM, CM and LVX, as well

as genotypic pre-XDR-TB. For 6-month failure, adjustments

included smear-positive status and LVX resistance. After

adjustment, smear positivity ( aOR = 3:32,   95%  CI : 1:54 − 7:44,  

P = 0:003) and LVX resistance ( aOR = 6:09,   95%  CI : 1:31 −

35:0,   P = 0:026) were significantly associated with 2-month SCC

failure. Other factors in the 2-month model, including INH, AM,

CM resistance, and genotypic pre-XDR-TB were not statistically

significant. For 6-month SCC failure, smear positivity ( aOR =

2:90,   95%  CI : 1:19 − 7:61,   P = 0:023) and LVX resistance ( aOR

= 3:01,   95%  CI : 1:27 − 7:40,   P = 0:013) remained significant

predictors. The strong association of smear positivity and LVX

resistance with SCC failure suggested that higher bacterial burden

and fluoroquinolone resistance significantly impede early and

sustained treatment response.
ML analysis of delayed SCC

The RF model demonstrated robust performance in predicting

SCC failure at both 2 and 6 months among patients with RR-TB,

yielding ROC-AUC values of 0.86 ± 0.06 and 0.763 ± 0.103,

respectively, based on 5-fold cross-validation (Figures 3A, B).

Feature importance analysis measured as MDA, highlighted key

determinants of delayed SCC with variability estimated from 100

bootstrap iterations (Figures 3C, D). For the 2-month endpoint, the

most influential predictors included LVX resistance ( MDA   =

6:37  ±   1:05), AM resistance ( MDA = 5:95  ±   0:46), and the

embB_p.Met306Ile mutation (EMB resistance, MDA = 5:94  ±  

0:47), followed by rrs_n.1401A>G (AM resistance, MDA = 5:83  ±  
TABLE 1 Demographic and clinical characteristics of patients with RR-
TB in this study.

Characteristics Number

Age, mean ± SD 45 ± 16.1

Male sex
Smear-positive

114 (76.0%)
72 (48.0%)

Medical history 62 (41.3%)

Smoking 33 (22.0%)

Drunk 21 (14.0%)

Retreatment 66 (44.0%)

Migrant 69 (46.0%)

Occupation

Farmer 30 (20.0%)

Unemployed 44 (29.0%)

Worker 50 (33.0%)

Other 26 (17.0%)

Phenotypic drug resistance

INH 111.0 (74.0%)

SM 93.0 (62.0%)

EMB 50.0 (33.3%)

AM 13.0 (8.7%)

CM 10.0 (6.7%)

LVX 54.0 (36.0%)

PAS 25.0 (16.7%)

PTO 23.0 (15.3%)
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0:30) and INH resistance ( MDA = 5:61  ±   0:58). At 6 months, the

top contributors were LVX resistance ( MDA = 5:46  ±   1:33),

baseline sputum smear positivity ( MDA = 5:00  ±   1:50), and the

katG_p.Ser315Thr mutation (INH resistance,MDA = 4:85  ±   0:92),

w i t h g e n o t y p i c DR t y p e ( MDA = 4:16  ±   0:96) a n d

gyrA_p.Asp94Gly (fluoroquinolone resistance, MDA = 3:43  ±  

0:62) also playing significant roles. Notably, katG_p.Ser315Thr and

gyrA_p.Asp94Gly emerged as stronger predictors at the 6-month

mark, underscoring their association with prolonged treatment

failure due to INH and fluoroquinolone resistance, respectively.
Discussion

This study provides a comprehensive analysis of clinical and

genomic determinants of delayed SCC in RR-TB, combining WGS

and ML to unravel critical predictors of treatment failure. Our

findings underscore the persistent challenge of delayed SCC in RR-

TB, with 35.3% of patients failing to achieve conversion at 2 months

and 18.0% remaining culture-positive at 6 months. These rates align

with prior reports of poor SCC outcomes in RR-TB cohorts,

particularly in high-burden settings, but extend existing

knowledge by dissecting the interplay of phenotypic resistance,

genetic mutations, and bacterial lineage dynamics.
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The association of smear positivity with delayed SCC at both

time points reinforces its role as a biomarker of high bacterial

burden and poor treatment response. This aligns with studies by

Kurbatova et al, who demonstrated that smear grade correlates with

prolonged culture positivity in MDR-TB (Kurbatova et al., 2015).

However, our work uniquely identifies LVX resistance as a

persistent independent predictor of SCC failure, even after

adjusting for confounding resistance profiles. This finding is

critical in light of global shifts toward shorter, fluoroquinolone-

intensive regimens for RR-TB (Pranger et al., 2019). Our results

corroborate earlier evidence that fluoroquinolone resistance

undermines bactericidal activity, but further highlight that its

impact persists beyond the early treatment phase, likely due to

compensatory mutations in gyrase genes (e.g., gyrA_p.Asp94Gly)

that enhance fitness under drug pressure (Pantel et al., 2016; Diriba

et al., 2022).

The diminishing significance of aminoglycoside resistance

(AM/CM) in multivariable models at 6 months contrasts with its

prominence at 2 months. This temporal divergence may reflect the

delayed sterilizing effects of second-line injectables, which are often

prioritized in early-phase regimens but phased out later (Conradie

et al., 2022). Similarly, the loss of association between pre-XDR-TB

and SCC failure in adjusted analyses suggests that resistance

complexity alone may not drive outcomes if core drugs (e.g.,
FIGURE 2

Phylogenetic tree and phenotypic DST profile of 150 RR-TB strains. The maximum-likelihood phylogenetic tree is based on concatenated SNP loci,
with branch lengths representing the number of nucleotide substitutions per site. Branch colors represent lineages: blue for L2 and green for L4. The
outer ring indicates sputum culture conversion (SCC) status: orange for SCC achieved at 2 months, red for SCC at 6 months, and white for no SCC
by 6 months. The outermost colored dots denote phenotypic resistance to nine anti-TB drugs (RIF, INH, SM, EMB, AM, CM, LVX, PAS, PTO), with
each drug assigned a unique color as indicated in the legend.
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TABLE 2 Risk factors for SCC failure at 2 and 6 months: univariable and multivariable regression analysis.

Univariable (2-month) Multivariable
(2-month)

Univariable
(6-month)

Multivariable
(2-month)

N OR1 95%
CI1

p-
value

AOR1 95%
CI1

p-
value

OR1 95%
CI1

p-
value

AOR1 95%
CI1

p-
value

Sex 150

female — — — —

male 1.33 0.60,
3.06

0.5 2.93 0.94,
12.9

0.10

Age 150

<60 y — — — —

>60 y 1.38 0.55,
3.34

0.5 2.18 0.76,
5.80

0.13

Sputum smear 150

Negative — — — — — — — —

Positive 3.15 1.58,
6.46

0.001 3.32 1.54,
7.44

0.003 3.14 1.31,
8.12

0.013 2.90 1.19,
7.61

0.023

Smoking 150

No — — — —

Yes 1.06 0.46,
2.34

0.9 2.06 0.80,
5.08

0.12

Drunk 150

No — — — —

Yes 1.15 0.43,
2.94

0.8 2.06 0.67,
5.73

0.2

Registered
residence

150

Local — — — —

Migrant 1.36 0.69,
2.67

0.4 0.93 0.39,
2.14

0.9

Occupation 150

unemployed — — — —

worker 0.56 0.23,
1.32

0.2 1.01 0.33,
3.13

>0.9

farmer 0.96 0.37,
2.48

>0.9 2.64 0.88,
8.32

0.086

other 0.76 0.27,
2.07

0.6 0.44 0.06,
2.01

0.3

TB history 150

No — — — —

Yes 1.96 1.00,
3.89

0.052 1.76 0.76,
4.15

0.2

Treatment
history

150

Initial treatment — — — —

(Continued)
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TABLE 2 Continued

Univariable (2-month) Multivariable
(2-month)

Univariable
(6-month)

Multivariable
(2-month)

N OR1 95%
CI1

p-
value

AOR1 95%
CI1

p-
value

OR1 95%
CI1

p-
value

AOR1 95%
CI1

p-
value

Treatment
history

150

retreatment 1.96 1.00,
3.89

0.052 1.76 0.76,
4.15

0.2

INH 150

S — — — — — —

R 3.24 1.38,
8.55

0.011 4.02 0.89,
23.4

0.088 1.68 0.63,
5.33

0.3

SM 150

S — — — —

R 1.49 0.74,
3.05

0.3 0.72 0.31,
1.70

0.4

EMB 150

S — — — —

R 1.75 0.87,
3.53

0.12 1.22 0.50,
2.87

0.7

AM 150

S — — — — — —

R 7.29 2.11,
33.7

0.004 1.43 0.25,
9.37

0.7 3.27 0.92,
10.8

0.055

CM 150

S — — — — — —

R 8.44 2.02,
57.5

0.009 3.64 0.51,
31.6

0.2 2.07 0.42,
8.05

0.3

LVX 150

S — — — — — — — —

R 4.53 2.23,
9.45

<0.001 6.09 1.31,
35.0

0.026 3.25 1.39,
7.86

0.007 3.01 1.27,
7.40

0.013

PAS 150

S — — — —

R 2.30 0.96,
5.56

0.060 2.04 0.72,
5.38

0.2

PTO 150

S — — — —

R 1.86 0.75,
4.58

0.2 2.34 0.81,
6.27

0.10

Lineage 150

L2 — — — —

L4 0.64 0.17,
1.98

0.5 0.00 >0.9

(Continued)
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TABLE 2 Continued

Univariable (2-month) Multivariable
(2-month)

Univariable
(6-month)

Multivariable
(2-month)

N OR1 95%
CI1

p-
value

AOR1 95%
CI1

p-
value

OR1 95%
CI1

p-
value

AOR1 95%
CI1

p-
value

Genotypic
DR type

150

RR-TB — — — — — —

MDR-TB 1.48 0.56,
4.21

0.4 0.54 0.09,
2.95

0.5 0.56 0.17,
1.90

0.3

Pre-XDR-TB 4.70 1.80,
13.5

0.002 0.29 0.03,
2.20

0.3 1.77 0.62,
5.52

0.3
F
rontiers in Cellular and
 Infection Microbiology
 09
 fron
1OR, Odds Ratio; CI, Confidence Interval; AOR, Adjusted Odds Ratio.
Significant results (P < 0.05) are shown in bold.
FIGURE 3

Random forest model performance and feature importance for predicting SCC Failure in RR-TB Patients. (A, B) Receiver Operating Characteristic
(ROC) curves for predicting sputum culture conversion (SCC) failure at 2 months (A) and 6 months (B), based on 5-fold cross-validation. The dashed
line indicates random guessing (AUC = 0.5). (C, D) Bar plots of the top 10 predictors of SCC failure at 2 months (C) and 6 months (D), measured as
Mean Decrease in Accuracy (MDA), with higher values indicating greater predictive importance. Clinical features (e.g., smear positivity) are shown in
blue, and genetic mutations (e.g., katG_p.Ser315Thr) in red. Importance values are displayed above each bar, with error bars representing standard
deviations from 100 bootstrap iterations.
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bedaquiline, linezolid) retain efficacy—a hypothesis supported by

recent trials (Trevisi et al., 2023).

By integrating WGS with ML, this study advances beyond

traditional regression approaches, capturing nonlinear

interactions among predictors. The Random Forest model’s high

accuracy (ROC-AUC: 0.86 at 2 months) outperforms prior SCC

prediction tools reliant on clinical variables alone (Kurbatova et al.,

2015). Importantly, our ML framework prioritized mutations (e.g.,

rrs_n.1401A>G for aminoglycoside resistance) that are rarely

assessed in phenotypic DST but critically influence SCC. This

supports the WHO’s push for expanded genetic DST in RR-TB

management (World Health Organization, 2021).

Notably, ML-driven feature importance analysis uncovered

mutation-specific temporal effects. While embB_p.Met306Ile

dominated 2-month SCC failure—potentially by compromising

EMB’s role in early bacterial suppression—katG_p.Ser315Thr and

gyrA_p.Asp94Gly emerged as stronger predictors at 6 months. This

aligns with mechanistic studies showing that katGmutations confer

enduring isoniazid resistance via catalase-peroxidase inactivation

(Ando et al., 2010), while gyrA mutations stabilize DNA gyrase

under prolonged fluoroquinolone exposure (Aldred et al., 2014).

Such findings underscore the need for dynamic, mutation-adjusted

treatment strategies.

Phylogenetic analysis revealed that 90.0% of the isolates

belonged to the L2 Beijing family and 10.0% to L4, consistent

with the epidemiological profile of RR-TB in Eastern China (Yang

et al., 2017). While no significant lineage-specific SCC effects were

detected in our analysis, their potential impact cannot be entirely

ruled out (Liu et al., 2020). Previous studies suggest that Beijing

strains may exhibit higher drug resistance acquisition due to

increased fitness and compensatory mutations, such as those in

rpoC and katG, which mitigate the fitness cost of rifampicin

resistance (Nguyen et al., 2025). Additionally, our ML analysis

prioritized specific mutations (e.g. , katG_p.Ser315Thr,

gyrA_p.Asp94Gly) over lineage itself, suggesting that mutation-

driven resistance profiles may outweigh lineage-specific effects in

determining SCC outcomes. Future studies with more balanced

lineage representation are needed to quantify the direct impact of

lineages on SCC and explore interactions with resistance mutations.

These findings have immediate clinical implications. First, rapid

detection of LVX resistance through genotypic assays should guide

regimen selection, avoiding empiric fluoroquinolone use in high-

resistance settings (Pillay et al., 2022). Second, smear-positive

patients require intensified monitoring, with early escalation to

novel agents (e.g., pretomanid) if SCC is delayed (Dooley et al.,

2023). Third, lineage-specific therapeutic approaches may be

warranted, particularly for L2 strains harboring katG/embB

mutations that may benefit from adjunctive therapies (Gupta

et al., 2020).

Study limitations include potential selection bias from

excluding 75 of 225 RR-TB cases (33%) due to objective reasons

(48 cases, e.g., loss to follow-up, refusal, death, transfer) or
Frontiers in Cellular and Infection Microbiology 10
laboratory issues (27 cases, e.g., failed isolate recovery,

contamination, nontuberculous mycobacteria), which may bias

delayed SCC findings by altering the impact of predictors like

smear positivity or resistance mutations. Due to incomplete

records in the national TB information management system,

socioeconomic factors (e.g., income, education, housing),

treatment adherence, and prior anti-tuberculosis drug exposure

were excluded, potentially biasing our models toward

microbiological and genetic predictors by overestimating the

impact of resistance mutations and smear positivity on SCC

failure, particularly in retreatment or socially vulnerable patients

(Nidoi et al., 2021). It should be noted that China’s free treatment

policy and adjustment for proxy variables (migrant status/

occupation) likely mitigated this bias (Long et al., 2021). The

predominance of L2 strains may limit generalizability to settings

where other lineages dominate. Future studies should integrate

standardized socioeconomic assessments and objective

adherence monitoring.

In conclusion, our study demonstrates that delayed sputum

culture conversion in RR-TB is driven by a complex interplay of

clinical, microbiological, and genetic factors, with smear positivity

and LVX resistance emerging as persistent predictors of poor

treatment response. By integrating WGS with ML, we identified

key r e s i s t ance muta t i ons ( e . g . , ka tG_p . S e r315Thr ,

gyrA_p.Asp94Gly) that exert time-dependent effects on SCC

outcomes, providing novel insights into the dynamic nature of

drug resistance in RR-TB. These findings underscore the critical

need for rapid genotypic DST to guide personalized regimen

select ion, part icularly in high-burden sett ings where

fluoroquinolone resistance and Beijing lineage strains

predominate. Our results support the incorporation of WGS-

based resistance profiling into clinical decision-making to

optimize RR-TB management, while highlighting the potential of

machine learning to improve outcome prediction. Future studies

should explore the functional mechanisms underlying these

mutation-specific effects and validate our model in diverse

epidemiological settings to advance precision medicine

approaches for drug-resistant tuberculosis.
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