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Background & aims: Hepatitis B virus (HBV) infection remains a global health 
challenge. Tryptophan metabolism influences immune regulation, but its 
interplay with cytokines during antiviral therapy is unclear. We investigated 
associations between tryptophan pathways and cytokine profiles in the chronic 
hepatitis B (CHB) patients with varying treatment outcomes. 

Methods: This retrospective study included 106 CHB patients (including 29 
functional cure cases) receiving nucleos(t)ide analogues (NAs) and 29 healthy 
controls. Plasma levels of 20 tryptophan metabolites (kynurenine, serotonin, and 
bacterial pathways) were quantified by HPLC-MS/MS, and 12 cytokines were 
measured via flow cytometry. Multivariate analyses were performed. 

Results: Functional cure patients showed unique metabolic patterns. Indole-3­
carboxaldehyde (IAld) levels increased progressively from HBsAg positive groups 
(HBeAg-: 63.324 nmol/L; HBeAg+: 65.938 nmol/L) to functional cure (91.44 
nmol/L) and healthy controls (130.634 nmol/L) (P < 0.01), exhibiting negative 
correlations with HBsAg (r = -0.31) and IFN-g (r = -0.53) but positive correlation 
with IL-1b (r = 0.47). Picolinic acid (PA) was significantly elevated in the functional 
cure group (P < 0.001), associated with reduced HBsAg, IL-2 and increased IL-1b, 
IL-10 levels, indicating potential antiviral effects. Serotonin (5-HT) levels were 
higher in cured patients and correlated with IL-1b and IFN-a (P < 0.05). HBeAg­
positive patients displayed increased kynurenine-to-tryptophan (Kyn/Trp) ratios 
(P < 0.05), while non-cured patients showed metabolic blockade downstream of 
3-hydroxykynurenine (elevated 3-HK/Kyn ratios and reduced KA, XA/3-HK, 3­
HAA/3-HK, and NAA levels; P < 0.05). 
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Conclusions: The tryptophan metabolites (IAld, PA, 5-HT) were found to 
correlate with cytokine levels (IL-1b, IL-10), potentially implicating their 
involvement in immune regulation and antiviral responses. These observations 
delineate a metabolic-immune framework that may inform future therapeutic 
development for HBV. 
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1 Introduction 

Hepatitis B Virus (HBV) infection remains a major global 
public health challenge and one of the leading causes of liver 
disease-related deaths worldwide. According to the Global Burden 
of Disease (GBD) 2019 study, the global prevalence of chronic HBV 
infection across all age groups was estimated at 4.1% (95% 
uncertainty interval: 3.7-4.5), corresponding to 316 million 
infected individuals (GBD 2019 Hepatitis B Collaborators, 2022). 
The World Health Organization (WHO) estimated in 2024 that 
about 1.23 million new HBV infections occur annually globally, and 
about 1.1 million people die from diseases associated with HBV 
infection (World Health Organization, 2024). Although the current 
first-line antiviral therapies, Nucleos(t)ide Analogues (NAs) and 
Pegylated Interferon-alpha (PEG-IFNa),  are effective in

suppressing viral replication and slowing the progression of 
cirrhosis and hepatocellular carcinoma (HCC), functional cure 
rates (defined as sustained HBsAg clearance) remain below 10%, 
and most patients require lifelong treatment or experience poor 
tolerability (Wu et al., 2025; Yuen et al., 2018). The key to achieving 
a functional cure for chronic hepatitis B (CHB) lies in suppressing 
HBV-DNA replication and clearance of viral antigens (HBsAg and 
HBeAg). However, the relationship between this process and 
metabolic reprogramming remains unclear. 

In recent years, the application of metabolomics in liver disease 
research has become increasingly widespread. Li Hai’s team

identified numerous potential prognostic and diagnostic 
biomarkers  for  acute-on-chronic  l iver  fai lure  (ACLF)  
through untargeted metabolite analysis, including membrane 
lipid metabolism, steroid hormones, oxidative stress pathways, 
and energy metabolism, and developed targeted liquid 
chromatography tandem mass spectrometry (LC-MS/MS) assays 
for four metabolites for clinical laboratories use (Zhang et al., 2023). 
Additionally, metabolic comorbidities (such as obesity and 
diabetes) have been shown to exacerbate liver fibrosis in HBV 
patients and reduce fibrosis regression rates after antiviral therapy 
(van Velsen et al., 2025). Tryptophan is metabolized through the 
kynurenine pathway, the serotonin (5-HT) pathway, and the 
bacterial degradation pathway, with its metabolites (such as 
02 
kynurenine and indole derivatives) participating in the regulation 
of various pathophysiological processes, including protein 
synthesis, inflammation, oxidative stress, and immune responses 
(Xue et al., 2023). Numerous studies have shown that tryptophan 
metabolites modulate systemic inflammation. For instance, 
indoleamine 2,3-dioxygenase (IDO), an interferon-g-induced 
enzyme in the tryptophan pathway, catalyzes the conversion of 
tryptophan to kynurenine (Werner et al., 1987) and exhibits a dual 
role in infectious diseases-both promoting inflammation and 
regulating acute and chronic infections (Mehraj and Routy, 2015). 
Previous studies have found that platelet-derived 5-HT exacerbates 
viral hepatitis (Lang et al., 2008). However, other studies suggest 
that 5-HT-mediated DDX37 agonists (AS-19) increase IFN-b 
expression and inhibit HBV replication (Kang et al., 2019). 

Numerous studies have demonstrated that cytokine networks 
dictate the immunopathology of hepatitis B virus infection. For 
instance, Th1 cytokines (e.g., IFN-g, IL-2) promote viral clearance 
(Li et al., 2016), whereas in chronic viral infections, IL-10 frequently 
induces T cell exhaustion and inactivates antiviral T-cell immunity 
by modulating T cells and antigen-presenting cells (APCs), thereby 
facilitating immune evasion and persistent/latent infection (Rojas 
et al., 2017). Recent evidence indicates that tryptophan metabolites 
modulate cytokine responses. For example, IDO increases 
populations of T lymphocytes producing IFN-g and IL-17, 
thereby exerting inhibitory effects (Huang et al., 2020). Indole-3­
carboxaldehyde (IAld) restores virus-induced pro-inflammatory 
features by binding to the aryl hydrocarbon receptor (AhR), 
reducing IL-1b production and increasing IL-10 (Pariano et al., 
2024). Additionally, serotonin stimulates secretion of pro-
inflammatory cytokines (IL-1 and IL-6) while enhancing the 
cytotoxicity of IFN-g, playing  a significant role in antiviral 
defense (Kanova and Kohout, 2021). 

However, research on the tryptophan metabolic pathway 
related to HBV remains limited. As a key immunoregulatory 
metabolic pathway, its role in viral antigen clearance during 
chronic HBV infection has yet to be elucidated. Therefore, this 
study focuses on patients with different CHB disease status, aiming 
to investigate the relationship between tryptophan metabolites and 
viral antigen clearance. The findings may reveal the immune 
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regulatory function of tryptophan metabolism in HBV and provide 
novel therapeutic targets for optimizing clinical cure strategies. 
2 Materials and methods 

2.1 Study population 

This retrospective analysis included 135 participants: 106 CHB 
patients (including functional cure cases) who receivedNAs therapy for 
48 weeks (without prior interferon treatment) and were followed at our 
outpatient clinic from July 2023 to August 2024, along with 29 healthy 
controls. All patients met the diagnostic criteria before treatment 
outlined in the Chinese Guidelines for the Prevention and Treatment 
of Chronic Hepatitis B (2022 Edition) (Chinese Society of Hepatology, 
C.M.A and Chinese Society of Infectious Diseases, Chinese Medical 
Association, 2022). And functional cure was defined according to the 
Expert Consensus on Clinical Cure (Functional Cure) of Chronic 
Hepatitis B (Chinese Society of Infectious Disease Chinese Society of 
Hepatology, C.M.A, 2019), characterized as sustained, undetectable 
serum HBsAg, HBeAg and HBV DNA with or without seroconversion 
to anti-HBs, but with the persistence of residual cccDNA, accompanied 
by resolution of liver injury after the completion of a finite course of 
treatment. Healthy controls were selected from individuals undergoing 
routine health examinations at our center. Exclusion criteria included 
acute hepatitis B, severe hepatitis B, overlapping-infections (other 
viruses/bacteria), autoimmune diseases, liver cirrhosis, and 
malignancies. Baseline clinical and laboratory characteristics are 
summarized in Table 1. This study was approved by the Ethics 
Committee of West China Hospital of Sichuan University (No: 
2021-140). The sample used in this study were residual blood 
samples from clinical testing, and informed consent from patients 
was waived. 
2.2 HPLC-MS/MS analysis of tryptophan 
and its metabolites 

High-performance liquid chromatography-mass spectrometry 
(HPLC-MS/MS) was used to quantitatively detect tryptophan and 
its metabolites in plasma, covering 20 metabolites across three 
pathways (Supplementary Figure 1): 
Fron
•	 Kynurenine pathway: Tryptophan (Trp), Kynurenine 
(Kyn), 3-Hydroxykynurenine (3-HK), Kynurenic acid 
(KA), Xanthurenic acid (XA), 3-Hydroxyanthranilic acid 
(3-HAA), Quinolinic acid (QA), Picolinic acid (PA), 
Nicotinic acid (NA), Nicotinamide (NAA). 

•	 Serotonin (5-HT) pathway: 5-Hydroxytryptophan (5­
HTP), 5-Hydroxytryptamine (5-HT) (Serotonin), 5­
Hydroxyindole-3-acetic acid (5-HIAA), N-Acetylserotonin 
(NAS), Melatonin (M). 

•	 Bacterial degradation pathway (Indole pathway): 
Tryptamine (TA), IAld, indole-3-acetic acid (IAA), 
Indole-3-lactic acid (ILA), Indolepropionic acid (IPA). 
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The analytical methods were referenced from previous studies 
by our research group (Miao et al., 2025). Additionally, this study 
incorporated several calculated values to enhance the analytical 
strategy, such as Sum-5-HT, Sum-Indoles, and Sum-Kyn, which 
represent the overall levels of all metabolites in the 5-HT pathway, 
bacterial degradation pathway, and kynurenine pathway, 
respectively. Furthermore, metabolite-to-precursor ratios were 
used, such as Kyn/Trp, KA/Kyn, 3-HK/Kyn, XA/3-HK, 3-HAA/3­

HK, QA/3-HAA, and PA/3-HAA, which reflect the activity of key 
enzymes in metabolic processes (Moulin et al., 2024). 
2.3 Flow cytometry assay for cytokines 

Plasma cytokine profiling was performed using FACS Canto II 
™ flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) with a 
multiplex cytokine assay kit (immunofluorescence method) (Jiangxi 
Saiji Biotechnology Co., Ltd., Nanchang, China) according to the 
manufacturer’s protocol. Twelve cytokines were simultaneously 
quantified: IL-2, IL-4, IL-6, IL-10, TNF-a, IFN-g, IL-17, IL-1b, 
IL-5, IL-12p70, IFN-a, and IL-8. 
2.4 Statistical analysis 

Statistical analyses were performed using SPSS 27.0 (IBM SPSS 
Software Inc., Armonk, NY, USA) and figures were produced with 
Origin 2024 (OriginLab Corporation, Northampton, MA, USA) 
including principal component analysis, heatmaps, and violin plots. 
Figure of tryptophan metabolic pathway was designed using 
Microsoft PowerPoint (Microsoft Corporation, Redmond, WA, 
USA). All clinical characteristics of patients were analyzed using 
descriptive statistics. For continuous variables with a normal 
distribution, data were expressed as mean ± standard deviation 
(Mean ± SD). For continuous variables with a non-normal 
distribution, data were expressed as median (interquartile range) 
(Median (P25, P75)). For categorical variables, data were expressed 
as frequency (percentage) (n (%)). Group comparisons were 
conducted using one-way ANOVA for normally distributed 
continuous variables, Kruskal-Wallis H test for non-normally 
distributed continuous variables, and chi-square test for 
categorical variables. Both univariate and multivariate logistic 
regression analyses were conducted to control for potential 
confounding factors. Spearman’s rank correlation was used to 
evaluate relationships between metabolite levels and cytokine 
levels. A P-value < 0.05 was considered statistically significant. 
3 Results 

3.1 Clinical characteristics of the study 
cohort 

This study enrolled 106 patients with CHB who received NAs 
therapy for over 48 weeks, stratified into four groups based on 
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treatment outcomes: Functional cure group (n = 29), HBeAg­

negative (HBsAg+HBeAg-HBcAb+) group (n = 40), HBeAg­

positive (HBsAg+HBeAg+HBcAb+) group (n = 37), and Healthy 
control group (n = 29). As summarized in Table 1, the overall age of 
participants was 44.14 ± 10.86 years, with the functional cure group 
demonstrating the highest mean age (48.38 ± 12.77 years), while the 
HBeAg-negative group and HBeAg-positive group had relatively 
lower mean ages (45.88 ± 9.49 years and 39.54 ± 9.03 years, 
respectively). The proportion of males in the functional cure group 
(89.7%) were significantly higher than that in the HBeAg-positive group 
(50%) and HBeAg-negative group (59.5%). While disease duration and 
treatment length varied considerably across patient groups, no 
significant intergroup differences were observed. Laboratory analyses 
showed that liver function parameters (Alanine aminotransferase 
(ALT), Aspartate aminotransferase (AST), Alkaline phosphatase 
(ALP), Gamma-glutamyl transferase (GGT), Albumin (ALB)) were 
Frontiers in Cellular and Infection Microbiology 04
higher in all disease groups than in the healthy control group. White 
blood cell count (WBC) was highest in the HBeAg-positive group and 
lowest in controls. And there were no statistically significant differences 
in alpha-fetoprotein (AFP) levels between groups. 

The baseline imbalances in laboratory indicators were attributed to 
differences between the disease group and healthy controls, while no 
significant differences were observed between functional cure and non-
cured patients within the disease group (Supplementary Table 1). 
Therefore, we adjusted only for confounding factors including age 
and sex in both univariate and multivariate regression analyses 
(Table 2). Univariate logistic regression analysis revealed that 
multiple tryptophan metabolic pathway markers and cytokines were 
significantly associated with functional cure in chronic hepatitis B 
(CHB) patients. Subsequently, multivariate logistic regression analysis 
using the forward likelihood ratio (Forward: LR) method identified 
IAld, PA, PA/3-HAA ratio, and TNF-a as independent predictors. 
= = = = =

TABLE 1 Baseline clinical characteristics and laboratory parameters. 

Groupa Functional cure HBeAg-negative HBeAg-positive Healthy Control Total P valuec 

(n 29) (n 40) (n 37) (n 29) (n 135) 

Age (y) 48.38 ± 12.77 45.88 ± 9.49 39.54 ± 9.03 43.38 ± 10.92 44.14 ± 10.86 0.006 

Sex (n (%)) 

Male 26 (89.7%) 20 (50%) 22 (59.5%) 11 (37.9%) 79 (58.5%) 
< 0.001 

Famale 3 (10.3%) 20 (50%) 15 (40.5%) 18 (62.1%) 56 (41.5%) 

Disease duration (y) b 

<5 1 (4.2%) 5 (15.2%) 4 (13.3%) / 10 (11.5%) 

0.382 
5~10 2 (8.3%) 7 (21.2%) 3 (10%) / 12 (13.8%) 

10~20 11 (45.8%) 12 (36.4%) 16 (53.3%) / 39 (44.8%) 

>20 10 (41.7%) 9 (27.3%) 7 (23.3%) / 26 (29.9%) 

Duration of 
treatment (y) 

5 (3, 10) 3 (1, 7) 5 (2.25, 8) / 5 (2, 8) 0.085 

HBsAg (IU/mL) / 1091.5 (383.75, 2901) 1805 (777, 8898) / / / 

HBV DNA (n (%)) 

<100 copies/mL 29 (100%) 40 (100%) 33 (89.2%) / 102 (96.2%) 
0.017 

≥100 copies/mL / / 4 (10.8%) / 4 (3.8%) 

ALT (U/L) 26 (16, 34) 23 (17, 31) 22 (15.5, 34.5) 15.5 (9, 21.25) 22 (15, 29) 0.002 

AST (U/L) 24 (21, 25) 23 (21, 27) 23 (20, 26) 17.5 (15, 21) 22 (18, 25) < 0.001 

ALP (IU/L) 83.81 ± 16.38 83.36 ± 25.16 79.08 ± 20.30 63.24 ± 15.86 77.79 ± 21.66 < 0.001 

GGT (IU/L) 22 (14, 29) 18 (14, 28) 20 (12, 32) 15 (10, 19.25) 17 (12, 26) 0.045 

ALB (g/L) 48.50 ± 2.39 47.97 ± 2.42 47.25 ± 2.24 46.10 ± 2.54 47.46 ± 2.51 0.001 

WBC (×109/L) 5.84 ± 1.62 5.62 ± 1.26 6.22 ± 1.43 5.23 ± 1.11 5.74 ± 1.38 0.031 

AFP (ng/mL) 2.44 (1.65, 3.18) 2.51 (1.78, 3.53) 2.49 (1.92, 3.52) 2.35 (2.04, 4.01) 2.46 (1.87, 3.44) 0.638 
 

aFunctional cure: HBV-infected patients with sustained HBsAg loss and undetectable HBV DNA; HBeAg-negative: patients with HBsAg+HBeAg-HBcAb+; HBeAg-positive: patients with HBsAg

+HBeAg+HBcAb+.

bRelevant data were missing for 19 patients.

cP value < 0.05 indicates statistical significance.

ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP, Alkaline Phosphatase; GGT, Gamma-Glutamyl Transferase; ALB, Albumin; WBC, White Blood Cell Count; AFP,

Alpha-Fetoprotein.
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3.2 Analysis of tryptophan and its 
metabolites levels 

Comprehensive profiling of all metabolites and calculated indices 
was performed, with NA and TA metabolites excluded from detailed 
analysis due to their consistently low concentrations across all groups. 
The principal component analysis (PCA) was performed on the 
combined dataset of tryptophan metabolites and cytokines from all 
four study groups (Supplementary Figure 2). Principal components 1 
and 2 accounted for 20.8% and 12.3% of the total variance, 
respectively. Distinct clustering was observed between all patient 
groups and healthy controls, whereas the HBeAg-negative and 
-positive groups demonstrated overlapping distributions. Additional 
PCA analyses stratifying the functional cure group and non-cured 
subgroups are presented in Supplementary Figure 3 (which includes 
separate PCA analyses for metabolites and cytokines). 

Our findings demonstrated statistically significant differences (P < 
0.05) in multiple metabolic pathways among groups (Supplementary 
Table 2), including Trp and Sum-5-HT, 5-HT, NAS, M in the 5-HT 
pathway, IAld and ILA in the bacterial degradation pathway, and 
Sum-Kyn, KA, PA, NAA, Kyn/Trp, 3-HK/Kyn, XA/3-HK, 3-HAA/3­
HK, and PA/3-HAA in the kynurenine pathway. 

For metabolites and calculated values with significant differences, 
we further conducted intergroup differential analysis (Figure 1). The 
Frontiers in Cellular and Infection Microbiology 05 
results showed significantly elevated tryptophan levels in healthy 
controls compared to all patient groups, with the HBeAg-positive 
cohort exhibiting obvious reduction in tryptophan concentration. 
Which indicating that tryptophan metabolism may be inhibited in 
HBV patients and is closely related to disease efficacy. 

In the downstream bacterial degradation pathway of tryptophan, 
IAld and ILA were also significantly higher in the healthy control than 
in the disease groups, while IAld exhibited a progressively higher levels 
from HBsAg-positive (median 63.324 nmol/L in HBeAg-negative and 
65.938 nmol/L in HBeAg-positive) to functional cure groups (91.44 
nmol/L) and finally to the healthy control groups (130.634 nmol/L, P < 
0.01), showing a gradual increase as HBV antigen levels decreased. 

Similar patterns were observed in the 5-HT pathway, with Sum­

5-HT and 5-HT exhibiting comparable variations across groups, 
with no significant differences between the healthy control group 
and the functional cure group but were markedly higher than non-
cured HBV groups, particularly the HBeAg-positive cohort. 
Although there were no significant differences between the 
functional cure group and the HBeAg-negative group, both were 
significantly higher than the HBeAg-positive group. The two 
metabolites NAS and M in this pathway also showed higher levels 
in the healthy control group than in the disease group. 

The kynurenine pathway revealed the most differential metabolites 
and indices, with the overall metabolite level Sum-Kyn showing no 
TABLE 2 Logistic regression analysis of tryptophan metabolites and cytokines on the functional cure of hepatitis Ba. 

Variables 
Univariate analysis Multivariate analysisb 

OR(95% CI) P valuec OR(95% CI) P valuec 

Age (y) 0.954 (0.916, 0.993) 0.023 NA 0.144 

Sex (male) 1.131 (0.037, 0.471) 0.002 NA 0.084 

Sum-5HT (nmol/L) 0.994 (0.99, 0.999) 0.010 NA 0.208 

5-HT (nmol/L) 0.994 (0.989, 0.999) 0.011 NA 0.207 

IAlD (nmol/L) 0.98 (0.968, 0.993) 0.002 0.94 (0.906, 0.975) 0.001 

Sum-Kyn (nmol/L) 0.999 (0.999, 1) 0.036 NA 0.867 

Kyn (nmol/L) 0.999 (0.998, 1) 0.024 NA 0.619 

PA (nmol/L) 0.878 (0.83, 0.929) 0.000 0.909 (0.835, 0.991) 0.030 

Kyn/Trp 0.919 (0.859, 0.984) 0.015 NA 0.977 

XA/3-HK 0.053 (0.003, 0.972) 0.048 NA 0.713 

PA/3-HAA 0.412 (0.277, 0.615) 0.000 0.371 (0.171, 0.806) 0.012 

IL-2 (pg/mL) 2.545 (1.446, 4.479) 0.001 NA 0.171 

IL-10 (pg/mL) 0.586 (0.451, 0.761) 0.000 NA 0.988 

TNF-a (pg/mL) 0.58 (0.453, 0.744) 0.000 0.361 (0.205, 0.638) < 0.001 

IL-8 (pg/mL) 0.913 (0.839, 0.993) 0.034 NA 0.190 

IL-6/IL-10 7.697 (1.379, 42.951) 0.020 NA 0.962 
aThe dependent variable is a binary classification variable (functional cure (n = 29) and non-cured (HBeAg-negative and HBeAg-positive (n = 77)).

bThe final model was determined through multivariate analysis using the Forward: LR method, with collinearity verified by VIF (all variables had VIF < 5). NA, ORs cannot be calculated for

variables not retained in the final model equation.

cP value < 0.05 indicates statistical significance.

OR, Odds Ratio; CI, confidence interval; Sum-5-HT, Collective metabolites in the serotonin pathway; 5-HT, 5-Hydroxytryptamine (Serotonin); NAS, N-Acetylserotonin; IAlD, Indole-3­

carboxaldehyde; Sum-Kyn, Collective metabolites in the kynurenine pathway; Kyn, Kynurenine; PA, Picolinic acid; Kyn/Trp, ratio of Kynurenine to Tryptophan; XA/3-HK, ratio of Xanthurenic

acid to 3-Hydroxykynurenine; PA/3-HAA, ratio of Picolinic acid to 3-Hydroxyanthranilic acid; IL, Interleukin; TNF, Tumor Necrosis Factor.
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significant difference between healthy controls and the functional cure 
group, but both were significantly higher than non-cured groups. 
While the functional cure and HBeAg-negative groups showed 
comparable levels, they differed significantly from the HBeAg-

positive group. Analysis of downstream kynurenine metabolites and 
Frontiers in Cellular and Infection Microbiology 06
metabolic enzymes revealed that while Kyn/Trp (reflecting 
Indoleamine 2,3-dioxygenase (IDO) activity) exhibited unclear 
variations across groups, the remaining differential metabolites 
consistently demonstrated significant differences between patient 
groups and healthy controls. Specifically, 3-HK/Kyn (indicating 
FIGURE 1 

Differential analysis of tryptophan metabolites across groups. FC, Functional cure group (n = 29); HBeAg-, HBeAg-negative group (n = 40); HBeAg+, 
HBeAg-positive group (n = 37); HC, Healthy Control group (n = 29). *P < 0.05, **P < 0.01, ***P < 0.001. 
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kynurenine 3-monooxygenase (KMO) activity) was elevated in non-
cured groups, whereas KA (the metabolic product of Kyn and 
kynurenine aminotransferase (KAT)), XA/3-HK (representing KAT 
II activity), 3-HAA/3-HK (reflecting kynureninase (KYNU) activity), 
and NAA (the terminal product of kynurenine pathway) were all 
reduced in patient groups. These observations suggest that NAs­
treated HBV patients, particularly those who failed to achieve 
functional cure, may experience metabolic inhibition downstream of 
3-HK in the kynurenine pathway. Interestingly, PA, products of 
another metabolic pathway of 3-HAA, and PA/3-HAA, were 
significantly elevated only in the cured group. 
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These findings suggests that all three tryptophan metabolic 
pathways exhibit meaningful changes following NAs therapy in 
HBV patients. 
3.3 Cytokine profile analysis 

In the intergroup comparison of cytokines, all cytokines except IL­
5 showed significant differences between different groups (Figure 2), 
demonstrating persistent immune dysregulation in both HBV-infected 
patients and those achieving clinical cure. Specifically, healthy controls 
FIGURE 2 

Differential analysis of cytokines across groups. FC, Functional cure group (n = 29); HBeAg-, HBeAg-negative group (n = 40); HBeAg+, HBeAg­
positive group (n = 37); HC, Healthy Control group (n = 29). *P < 0.05, **P < 0.01, ***P < 0.001. 
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showed markedly higher levels of IL-1b, IL-8, IL-12p70, IFN-a, and IL­
6/IL-10 ratio compared to patient groups, while exhibiting significantly 
lower concentrations of IL-17, TNF-a, IFN-g, IL-4, and IL-10. Notably, 
the HBeAg-negative group displayed distinct cytokine patterns 
characterized by elevated IL-2 levels, reduced TNF-a and IL-10 
concentrations, and lower IL-6 levels compared to both functional 
cure patients and healthy controls. 
3.4 Correlation analysis between 
tryptophan metabolites and cytokine levels 

We examined correlations between patient basic information 
and important laboratory parameters with tryptophan metabolites 
and cytokines. The heatmap shows the strength of correlation 
between each indicator, with statistically significant correlations 
indicated by P values (Figure 3A). The results showed significant 
correlations between multiple tryptophan metabolites and 
cytokines. Overall, Trp, bacterial degradation pathway metabolites 
(IAld and ILA), and kynurenine pathway metabolites (Sum-Kyn, 
Kyn, KA, 3-HAA, QA, and NAA) were significantly negatively 
correlated with IL-2, IL-17, TNF-a, IFN-g, IL-4, and IL-10. Sum-5­

HT, 5-HT, and NAS in the 5-HT pathway were positively correlated 
with IL-1b and IFN-a. As mentioned earlier, we observed that IAld 
exhibited a satisfactory gradient across all subgroups, and IAld also 
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showed a statistically significant correlation with HBsAg. The 
observed patterns indicate this substance could be clinically 
significant in treatment response. We therefore generated linear 
regression plots specifically for IAld (Figure 3B), revealing a weak 
positive correlation with ALB (r = 0.11), moderate positive 
correlation with IL-1b (r = 0.47), weak negative correlation with 
HBsAg (r = -0.31), and the strongest negative correlation with IFN-
g (r = -0.53). 
4 Discussion 

In recent years, the role of the tryptophan metabolic pathway in 
disease regulation has garnered increasing attention (Chen et al., 
2024), with research primarily focused on neuropsychiatric 
disorders, digestive diseases, immune regulation, and oncology, 
particularly investigating depression, inflammatory bowel disease, 
metabolic disorders, and malignancies (Correia and Vale, 2022; 
Davidson et al., 2022; Peyraud et al., 2022). However, its 
implications in viral infections, especially HBV infection, remain 
relatively underexplored. 

This study conducted a retrospective analysis of 106 CHB 
patients who received NAs therapy for over 48 weeks and 29 
healthy controls, aiming to explore the relationship between 
tryptophan metabolites and cytokines with HBV treatment 
FIGURE 3 

(A) Correlation between tryptophan metabolites and cytokines in NAs-treated HBV patients. The correlations with statistical significance are marked 
with asterisks (*). (B) Linear regression plots of parameters significantly associated with IAld. *P < 0.05, **P < 0.01, ***P < 0.001. 
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outcomes. The study found that multiple tryptophan metabolic 
pathways were closely associated with HBV treatment efficacy, 
particularly IAld in the bacterial degradation pathway, which 
showed a remarkable significant gradient correlation with 
treatment response and a negative correlation with HBsAg titer, a 
finding not previously reported in previous studies. Additionally, 
several metabolites in the 5-HT pathway and the kynurenine 
pathway also exhibited significant intergroup variations. These 
findings not only reveal the potential role of tryptophan 
metabolism in HBV treatment but also provide new perspectives 
and potential targets for future research and clinical applications. 

In this study, the bacterial degradation pathway metabolite IAld 
was significantly higher in the cured group than in the non-cured 
group, and showed significant correlations with HBsAg levels, IFN-g, 
IL-4, IL-1b, IL-17, IL-2, and TNF-a, suggesting that IAld may play an 
important role in the immune regulation of HBV antigen clearance. 
The bacterial degradation pathway is mediated by the gut microbiota, 
with some commensal microbiota producing AhR ligands, which 
generate IAA and IPA through oxidative and reductive pathways, 
thereby influencing intestinal permeability and host immunity (Dodd 
et al., 2017). AhR is a ligand-dependent transcription factor activated 
by various synthetic or biomolecular compounds, playing a crucial 
role in immune responses and inflammation suppression (Stockinger 
et al., 2014). IAld has recently been identified as an AhR (Zelante 
et al., 2013), with studies demonstrating that microbiota-derived Trp 
metabolites like IAld play protective roles against mucosal candidiasis 
(Zelante et al., 2013). In dextran sodium sulfate (DSS)-induced mouse 
colitis, dietary Trp supplementation restores AhR ligands produced 
by the gut microbiota, thereby alleviating the severity of colitis (Islam 
et  al . ,  2017).  Similarly,  in  experimental  autoimmune  
encephalomyelitis models, supplementation with Trp or Trp­
derived AhR agonists enhanced IFN suppression and limit central 
nervous system (CNS) inflammation in an AhR-dependent 
mechanisms (Rothhammer et al., 2016). Recent studies have also 
found that IAld can ameliorate Coronavirus disease 2019 (COVID­
19)-associated pulmonary aspergillosis (CAPA) during Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and A. 
fumigatus co-infection by multiple mechanisms, including 
protecting the epithelial barrier, restoring virus-induced pro-
inflammatory features by reducing IL-1b production and increasing 
IL-10 to promote antiviral responses and limit viral replication, and 
IAld works better in a prophylactic rather than therapeutic protocol 
(Pariano et al., 2024). Unlike the aforementioned study, all disease 
groups in this study exhibited decreased IL-1b and increased IL-10 
levels, which is consistent with the conclusions of other studies. The 
studies have found that in CHB patients non-responsive to IFN-a 
therapy, IL-1b levels may be significantly suppressed, possibly due to 
inhibition of NF-kB signaling and activation of the inflammasome/ 
caspase-1 pathway (Lei et al., 2019; Wang et al., 2019). Additional 
research has found that stimulation of HBV-infected cells with IL-1b 
in vitro can rapidly reduce intracellular HBV RNA levels (Delphin 
et al., 2021). These studies suggest that HBV may maintain persistent 
infection by inhibiting the antiviral effects of IL-1b, while  IL-1b may 
serve as a potential therapeutic candidate molecule against HBV. 
Based on these studies and the results of this study, we may also 
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hypothesize that supplementation or stimulation of IAld and IL-1b 
could regulate the HBV immune response and promote the clearance 
of HBsAg, though the conclusions and potential mechanisms require 
further investigation. 

Our study found that multiple 5-HT pathway metabolites were 
significantly lower in non-cured patients compared to both cured 
patients and healthy controls, suggesting a potential association 
with 5-HT’s anti-inflammatory role in immune regulation. 5-HT, 
also known as serotonin, is produced in the central nervous system, 
gastrointestinal tract and platelets (Brenner et al., 2007). It functions 
as both a neurotransmitter and peripheral hormone, regulating 
diverse physiological and psychological processes including 
appetite, sleep, pain, and mood. Through binding to 5-HT 
receptors on immune cells, it also serves as an effective regulator 
of both the innate and adaptive immune systems. A recent study on 
post-acute sequelae of COVID-19 (PASC, or “Long COVID”) 
found that PASC is associated with reduced serotonin levels, and 
other acute viral infections also cause a significant serotonin 
depletion. Although serotonin levels can rebound to baseline after 
acute infection resolution, chronic viral infections may cause 
persistent serotonin deficiency—consistent with our findings. The 
study also suggests that viral infections and type I interferon-driven 
inflammation reduce serotonin levels through diminished intestinal 
absorption of the serotonin precursor tryptophan, platelet 
overactivation and thrombocytopenia and monoamine oxidase 
(MAO)-mediated serotonin turnover (Wong et al., 2023). 
Similarly, Wu et al. also found that serotonin levels were 
significantly lower in decompensated CHB patients than in 
compensated CHB patients, and serotonin levels were lower in 
the HCC group than in the CHB group regardless of HBV DNA 
levels, suggesting serotonin may be a good prognostic marker (Wu 
et al., 2022). However, increasing evidence also suggests 5-HT’s 
contradictory role in immunomodulatory, exerting both 
stimulatory and inhibitory activities (Mawe and Hoffman, 2013; 
Renga et al., 2023). Earlier studies have also suggested that serotonin 
acts as a chemokine to increase the secretion of pro-inflammatory 
cytokines (IL-1, IL-6, NF-kB) and enhance phagocytosis (Kanova 
and Kohout, 2021). In patients with inflammatory bowel disease 
(IBD), 5-HT also increases Nicotinamide adenine dinucleotide 
phosphate (NADPH) -dependent reactive oxygen species (ROS) 
production and upregulates IL-6 and IL-8 (Regmi et al., 2014). And 
serotonin stored in platelets has been shown to supports viral 
persistence in the liver and exacerbates cytotoxic T lymphocyte 
(CTL) -mediated liver immunopathology in viral hepatitis (Lang 
et al., 2008). Although these studies suggest that 5-HT may have 
pro-inflammatory effects in certain inflammatory diseases, the 
causal relationship and specific mechanisms between 5-HT and 
treatment outcomes in HBV patients require further exploration. 

IDO, which catalyzes the conversion of tryptophan to 
kynurenine, has emerged as a prominent research focus due to its 
dual immunoregulatory roles. This enzyme can be induced by pro-
inflammatory cytokines including IFN-g and IL-6 (Werner et al., 
1987; Xie et al., 2023), promotes immune tolerance by T-cell 
suppression, and simultaneously inhibiting replication of 
intracellular pathogens such as human immunodeficiency virus 
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(HIV), herpes simplex virus (HSV), or cytomegalovirus (CMV) 
(Adams et al., 2004; Boasso and Shearer, 2007; Cassoux et al., 1999). 
Studies suggest IDO may exert anti-HBV effects through reciprocal 
activation of NK cells and pDCs, mediated by IFN-g and IFN-a 
release. In patients with acute hepatitis B, early strong activation of 
IDO is a marker of successful clearance of HBV (Yoshio et al., 
2016). Mao et al. also found that IFN-g-induced IDO can inhibit 
HBV replication in HepG2 cells transfected with the HBV genome 
(Mao et al., 2011). Our findings of elevated Kyn/Trp ratios in cured 
patients align with previous reports, though we observed 
particularly high levels in HBeAg-positive group. Through a 
comprehensive literature review, we identified that Kyn, produced 
by IDO1 through the metabolism of Trp, serves as an endogenous 
ligand for the AhR. Binding of Kyn to AhR induces the 
differentiation of immature CD4+ T cells into regulatory T cells. 
Additionally, Kyn binding to AhR can also induce IDO1 expression, 
further suppressing T cell immune responses (Proietti et al., 2020). 
Previous studies have also suggested that kynurenine produced by 
IDO exacerbates liver damage in HBV specific CTL-induced 
fulminant hepatitis (Ohtaki et al., 2014). Similar inhibitory effects 
have been observed in HIV, the serum kynurenine-to-tryptophan 
ratio in HIV-infected patients increases with disease progression 
and immune stimulation (Huengsberg et al., 1998). Additionally, 
studies have shown that the proportion of granulocytic myeloid-

derived suppressor cells (gMDSCs) in peripheral blood and liver 
tissue of HBV-ACLF patients significantly increases and inhibits T 
cell proliferation and IFN-g production via IDO/IL-10 pathway (Yu 
et al., 2022). HBeAg-positive patients exhibit higher circulating 
MDSC frequencies than HBeAg-negative individuals, as HBeAg 
induce the expansion of MDSCs by upregulating IDO, thereby 
impairing T-cell function and maintaining HBV persistent 
infection, which is consistent with our findings (Yang et al., 
2019). Increased IDO activity directly or indirectly influences the 
production of various cytokines, including IL-10, IFN-g, and TNF-
a, thereby participating in the regulation of inflammatory responses 
and immune tolerance (de Araújo et al., 2017; Huang et al., 2020). 
IL-10, as a potent anti-inflammatory cytokine, may also suppress 
the activity of Thelper type 1 (Th1) cells, Natural Killer (NK) cells, 
and macrophages to impede pathogen clearance (Couper et al., 
2008). While our data show no significant correlation between Kyn/ 
Trp and cytokines like TNF-a, IL-10, and IL-6, their coordinated 
directional changes suggest IDO may influence multiple cytokine 
networks in HBeAg-positive patients, potentially hindering HBeAg 
clearance. These findings collectively position IDO as a double-
edged sword in HBV-related inflammation (Munn and Mellor, 
2013; Xu et al., 2008), warranting cautious consideration of IDO as 
a potential therapeutic target for HBV infection. 

In the kynurenine pathway, we also found that 3-HK/Kyn ratios 
(reflecting KMO activity), was elevated in non-cured groups, while 
downstream metabolites including KA (KAT product), XA/3-HK 
(KAT II activity), 3-HAA/3-HK (KYNU activity), and the terminal 
metabolite NAA were all reduced across patient groups. These 
findings suggest a potential metabolic blockade downstream of 3­
HK in nucleos(t)ide analogue-treated HBV patients, particularly 
those failing to achieve functional cure. This metabolic profile is 
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similar to the tryptophan metabolite patterns observed by 
Moulin et al. in rheumatoid arthritis (Moulin et al., 2024), while 
the use of exogenous catalysts conversion of Kyn and 3-HK to 
produce XA and KA via the recombinant enzyme aminoadipate 
aminotransferase (AADAT) directly regulates endogenous 
tryptophan metabolism through AhR activation and cellular 
metabolic reprogramming, thereby reducing the severity of 
inflammatory bowel disease and rheumatoid arthritis (Michaudel 
et al., 2023; Moulin et al., 2024). Therefore, regulating the 
kynurenine pathway may also become a new therapeutic strategy 
for HBV infection. 

There were also some interesting findings in this study. The PA 
concentration and PA/3-HAA ratio were exclusively elevated in the 
cured group, showing significant increases compared to both non-
cured patients and healthy controls. And these measurements 
demonstrated negative correlations with HBsAg and IL-2 levels, 
while exhibiting positive correlations with cytokines including IL­
1b, IL-5, IL-10, and TNF-a, potentially reflecting unique regulatory 
mechanisms in the terminal stages of tryptophan metabolism 
among cured individuals. PA is considered a naturally toxic 
pyridine derivative and an important intermediate widely used in 
the chemical industry (Shi et al., 2024; Xu et al., 2022; Yan et al., 
2023). In the field of biological research, picolinic acid and its 
derivatives have been shown to possess antibacterial and antifungal 
properties (Tamer et al., 2018). Research indicates PA may be 
involved in macrophage activation in the human body (Melillo 
et al., 1996), and exhibit neuroprotective and osteoprotective effects 
(Duque et al., 2020; Knapskog et al., 2023). Notably, recent studies 
have also revealed PA’s broad-spectrum antiviral activity against 
enveloped viruses - including SARS-CoV-2, influenza A virus 
(IAV), flaviviruses, HSV, and paramyxoviruses - through 
mechanisms involving viral membrane integrity disruption, fusion 
inhibition of virus-cell membrane, and cellular endocytosis 
interference, while it is ineffective against non-enveloped viruses 
and bacteriophages. Therefore, PA is also an important target for 
broad-spectrum antiviral drugs (Narayan et al., 2023). However, 
high-dose PA (≥ 500 mg/kg/d) may induce neurovascular toxicity 
(Knapskog et al., 2023). We reasonably hypothesize that elevated 
PA levels in cured group may contribute significantly to HBV 
clearance. Whether PA also exhibits antiviral properties in the 
enveloped virus HBV is a question worthy of further exploration, 
which also provides a new perspective on PA as a therapeutic target 
for HBV. 

This study still has some limitations. First, the relatively small 
sample size may have affected the statistical power of our findings. 
Second, none of the participants in this study had received 
interferon therapy. With the WHO’ s strategy to eliminate 
hepatitis B as a public health threat by 2030 in 2016 (World 
Health Organization, 2016), the application of interferon therapy 
in the treatment of HBV infection has gradually expanded. The 
complex regulatory effects of IFN-a on tryptophan metabolism 
further underscore this limitation. Additionally, while this study did 
not delve into the specific mechanisms of tryptophan metabolic 
pathway in HBV treatment regulation, our preliminary findings 
may provide direction for future research. Subsequent studies 
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should incorporate larger cohorts including interferon-treated 
patients to validate the role of tryptophan metabolism across 
different therapeutic regimens. Furthermore, in-depth research 
into the interaction mechanisms between the tryptophan 
metabolic pathway and the immune system, along with clinical 
prospective studies, such as the specific role of IAld in  HBV

immune regulation, could help elucidate the potential application 
of tryptophan metabolites as biomarkers or therapeutic targets in 
HBV therapy or for identifying patient populations with higher 
likelihood of functional cure. 

In summary, this study represents the first systematic analysis of 
tryptophan metabolic pathway alterations in chronic HBV 
infection, establishing a correlation map across tryptophan 
metabolic profiles, cytokines and HBV functional cure under NAs 
therapy. The findings revealed that functional cure patients 
exhibited distinct metabolic characteristics: IAld levels showed 
negative correlations with HBsAg titer and pro-inflammatory 
cytokine IFN-g, while demonstrating positive correlations with 
pro-inflammatory cytokine IL-1b. Elevated PA levels were 
associated with decreased IL-2 and increased IL-1b and IL-10, 
and higher 5-HT levels were accompanied by increased IL-1b and 
IFN-a. These results not only uncover the coordinated regulatory 
network between tryptophan metabolites (IAld, PA, 5-HT, etc.) and 
key cytokines (IL-1b, IL-10, IFN-g, etc.), providing new perspectives 
for immunometabolic research in viral infections, but also establish 
a theoretical foundation for developing biomarkers for HBV 
treatment by identifying characteristic association patterns 
between metabolites and cytokines, offering important insights for 
designing therapeutic strategies targeting immunometabolic 
pathways. Targeting Trp metabolites represents a novel and 
promising strategy (Xue et al., 2023). The strong associations of 
IAld and PA with functional cure, alongside their established 
immunomodulatory roles in viral infections, suggest these 
metabolites as candidate therapeutic nodes. A comprehensive 
investigation of the role and regulatory mechanisms of Trp 
metabolites and immune in HBV treatment is warranted to 
facilitate their clinical application. 
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SUPPLEMENTARY FIGURE 2 

Principal component analysis of tryptophan metabolites and cytokines. 

SUPPLEMENTARY FIGURE 3 

Principal component analysis of tryptophan metabolites and cytokines across 
different groups. 
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Comparison of clinical laboratory indicators between functional cure group 
and non-cured groups. 
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The levels of tryptophan metabolites and cytokines in each group. 
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