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Introduction: The CRISPR-Cas system serves as a defense mechanism in

bacteria and archaea, protecting them against the invasion of mobile genetic

elements. Staphylococcus argenteus, a Gram-positive bacterium that diverged

from Staphylococcus aureus, is characterized by the rare presence of the

CRISPR-Cas system in only a few isolates.

Methods: In this study, we analyzed the prevalence of the type III-A CRISPR-Cas

system in 368 S. argenteus genome sequences from animals, food sources, and

humans across 26 countries, available in public database.

Results: Our findings revealed that 44.0% of these strains carry this immune

system, with 98.1% of them belonging to the sequence type 2250 (ST2250).

Genomic localization analysis indicated that the CRISPR-Cas is closely associated

with SCCmec (mecA-DmecR1-IS1272-ccrB2-ccrA2) or Insertion sequence 1272

(IS1272) transposase. Further analysis identified a common IS1272 target inverted

repeats (IR) sequence in ST2250 strains, providing insights into why these strains

are more likely to acquire the CRISPR-Cas system. CRISPR typing identified 41

sequences types, classifying these strains into two clusters, with Cluster II being

the predominant one. Homology analysis of spacers revealed that all the

identified 15 spacers exhibited homology to sequences from plasmids, lytic

phages, or prophages.

Conclusion: This study suggests that the acquisition of the CRISPR-Cas system in

S. argenteus enhances its resistance to phage attacks and plasmid invasions in

environmental settings, potentially posing significant challenges for clinical

treatment of infections caused by these strains and hindering efforts to control

their spread in food products using phage-based interventions.
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1 Introduction

Clustered regularly interspaced short palindromic repeats

(CRISPR) and CRISPR-associated (Cas) proteins are considered an

adaptive immune system (CRISPR-Cas) distributed in approximately

40% of bacteria and 90% of archaea, protecting them against foreign

genetic elements, including phages or plasmids (Barrangou et al., 2007;

Kunin et al., 2007; Grissa et al., 2007). A small foreign DNA fragment,

ranging mainly from 26 bp to 72 bp, can be inserted into the CRISPR

array as a spacer (Grissa et al., 2007). The spacer can be transcribed and

processed into mature crRNA, which guides Cas protein complexes to

homologous foreign DNA sequences, enabling the digestion of the

invading DNA through the activity of Cas nucleases (Hille et al., 2018).

Until now, two classes of CRISPR-Cas systems consist of six

types and almost 33 subtypes have been identified (Makarova et al.,

2020). The distribution of CRISPR-Cas systems varies across

different bacterial species. For example, most Salmonella isolates

carry the type I-E CRISPR-Cas system, while only a few strains of S.

aureus and S. epidermidis have been reported to contain CRISPR-

Cas system (Zhang et al., 2024; Mikkelsen et al., 2023). In

staphylococci, the CRISPR-Cas system belongs to type III-A and

demonstrates strong activity against phages or plasmids that are

targeted by its spacers (Marraffini and Sontheimer, 2008; Li et al.,

2021). Besides, the type III-A CRISPR-Cas system doesn’t require a

Protospacer Adjacent Motif (PAM) sequence to recognize targeted

sequence, distinguishing it from other CRISPR systems like type II

CRISPR-Cas9 systems, which relies on a PAM sequence (Pyenson

et al., 2017; Gleditzsch et al., 2019). The type III-A CRISPR-Cas

system has additional notable characteristics: it can cleave both

DNA and RNA targets and induce non-specific immune responses

mediated by the production of cyclic oligoadenylate (cOA) by

Cas10, which can accumulate nucleases to degrade both foreign

and host RNA, leading to an antiviral defense state (Niewoehner

et al., 2017; Kazlauskiene et al., 2017). Although the type III-A

CRISPR-Cas system show strong immune response against foreign

DNAs or RNAs, it is not prevalent in strains of different

staphylococci species. Cruz-López et al., found that only 0.83%

(6/716) of the analyzed 716 S. aureus genomes from GENOMES-

NCBI harbored the CRISPR-Cas system (Cruz-López et al., 2021);

while our previous study revealed that 2.9% of MRSA isolates in

Denmark carried this system (Mikkelsen et al., 2023). A recent

study showed that the CRISPR-Cas system existed in all the 40

MDR S. aureus isolated from poultry meat in Pakistan (Shabbir

et al., 2024). Therefore, it is essential to elucidate the prevalence of

type III-A CRISPR-Cas system in staphylococci strains and the

genomic characteristics of these strains.

S. argenteus was reported as a distinct staphylococcal species

diverged from S. aureus in 2015, and have been found globally

(Tong et al., 2015). It can cause various infections, including

bloodstream infection, skin and soft tissue infections, osteomyelitis,

and brain abscess like S. aureus (Chantratita et al., 2016; Imam et al.,

2025; Lee et al., 2024). The major phenotypic difference between the

two species is the pigmentation: S. aureus typically produces a golden

pigment, while S. argenteus exhibits a silvery-white appearance (Holt

et al., 2011). rpoB sequencing is another reliable method to differentiate
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S. argenteus from S. aureus, as it reveals species-specific genetic

variations in the RNA polymerase b subunit gene (Argudıń et al.,

2016; Mellmann et al., 2006). Previous studies have analyzed the

genomic characteristics of 132 global S. argenteus strains from

published databases between 2005 and 2008, revealing that ST2550 S.

argenteus strains exhibit a tendency to carry the type III-A CRISPR-Cas

system (Goswami et al., 2021). Since 2008, an increasing number of S.

argenteus genomic sequences have been submitted to the NCBI

GenBank database, and the sources of these strains have expanded.

This study further analyzed the prevalence, genetic characteristics,

genomic location, and spacer content of the CRISPR-Cas system in

368 S. argenteus isolates from across the globe.
2 Materials and methods

2.1 Data collection of S. argenteus strains

A total of 370 genome sequences of S. argenteus were obtained

from the NCBI GenBank database as of December 31, 2024. Since

the S. argenteus strains SH3 and DSM 28299 were sequenced twice,

368 unique S. argenteus strains and their genomic sequences were

included in the analysis for this study. Strain information, including

the name, assembly name, accession number, submission data,

bioproject number, host, and country of origin, was collected

from the database. Additional information was corrected or

added based on published papers for the respective strains. The

complete information for all 368 strains is provided in the

Supplementary Table 1.
2.2 MLST and SCCmec analysis

Multi-locus sequence typing of all S. argenteus strains was

performed using the PubMLST platform (https://pubmlst.org/

organisms/staphylococcus-aureus) designed for S. aureus.

Although the MLST sequence types (STs) of some strains were

known when the genome sequences were submitted to the NCBI

GenBank database, all submitted STs were subsequently verified

using the PubMLST platform. To identify the presence of mecA or

mecC in the chromosome of S. argenteus, we used the

SCCmecFinder 1.2 platform (https://cge.food.dtu.dk/services/

SCCmecFinder/), which also provides information on the type of

SCCmec elements and the presence of IS1272 in the chromosome.
2.3 CRISPR-Cas identification

The presence of type III-A CRISPR-Cas system in S. argenteus is

determined by the cas genes (cas1, cas2, cas10, csm2, csm3, csm4, csm5,

csm6, cas6) and CRISPR arrays (CRISPR1 and CRISPR2). To assess

whether this system is present in S. argenteus strains, the

CRISPRCasFinder platform (https://crisprcas.i2bc.paris-saclay.fr/

CrisprCasFinder) were used to analyze complete genome

sequences or assembled contigs. The size of flanking regions for
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each analyzed CRISPR arrays were set to 100bp, and the repeat

length threshold was defined with a minimum of 23 and a

maximum of 55. According to the characteristics of CRISPR

arrays upstream and downstream of the cas gene clusters (Li

et al., 2018), small CRISPR-like elements were excluded from the

analysis. All the repeats identified in the type III-A CRISPR-Cas

system of S. argenteus share over 90% homology with the sequences:

GATCGATACCCACCCCGAAGAAAAGGGGACGAGAAC. The

spacers were extracted from the CRISPR arrays and designed as

previously reported in S. aureus (Li et al., 2016). All the 15 identified

spacers have been previously documented in S. aureus (Li

et al., 2016).
2.4 CRISPR-Cas typing and phylogenic
analysis

After extracting the CRISPR arrays from each strain, the spacer

arrangements of CRISPR1 and CRISPR2 was analyzed using the spacer

names as previously described (Li et al., 2016). Each unique

arrangement of spacers in CRISPR1 were designated as “SgCTA +

NO.” to represent the CRISPR1 type, while “SgCTB + NO.” was used

for the CRISPR2 type. The combination of CRISPR1 and CRISPR2

types was represented as “SgCT + NO.” to indicate the overall CRISPR

type for each strain. To perform the genomic analysis of S. argenteus

strains using CRISPR type, a binary file was constructed based on the

presence or absence of spacers. The presence of a spacer was

represented by “1”, while the absence was denoted by “0” in the

binary file. A phylogenetic tree based on the CRISPR types was then

generated using Bionumericus 7.5 software (Applied Maths, Belgium).
2.5 Homology analysis of spacers

Previous studies have demonstrated that obtaining homologous

sequences of spacers using BLSATn in the NCBI GenBank database

is challenging (Li et al., 2016). The advancement of genome

sequencing technology and the expansion of phage and plasmid

sequences in various databases have significantly improved

homology analysis. In this study, the CRISPRTarget (http://

crispr.otago.ac.nz/CRISPRTarget/) was used to analyze the

homologous sequences of each spacer, employing the GenBank-

Phage, RefSeq-Plasmid, and ACLAME databases to represent

phage, plasmid, and mobile genetic elements, respectively. The

cutoff score was set at 20.
2.6 Location of CRISPR-Cas system in
chromosome

The CRISPR-Cas system is not present in all the Staphylococcus

strains; it is considered the genetic elements frequently located within

the SCCmec region in S. aureus (Mikkelsen et al., 2023). Interestingly,

most CRISPR-Cas-positive S. argenteus strains are methicillin-

sensitive. To investigate it further, the contigs or sequences
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containing the CRISPR-Cas system from these S. argenteus strains

were extracted and analyzed for the upstream and downstream gene

clusters using the SnapGene software (Dotimatics, Boston, USA).

Additionally, we searched for IS1272-targeted inverted repeats (IR) in

the sequences surrounding the CRISPR-Cas system as previously

described (Wan et al., 2017).
3 Results

3.1 Global distribution of S. argenteus
published in the database

Since S. argenteus was classified as a separate species distinct from

S. aureus in 2015, the number of S. argenteus isolates has reached 368

based on the NCBI GenBank database. From 2015 to 2018, 132

publicly available sequences were recorded, while since 2019, more

than 230 bacterial genomic sequences have been submitted to the

database (Supplementary Table 1). The 368 isolates were collected from

26 countries, including Thailand (21.2%, 78), Netherlands (17.1%, 63),

China (13.3%, 49), Japan (11.4%, 42), Denmark (7.9%, 29), USA (7.3%,

27), Canada (4.3%, 16), Malaysia (2.7%, 10) and other countries (<10

isolates), such as Australia, Brazil, Colombia, Fiji, France, Gabon,

Germany, Israel, Italy, Samoa, Saudi Arabia, Singapore, South Korea,

Sri Lanka, Sweden, United Arab Emirates, United Kingdom, and Viet

Nam (Figure 1A). The geographic distribution of these isolates

indicates that S. argenteus is now found in Asia, Europe, North

America, South America, Oceania, and Africa (Figure 1A). The

majority of these isolates are sourced from humans (78.3%, 288),

including patients and healthy people; however, animals and food

products also serve as reservoirs, including poultry (12.0%, 44), fish and

shrimp (3.5%, 13), and other livestock (Figure 1B). Some isolates have

been obtained from vegetables and environmental samples, such as

Capra aegagrus hircus, chilled water in slaughterhouse, and surface

swabs in dental clinics. These findings suggest that S. argenteusmay be

involved in cross-contamination or transmission between foods,

animals, and humans.
3.2 MLST analysis of S. argenteus

For the isolates available prior to 2019, the reported MLST types of

S. argenteus include ST1223, ST1850, ST2198, ST2250, ST2793,

ST2854, and ST3261. Since 2019, however, several new sequence

types have emerged and increased in number, such as ST5961,

ST4067, ST5056, ST5057, ST5058, ST5978, ST5964, and ST6111

(Figure 1C; Supplementary Table 1). The most prevalent sequence

type is ST2250 (60.1%, 221), followed by ST1223 (15.2%, 56), ST2198

(7.1%, 26), ST5961 (5.2%, 19), ST2793 (4.3%, 16), and ST2854 (3.8%,

14). Although the strain MSHR1132 was considered the first S.

argenteus stain isolated from an indigenous woman with necrotizing

fasciitis in 2006, its sequence type is ST1850 (Holt et al., 2011; Li et al.,

2016), which has only been reported in three strains (Figure 1C;

Supplementary Table 1). The predominant sequence type remains

ST2250, accounting for 60.1% of the global isolates (Figure 1C).
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3.3 CRISPR-Cas positive S. argenteus

Staphylococcal species possess a type III-A CRISPR-Cas system

located on the chromosome, though not all isolates carry this

system. The type III-A CRISPR-Cas system in S. epidermidis and
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S. aureus has been shown to protect bacteria against phage attacks

and plasmid invasion. The presence of the CRISPR-Cas system is

more common in Staphylococcal isolates with specific MLST

sequence types; for example, 50% of S. aureus ST630 isolates

carry the system. In S. argenteus, the CRISPR-Cas system is
FIGURE 1

Distribution, Sources, and Characteristics of Global S. argenteus isolates. (A) Geographic locations and MLST types of S. argenteus isolates.
(B) Number of S. argenteus isolates obtained from different hosts. (C). Number of S. argenteus with different MLST types. (D) Distribution of CRISPR-
Cas-positive S. argenteus isolates from different hosts. (E) Distribution of methicillin-sensitive S. argenteus (MSSA) and methicillin-sensitive S.
argenteus (MRSA) isolates carrying the CRISPR-Cas system across different countries.
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present in all ST2250 isolates, except for three ST1850 isolates that

also carry the system. It is not found in any other ST isolates

(Figure 1D). The three ST1850 isolates were collected from human

infections in Australia, Germany, and Denmark (Figure 1D).

Among the 221 ST2250 isolates, 159 (71.9%) carry the CRISPR-

Cas system, while 62 are negative of the system. The 159 CRISPR-

Cas-positive ST2250 isolates were collected from 17 out of 24

countries (Figure 1E). The three ST1850 isolates were methicillin-

resistant due to the presence of mecA gene. In contrast among the

159 CRISPR-Cas-positive ST2250 isolates, only 30 (18.9%) were

MRSA, with the majority of these strains collected from

Netherlands and Denmark (Figure 1E).
3.4 CRISPR types of S. argenteus

Although only 15 spacers were identified in all the CRISPR-Cas-

positive isolates, 41 S. argenteus CRISPR types (SgCTs) were

detected according to the arrangement of spacers (Figure 2A). As

shown in Figure 2A, the most prevalent CRISPR type was SgCT1,

accounting for 42.6% (69) of the 162 CRISPR-Cas-positive isolates.

The spacers arrangement of SgCT1 is SAA26-SAA27-SAA25-

SAA5-SAA6 (SgCTA1) for CRISPR1 locus and SAAB11-SAB12-

SAB2-SAB3-SAB4 (SgCTB1) for CRISPR2 locus (Figures 2A, B).

Analysis of the CRISPR types for each CRISPR locus showed that 90

isolates share the SgCTA1 for CRISPR1 locus, and 107 isolates share

the SgCTB1 for CRISPR2 locus (Figure 2B). Ten isolates shared the

SgCT2, which has SAB12 deleted in the CRISPR2 locus compared

to that of SgCT1 (Figure 2A). Eight isolates belong to the SgCT3,

which has SAA27 and SAA25 deleted in the CRISPR1 locus

compared to that of SgCT1 (Figure 2A). Deletion or addition of

spacers led to the emergence of new CRISPR types in S. argenteus.

Cluster analysis grouped the 41 SgCTs into two clusters, Cluster I

and Cluster II (Figure 2A). Seventeen SgCTs, covering 49 (30.2%)

strains, belong to Cluster I, while 24 SgCTs, covering 113 (69.8%)

strains, belong to Cluster II (Figure 2A). SgCT1 and SgCT2, located

in Cluster II, account for 48.8% of the strains, indicating that

Cluster II is the predominant group among CRISPR-Cas-positive

S. argenteus strains (Figure 2A).

Among the nine spacers in the CRISPR1 locus, the most

prevalent spacer is SAA6 (160), followed by SAA5 (150), SAA26

(136), SAA25 (125), and SAA27 (119) (Figure 2B). However, the

spacers SAA1, SAA2, and SAA3 in CRISPR1 locus were found only

in three ST2250 and two ST1850 isolates; while the spacer SAA4

was detected in the two ST1850 isolates (Figure 2A). Among the six

spacers in the CRISPR2 locus, SAB4 is present in all 162 CRISPR-

Cas-positive isolates, followed by SAB3 (157), SAB2 (150), SAB11

(141), and SAB12 (115). The spacer SAB1 was found only in two

ST1850 and nine ST2250 isolates (Figure 2A).

The minimum spanning tree graph (MST) graph, generated using

the BioNumerics v7.5 advanced cluster analysis tool, revealed the

relationships between each SgCT (Figure 3). Interestingly, all 41

CgSTs include isolates with either IS1272 or mecA in their genomes;

while seven SgCTs (SgCT1, 2, 4, 6, 8, 10, and 11) contain 14 isolates
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that lack both IS1272 andmecA, indicating that 91.3% (146/160) of the

isolates harbor IS1272 in the chromosome (Figure 3; Supplementary

Table S3). Among the methicillin-resistant S. argenteus isolates, two

types of SCCmec were identified: type_IVa(2B) and type_IVc(2B)

(Supplementary Table S3).
3.5 Homology analysis of CRISPR spacers

Although no novel spacers were identified in S. argenteus, the

homology analysis of these spacers was significantly enhanced due to

the increased availability of genomic sequences of phages, plasmids,

prophages in public databases. Consequently, we conducted

homology analysis of these spacers in the CRISPRTarget platform

(Table 1). Among the 15 spacers, 13 show similarities to phage

sequences, with12 spacers specifically homologous to Staphylococcus

phage sequences. Additionally, four spacers exhibited homology to

sequence in plasmids, three of which were identified as S. aureus

plasmids. In details, the spacer SAA2 and SAA25 showed homology

to different sequences in the same Staphylococcus phage qdsa001,

a lytic phage isolated from urban sewage and used to inactivate

S. aureus in ready-to-eat milk in China. The spacer SAA6 showed

100% homology to sequences located in a gene encoding a DUF1270

family protein, which is present in both the S. aureus plasmid

pSALNBL118 and the lytic phage vB_SauS-SAP27. Although SAA3

showed similarity to sequences in both the Phocaeicola salanitronis

plasmid pBACSA01 and the proPHAGE_Entero_phiFL1A, its

homology rate is much lower compared to other spacers. The

spacers SAA4, SAA26, SAA27, and SAB1 exhibited homology to

sequences in the lytic phages SA11, SAP-2, GRCS, and vB_Sau-RP15,

respectively. Meanwhile, SAA1, SAA5, SAB2, and SAB3 showed

homology to sequences in the prophages PT1028, B236, phiMR25,

and StauST398-5, respectively. Additionally, SAB4 and SAB12 were

homologous to sequences located in a plasmid of S. aureus strain

AR_0471 and the plasmid pWBG731, respectively.
3.6 Genetic location of CRISPR-Cas system
in S. argenteus

To analyze the genomic location of the type III-A CRISPR-Cas

system in S. argenteus, the contigs containing the CRISPR-Cas system

were collected for identification of the sequences upstream of

CRISPR1 array and downstream of CRISPR2 array. According to

the difference of MLST sequence types, the presence of mecA or

IS1272, we determined the location sites of the CRISPR-Cas system

for four different types of strains (Figure 4). The three ST1850 strains

were identified as methicillin-resistant S. argenteus, with the CRISPR-

Cas system located downstream of hsdR and adjacent to the SCCmec

type Iva(2B) cassette (Figure 4). Among the 30 ST2250 methicillin-

resistant S. argenteus strains, the CRISPR-Cas system exhibited a

similar genomic location to that of the ST1850 strains, but these

strains carried two types of SCCmec cassettes: type IVa(2B) and type

IVc(2B) (Figure 4). Among the 129 CRISPR-Cas-positive ST2250

methicillin-sensitive S. argenteus strains, 115 (89.1%) strains carry
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IS1272 elements in their chromosomes (Figure 4). Interestingly, at the

downstream location of the CRISPR2 locus, a common IS1272 target

inverted repeat (IR) site, GGAGGAAACTAAAATTCCTCC, was

identified, which is located near the gene encoding tRNA

dihydrouridine synthase (Figure 4). Additionally, all ST2250 strains
Frontiers in Cellular and Infection Microbiology 06
carry the target IR site, suggesting that ST2250 strains are more likely

to acquire the CRISPR-Cas system compared to strains of other

sequence types. The presence of IS1272 within the SCCmec cassette

further explains why the acquisition of the CRISPR-Cas system is

closely associated with the presence of mecA.
FIGURE 2

CRISPR typing of CRISPR-Cas-positive S. argenteus isolates. (A) Phylogenetic tree of CRISPR-Cas-positive S. argenteus isolates based on 41 distinct
CRISPR types. The spacer arrangements in the CRISPR 1 and CRISPR 2 loci were used to define CRISPR types. The number of strains corresponding
to each CRISPR type and their associated MLST types are indicated in the right columns. (B). Distribution of strains with CRISPR 1 or CRISPR 2 types,
with spacer arrangements shown for each type.
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4 Discussion

As an adaptive immune system of bacteria, the CRISPR-Cas

system provides protection against foreign phages and plasmids.

However, this system is not widespread among staphylococci

species, as only certain isolates with specific characteristics tend

to carry it (Rossi et al., 2017). For instance, more than 50% of ST630

MRSA strains have been found to carry the CRISPR-Cas system

(Mikkelsen et al., 2023). S. argenteus is a recently identified species

capable of causing human infections and is frequently detected in

food, particularly in poultry products (Wakabayashi et al., 2022; Li

et al., 2019). S. argenteus was first identified in Australia and has

since been increasingly reported worldwide, particularly in tropical

regions (McDonald et al., 2006). In Thailand, it has been associated

with community-acquired invasive infections since 2006

(Thaipadungpanit et al., 2015). As a result, numerous strains have

been collected and sequenced for comparative analysis with S.

aureus (Chantratita et al., 2016). Additionally, an increasing

number of S. argenteus-related cases have been reported in other

countries, including the Netherlands, Japan, China, etc (Aung et al.,

2025; Chen et al., 2023; Bank et al., 2021). To date, 15 STs have been

identified in S. argenteus, with ST2250 (60.1%) and ST1223 (15.2%)
Frontiers in Cellular and Infection Microbiology 07
being the most prevalent STs globally. In Japan, ST2250 took up

49% of clinical S. argenteus isolates collected from 2020 to 2023

(Aung et al., 2025). ST2250 has been reported as the predominant

ST in both food sources and clinical isolates from various regions,

including Indonesia (Supriadi et al., 2024), Hong Kong (China)

(Chen et al., 2023), Guangdong (China) (Rong et al., 2023),

Myanmar (Kyaw et al., 2023), North America (Eshaghi et al.,

2021), Hokkaido (Japan) (Aung et al., 2021). In our study, 71.9%

of the ST2250 strains were found to carry the CRISPR-Cas system,

suggesting that these strains may have enhanced resistance against

phage infections. This is supported by the previous findings that the

CRISPR-Cas system in S. aureus and S. epidermidis are functionally

active in providing immunity against phage and plasmid infections

(Marraffini and Sontheimer, 2008; Li et al., 2021). This may also

explain the higher prevalence of CRISPR-Cas-positive S. argenteus

in Thailand compared to other countries, as nearly 84.6% (66/78) of

the clinical isolates belonged to ST2250. Although the genetic

location of the CRISPR-Cas system in S. aureus and S. argenteus

has been reported to be closely associated with SCCmec (Mikkelsen

et al., 2023; Goswami et al., 2021), the characteristics of the specific

insertion sites for the CRISPR-Cas system have not yet been

analyzed in detail. Here, we found that the CRIPSR-Cas system in
FIGURE 3

Genetic relationship and characteristics of CRISPR-Cas-positive S. argenteus isolates. The Minimum spanning tree of CRISPR-Cas-positive S.
argenteus isolates were constructed using BioNumerics 7.5 software based on CRISPR types. Each circle represents the strains sharing a single
CRISPR type. The presence of mecA and IS1272 is indicated in each circle, while “-” indicates strains lacking both mecA and IS1272.
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S. argenteus is most closely related to the IS1272 transposase, which

is also detected in SCCmec elements of methicillin-resistance S.

argenteus, suggesting that IS1272 may play a role in the acquisition

of the CRISPR-Cas system in S. argenteus. Additionally, in all the

CRISPR-Cas-positive S. argenteus, a conserved recognition site for

IS1272 inverted repeat (IR) elements is consistently observed at the

right end of the CRISPR2 locus. CRISPR typing, developed as a

molecular typing method, has been widely used to reveal the genetic

difference and evolutionary relationships among different bacterial

isolates, showing strong correspondence with cgMLST (core

genome multilocus sequence typing) and cgSNP (core genome

single nucleotide polymorphism) typing methods (Li et al., 2016;

Yassine et al., 2022). In this study, CRISPR typing classified the

CRISPR-Cas-positive S. argenteus isolates into two clusters, and the

Cluster II emerging as the predominant group among these strains.

The spacers within CRISPR array play a crucial role in providing

adaptive immunity against foreign genetic elements. The 15 spacers

identified in S. argenteus have also been reported in S. aureus,

suggesting that both species encounter and survive in environments

with similar phages and plasmids. However, obtaining the

homologous sequences for these spacers has been challenging due
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to the limited availability of comprehensive databases in earlier

studies (Mikkelsen et al., 2023; Li et al., 2019). Here, the

homologous sequences for all 15 spacers were successfully

identified using multiple databases, providing new insights into the

targets of these spacers and their role in adaptive immunity. Among

the identified spacers, four showed homology to sequences in

plasmids. pWBG731 is a multidrug resistance plasmid frequently

found in community-associated methicillin-resistant S. aureus (CA-

MRSA) (Yui Eto et al., 2019). The plasmid carries genes conferring

resistance to mupirocin, trimethoprim, cadmium, and penicillin, as

well as mobile genetic elements related to the horizontal

dissemination of multidrug resistance in CA-MRSA (Yui et al.,

2019). pSALNBL118 is a phage like plasmid originating from S.

aureus strain B3–4A, isolated from beef liver (Karki et al., 2020). The

plasmid is thought to play a significant role in horizontal gene

transfer (Goerke et al., 2009) and transmission of virulence factors.

Among the 13 spacers with homology to phage sequences, seven

correspond to lytic phages, while six were associated with lysogenic

phages. SA11 is a lytic phage isolated from a wastewater treatment

facility in Gwa-Chon, South Korea (Kim andMyung, 2012). It has been

successfully used in combination with antibiotics to effectively inhibit
TABLE 1 Homology analysis results of spacers from S. argenteus.

Spacers Sequences Homology to plasmid sequences
Homology to
phage sequences

SAA1 TCTACTAAAAAGTTATATGTTTCAACAATTTCGTCA 28/36, Staphylococcus
phage PT1028

SAA2 TGGTTTAAGTTTGTCATTATAATCAATCCTTTTTCTT 34/37, Staphylococcus
phage qdsa001

SAA3 TGATTAAAACGGTTTGCTTTATTTGCATTTAAAATAG 29/37, Phocaeicola salanitronis DSM 18170
plasmid pBACSA01

27/
37, proPHAGE_Entero_phiFL1A

SAA4 GTTTTTCATAGTTAATCAATCCCTTTTCTTTTTT 31/34, Staphylococcus phage SA11

SAA5 TTAAATCTTTGATTGCTCTTAGCTCTAGTTATGTAT 33/36, Staphylococcus phage B236

SAA6 CACGCTGTAGTGAAGTATAGAAACGGCATGAGTACAAT 38/38, Staphylococcus aureus
plasmid pSALNBL118

38/38, Staphylococcus phage
vB_SauS-SAP27

SAA25 CAATATCTTGTACATGGTTATCAAAGAAAGTTACGATC 33/38, Staphylococcus
phage qdsa001

SAA26 GAGCATTATTTACAAACAAAGAATCAAAATTCGG 33/34, Staphylococcus phage SAP-2

SAA27 TTAATTGCATTATCAAATGTATATGCTGGATTCCA 33/35, Staphylococcus phage GRCS

SAB1 TTTTACTGTGTTTTTCATAATTAATCAATCCTTT 34/34, Staphylococcus phage
vB_Sau-RP15

SAB2 TGCCCACTTAATTAATTCATCTAGTCTCATTTCTT 34/34, Staphylococcus
phage phiMR25

SAB3 CATCAACTGACTTTTTAACTGTTTTAGTGAATTCGTC 37/37, Staphylococcus phage
StauST398-5

SAB4 TTAAAGATCTCAACAATAGCGTCCCATATTTTCTG 34/35, Staphylococcus aureus strain AR_0471
plasmid unnamed1

SAB11 CTATAATAGTTACTGCTTTTGTAACCGTCCATAT 32/34, Staphylococcus phage
vB_SauM-V1SA20

SAB12 AAATGCTTATCCATTCTAATCATATTTTCAATTTGTTTA 33/39, Staphylococcus aureus strain WBG10514
plasmid pWBG731
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the growth of antibiotic-resistant S. aureus under simulated intestinal

conditions (Zhou et al., 2023). SAP-2 is a podoviridae lytic

bacteriophage that encodes a cell-wall degrading enzyme, SAL-2,

which can disrupt biofilm formation of S. aureus, including MRSA

(Son et al., 2010). GRCS is a podoviridae lytic phage isolated from

sewage in India, and it showed more efficient in treating both diabetic

and non-diabetic septicemic mice than oxacillin antibiotic alone

(Plumet et al., 2022). The vB_Sau-RP15 phage was isolated from raw

milk and developed as a promising agent against S. aureus

contamination in pasteurized milk (Imklin et al., 2023). Phage

vB_SauM-V1SA20, isolated from wastewater, exhibits a broad host

activity against S. aureus, including CC80 strains (Kolenda et al., 2022).

Phage vB_SauS-SAP27 (fSAP27) is a Siphovirdiae phage that infects S.
aureus and was isolated from sewage (Park et al., 2021).

The homology of spacers to temperate phages was not given

much consideration during the CRISPR-Cas system analysis. Among

the six temperate phages, phage B236 has been identified as an eta

(Exfoliative toxin A, ETA) phage, contributing to the toxic phenotype

of the S. aureus SA236 strain (Botka et al., 2015). This kind of phages

are able to mediate the transfer of eta gene to prophage-free S. aureus

strains. ETA is potentially a major toxin responsible for

staphylococcal skin blistering infections (Botka et al., 2015). Phage

phiMR25 was a lysogenic phage isolated from anMRSA strain MR25

by mitomycin C induction (Hoshiba et al., 2010). Although it is a
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lysogenic phage, is showed a broad host range and can protect mice

against S. aureus infection (Hoshiba et al., 2010). The prophage

StauST398–5 was specifically identified in non-LA CC398 isolates,

where it protects bacteria from horizontal genetic transfer to its

host and carries genes related to bacterial virulence and adaptation

(van der Mee-Marquet et al., 2013).
5 Conclusion

In this study, the presence of the type III-A CRISPR-Cas system

in 368 S. argenteus strains obtained from public database were

analyzed to reveal the genetic characteristics of CRISPR-Cas-

positive strains. The CRISPR-Cas system is present in 44.0% (162)

of S. argenteus strains, but only in ST2250 and ST1850 strains.

Notably, ST2250 strains, which are the predominant sequence type

of S. argenteus, show that 71.9% of these strains carry the CRISPR-

Cas system. Additionally, the presence of IS1272 and its target IR site

is likely the reason for the acquisition of the CRISPR-Cas system in

ST2250 strains. Homology analysis confirmed that all 15 identified

spacers in the CRISPR array showed homology to sequences in

plasmids, phages, or prophages, indicating that the acquisition of the

CRISPR-Cas system may provide protection against phage attacks

and plasmid invasion. These findings highlight the potential role of
FIGURE 4

Genetic location of CRISPR-Cas system in the S. argenteus chromosome. The arrangement and chromosomal location of the CRISPR-Cas system
are illustrated in MSSA and MRSA strains with two distinct MLST types. The conserved IS1272 target IR sequences are also highlighted in these strains.
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the CRISPR-Cas system in enhancing the adaptive immunity of S.

argenteus in environments rich in mobile genetic elements.
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Kazlauskiene, M., Kostiuk, G., Venclovas, Č., Tamulaitis, G., and Siksnys, V. (2017).
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science
357, 605–609. doi: 10.1126/science.aao0100

Kim, M. S., andMyung, H. (2012). Complete genome of Staphylococcus aureus phage
SA11. J. Virol. 86, 10232. doi: 10.1128/JVI.01574-12

Kolenda, C., Medina, M., Bonhomme, M., Laumay, F., Roussel-Gaillard, T., Martins-
Simoes, P., et al. (2022). Phage therapy against Staphylococcus aureus: selection and
optimization of production protocols of novel broad-spectrum Silviavirus phages.
Pharmaceutics 14, 1885. doi: 10.3390/pharmaceutics14091885

Kunin, V., Sorek, R., and Hugenholtz, P. (2007). Evolutionary conservation of
sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61.
doi: 10.1186/gb-2007-8-4-r61

Kyaw, W. K., Aung, M. S., San, T., Maw, W. W., Mu, K. K., Mon, W. L. Y., et al.
(2023). Molecular epidemiological characterization of Staphylococcus aureus and
Staphylococcus argenteus clinical isolates from a national tertiary care hospital in
Myanmar: co-isolation of multiple clones and identification of novel Staphylocoagulase
genotype. Microbial Drug resistance 29, 127–137. doi: 10.1089/mdr.2022.0191

Lee, M., Choi, Y., Choi, S. J., Moon, S. M., Kim, E. S., Kim, H. B., et al. (2024).
Staphylococcus argenteus bacteremia in the Republic of Korea. Microbiol. Spectr. 12,
e0279823. doi: 10.1128/spectrum.02798-23

Li, Q., Li, Y., Tan, Y., Meng, C., Ingmer, H., and Jiao, X. (2019). Prevalence and
characterisation of Staphylococcus aureus and Staphylococcus argenteus in chicken from
retail markets in China. Food Control 96, 158–164. doi: 10.1016/j.foodcont.2018.08.030
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