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Alternative splicing is a
driving force that tunes
metabolic adaptations
to virulence traits in
the dermatophyte
Trichophyton rubrum

Marcos E. Ramos Lopes, Joao Neves-da-Rocha,
Pablo R. Sanches, Vanderci M. Oliveira, Antonio Rossi
and Nilce M. Martinez-Rossi*

Department of Genetics, Ribeirdo Preto Medical School, University of Sao Paulo, USP,
Ribeirdo Preto, SP, Brazil

Introduction: Alternative splicing (AS), a common process in pathogenic fungal
species, is not fully understood. We hypothesized that AS is a critical regulatory
mechanism that enables species to undergo continuous adaptations during
interactions with challenging host environments.

Methods: We utilized the model species Trichophyton rubrum to contextualize
the role of AS in fungal physiology and virulence. We performed transcriptome-
wide splicing analysis to search for AS events in RNA-sequencing data of T.
rubrum grown in keratin. This scenario mimicked infection in vitro and allowed us
to map biologically relevant splicing events.

Results and discussion: Overall, the results showed that AS is recruited to
regulate approximately 12.6% of the T. rubrum genome under an infection-like
scenario. We extended this analysis to ex vivo infection models of T. rubrum
grown on human nails and cocultured them with human HaCaT keratinocytes.
We found that AS affects a wide range of cellular processes, including amino acid
and carbohydrate metabolism, cell signaling, protein folding and transport,
transcription, and translation. We showed that transcription factors such as
PacC and Apl govern the major features of fungal virulence and metabolism
and are controlled by the spliceosome machinery under different infection-
like conditions.

Conclusions: Our data indicate that mRNA isoforms originating from AS
contribute to the adaptation of T. rubrum, demonstrating that AS of
transcription factor genes plays a central role in fungal pathogenesis. The
transcription and splicing machinery tune fungal physiology to achieve an
optimal metabolic balance in virulence traits during infection.

KEYWORDS

transcription factor, fungal pathogen, metabolism, intron retention, alternative splicing,
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1 Introduction

Dermatophytes are opportunistic pathogens that specifically
colonize keratinized tissues. These pathogens engage in complex
coevolutionary dynamics with their hosts, shaping their ability to
colonize and infect keratinized tissues, such as the skin and nails,
while influencing host immune responses (Deng et al., 2023; Gupta
et al,, 2023; Peres et al., 2010). Anthropophilic dermatophytes are an
increasingly relevant medical concern affecting approximately 25% of
the world’s population and cause chronic infections that can progress
to invasive diseases in patients who are immunocompromised
(Martinez-Rossi et al., 2021). Trichophyton rubrum is the most
prevalent and clinically significant species worldwide, accounting
for over 60% of all dermatophytosis cases (Zheng et al., 2020;
Wang et al., 2021). Moreover, the emergence of resistant strains
poses a challenge to the effective management of fungal infections
(Bristow and Joshi, 2023; Martinez-Rossi et al., 2018; Kruithoff et al.,
2023). Continuous adaptation of these organisms and their ability to
resist conventional antifungal treatments emphasizes the need for
ongoing research to determine the mechanisms underlying their
infection persistence and develop novel therapeutic approaches.

Carbohydrate substrates are scarce in host tissues; therefore,
dermatophytes degrade more complex molecules during infection.
The main sources of available nitrogen and carbon are proteins,
notably keratin. T. rubrum metabolic plasticity occurs via nitrogen
catabolite repression, which is coordinated by the GATA zinc-
finger transcription factors (TFs) (Martins et al., 2020). This process
allows the use of complex nitrogen sources when preferential
nitrogen sources such as glutamine are unavailable. However,
keratin has a rigid structure formed by disulfide bonds, which
prevent the usual proteolytic digestion of this molecule.
Dermatophytes can produce urea and sulfites secreted by the Ssul
efflux pump, which reduces covalent bonding (Martins et al., 20205
Grumbt et al,, 2013). Keratin degradation and the metabolism of
specific amino acids such as glycine to generate acetyl-CoA promote
ammonia release and consequent alkalinization of the medium,
which can increase pH values to as high as 9.0 (Ferreira-Nozawa
et al,, 2003; Maranhao et al,, 2007). As the infection progresses,
repression/activation of pH-regulated pathways and enzymes
occurs in response to cell demands and environmental changes.

In this scenario, effective adaptation during infection requires
fungi to coordinate diverse metabolic responses. Fungal cells activate
transcriptional programs according to the surrounding conditions,
such as cellular stress and host infection sites (Martinez-Rossi et al.,
20215 Park et al., 2013). Arguably, the most important components
governing these response programs are TFs, which regulate gene
expression through hierarchical interactions between signaling and
response networks (Song et al, 2016). In dermatophytes, many
attributes related to virulence and susceptibility to stressors, as well
as tolerance to different antifungals, are regulated by TFs such as
PacC, Dnrl, Apl, HacA, SteA, and StuA (Kréber et al,, 2017; Yamada
et al., 2006; Ferreira-Nozawa et al., 2006; Peres et al., 2022; Bitencourt
et al, 2020; Lang et al., 2020; Martins-Santana et al., 2025).

The post-transcriptional regulation of gene expression by
alternative splicing (AS) is a common process in fungi (Griitzmann
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etal, 2014). AS may influence the activity of many genes in response
to the various conditions imposed on these organisms (Griitzmann
et al,, 2014; Mendes et al., 2018; Neves-da-Rocha et al., 2019; Lopes
et al.,, 2022). Intron retention (IR) events are the most common type
of AS in fungi (Griitzmann et al,, 2014; Kempken, 2013; Jeon et al.,
20225 Li et al, 2021). In addition, important correlations exist
between AS and distinct fungal species, with multicellular
complexity, pathogen lifestyle, and a younger evolutionary age
being associated with higher AS rates (Griitzmann et al, 2014).
Nevertheless, the extent of AS and the biological relevance of this
post-transcriptional mechanism in fungal pathogenesis remain
unclear. To investigate and correlate AS with fungal biology, we
assessed global AS patterns in the transcriptome of T. rubrum
exposed to keratin, which enabled mapping of biologically relevant
AS events in an infection-like manner. We further performed
functional enrichment analysis to investigate the physiological
consequences of AS regulation. IR events in major fungal TFs were
validated using in vitro and ex-vivo infection models to demonstrate
the practical relevance of our findings. Because dermatophytes are
representative filamentous pathogenic fungi in which AS is prevalent,
this study improved the understanding of the strategies employed by
pathogens to adapt to and colonize host tissues. Furthermore, our
data provide critical fundamental information for guiding future
studies on AS and medical mycology.

2 Materials and methods
2.1 In vitro culture conditions

Trichophyton rubrum strain CBS118892 from the Westerdijk
Fungal Biodiversity Institute, Netherlands, was pre-cultivated in malt
extract agar medium (2% glucose, 2% malt extract, 0.1% peptone, and
2% agar, pH 5.7) at 28°C for 21 days. Subsequently, 1 x 10° conidia
were germinated in 100 mL Sabouraud dextrose broth for 96 h and
then transferred to Cove’s minimal medium at pH 5.0, containing
either 50 mM glucose (Sigma-Aldrich, St. Louis, MO, USA) (control)
or 0.5% (m/v) of powdered ox hull keratin as the carbon source and
cultivated for 24 and 96 h (Peres et al., 2016). The cultures were
filtered after each growth period, and mycelia were stored at —80°C
until RNA extraction. All experiments were conducted in triplicate.

2.2 Ex vivo infection of human nail
fragments

Human nail fragments obtained from healthy donors were
autoclaved and placed in Eppendorf tubes. Conidia (1 x 10* in 20 pL
of sterilized water) of T. rubrum were mixed with the nail fragments
(approximately 1 mm?). After 1 h of incubation at room temperature,
200 UL of sterilized water was added, and the tubes were incubated at
28°C for 96 h (Peres et al,, 2016). The infected nail fragments were
vortexed to release the fungal mycelia and extract total RNA. The
supernatant containing fungal cells was centrifuged at 12,000 xg for 10
min, frozen in liquid nitrogen, and stored at —80°C until RNA
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extraction. Fungi grown in glucose (described in Section 2.1) were used
as a reference. The assay was performed in triplicate.

2.3 Coculture of T. rubrum with human
keratinocytes (HaCaT)

For coculture experiments, 1 x 107 conidia/mL and 2 x 10°
HaCaT cells/mL were incubated for 24 h in RPMI medium (Sigma-
Aldrich, St. Louis, MO, USA) supplemented with 5% fetal bovine
serum at 37°C in 5% CO,, as previously reported (Komoto et al.,
2015). Plates containing fungal cells without keratinocytes were
used as controls. The assay was performed in triplicate.

2.4 Extraction, cDNA synthesis, and RT-
gPCR analysis

Total RNA was extracted using an Illustra Spin RNA Isolation
Kit (GE Healthcare, Chicago, IL, USA) according to the
manufacturer’s instructions. RNA samples were treated with
DNAse I (Sigma-Aldrich, St. Louis, MO, USA) and converted to
cDNA using a high-capacity reverse transcription kit (Applied
Biosystems, Foster City, CA, USA). To evaluate the quality of the
cDNAs, PCR was conducted using oligonucleotides flanking intron-
1 of the constitutive gene encoding B-tubulin, and the results were
visualized on an agarose gel.

Transcripts were quantified using a QuantStudio v. 3 Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA). Primers
were designed within intron regions to detect IR events. Exon
regions were used as primer annealing sites to evaluate total gene
expression. The construction and quality analysis of the primers
used in RT-qPCR assays were performed using the PrimerQuest
Tool (http://www.idtdna.com/primerquest/Home/, accessed on
June 12, 2023) and OligoAnalyzer Tool (https://www.idtdna.com/
calc/analyzer, accessed on June 14, 2023) from Integrated DNA
Technologies (IDT), and the BLAST tool (http://
blast.ncbinlm.nih.gov/Blast.cgi, accessed on June 14, 2023).

The primers used and their standardized concentrations are listed
in Supplementary Table SI. Reactions were performed using Power
SYBR Green PCR Master Mix (Life Technologies, Carlsbad, CA,
USA). Relative quantification was performed using the 274
method (Livak and Schmittgen, 2001), with gapdh and rpb2 as
reference genes for expression normalization (Jacob et al, 2012).
The results are expressed as mean relative expression values from
three independent replicates, with standard deviations. Alternatively,
spliced transcripts were evaluated as a percentage of RNA isoforms,
calculated using the ratio of mean ACT values of IR to total expression.

2.5 Global AS analysis and functional
enrichment

High-throughput RNA-sequencing data were analyzed to assess
transcriptome-wide AS regulation in T. rubrum exposed to keratin
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(Gene Expression Omnibus database, accession number
GSE134406). Reads were mapped to the reference genome using
STAR aligner v2.7.10a (Dobin et al., 2013). Reads mapped to
multiple locations were excluded using the STAR - out Filter
Multimap N max 1 parameter, and gene-level read counts were
quantified using the STAR - quant Mode Gene Counts parameter.
Visual inspection was performed using Integrative Genomics
Viewer (IGV) v2.16.2 (Robinson et al., 2011).

The biological replicates were inspected using principal
component analysis. We processed and analyzed the reads in R
v4.3.1 using the ASpli Bioconductor package v2.10.0 to identify AS
events (Mancini et al., 2021) and the DESeq2 Bioconductor package
v1.40.2 to perform differential expression analysis (Love et al,
2014). The ASpli output file is shown in Supplementary File S1.
Events with a Benjamini-Hochberg adjusted p-value lower than
0.05 and a log, fold change greater than | + 1.0| were considered
significantly modulated. Functional categorization was conducted
according to Gene Ontology (GO) terms assigned using the
OmicsBox tools v3.1 (Conesa et al, 2005). The FunRich tool
v3.1.4 (Pathan et al, 2015) was used to perform an enrichment
analysis on the identified dataset.

2.6 In silico analyses

Data from Ensembl fungi were used to predict the transcripts and
proteins resulting from conventional and alternative isoforms (https://
fungi.ensembl.org/index.html, accessed on June 25, 2023). Reading
frames and domains were predicted using the Expasy Translate tool
(https://web.expasy.org/translate/, accessed on June 25, 2023) and
InterPro database (https://www.ebi.ac.ulk/interpro/ accessed on
June 25, 2023), respectively. Graphical representations of the
isoforms and resulting proteins were generated using Illustrator of
Biological Sequence (IBS) v1.0 software (Liu et al,, 2015).

To detect putative phosphorylation sites on serine, threonine,
and tyrosine residues in the TFsproteic isoforms, the generated
amino acid sequences were used as inputs to the NetPhos tool v3.1
(https://services.healthtech.dtu.dk/services/NetPhos-3.1/, accessed
on June 27, 2023) (Chun et al., 2021). Conventional and
alternative isoforms of the evaluated genes were used for the
predictions, and sites with scores higher than 0.5 were defined as
candidate phosphorylation sites.

3 Results

3.1 Trichophyton rubrum coordinates
global AS patterns in the presence of
keratin

We applied high-confidence statistical thresholds to evaluate AS
in an infection-like scenario, which enabled mapping of bona fide
AS events that could be critical for dermatophyte pathogenesis. AS
analysis was primarily designed to identify IR events, which are the
most prevalent type of AS in fungi (Gritzmann et al, 2014). IR
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events influence translation and commonly change the open

reading frame structure.

To mimic infection progression and analyze AS over time, we
compared fungal growth in keratin and glucose media at 24, 48, and 96
h. Overall, we detected AS events in 1085 genes, representing

10.3389/fcimb.2025.1645525

approximately 12.6% of the T. rubrum genome. The number of
alternatively spliced genes (ASGs) was lower than that of differentially
expressed genes (DEGs). Although most genes were exclusively
regulated by AS or differential expression, 421 genes were
simultaneously regulated by both processes (Figure 1A). The total

A ASG DEG
664 421 2119
B ASG
24h 48h
73
392 133
132
81 66
208
96h
C
. AS AS Up- Down-
Condition genes events regulated regulated
24 hours 678 927 286 641
48 hours 404 559 342 217
96 hours 487 672 334 338
FIGURE 1
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Distribution of genes modulated in response to keratin compared with the glucose (control). (A) Venn diagram of the number of alternative splicing
genes (ASGs) and differentially expressed genes (DEGs) in response to keratin. (B) Venn diagram of alternative splicing (AS) events at 24, 48, and 96 h.
(C) Total number of up- and down-regulated AS events at each time point. (D) Heatmap of functional enrichment analysis of ASGs based on Gene
Ontology (GO) molecular function categories. The yellow-to-red color gradient indicates the fold-enrichment indices, which range from 0 to 16.
Only the 30 most representative GO categories are displayed.
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Functional characterization of genes with alternative splicing (AS) events in response to keratin. Functional annotation is categorized into biological
processes (BP), molecular functions (MF), and cellular components (CC). (A) Functional characterization of 132 genes (from Figure 1B) that exhibited
AS across all tested time points. (B) Functional categorization of genes with repressed AS in keratin. Sphere size represents the number of genes,
whereas the color gradient, from red to green, indicates the p-value, ranging from smallest to largest.
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FIGURE 3

Expression network between differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) in Trichophyton rubrum in response to
keratin. Network representation of DEGs and ASGs across all experimental conditions. Small blue nodes represent individual genes, whereas gray
lines indicate connections between regulatory mechanisms and conditions.

A B ASG-TE

ASG-TF DEG-TF 24h 48h

16 1 3
20 13 44

96h

FIGURE 4

Venn diagrams showing the number of transcription factor (TF) genes differentially expressed (DEG) and alternatively spliced (ASG) in response to
keratin. (A) Number of TF-coding genes showing alternative splicing (AS) events and were differentially expressed when Trichophyton rubrum was
exposed to keratin. (B) Number of TF genes showing AS at different times of exposure to keratin.
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number of ASGs represented a significant fraction of all gene expression
changes in response to keratin, revealing that splicing plays a prominent
role during T. rubrum infection (Figure 1A). Over time, AS events were
prevalent at 24 h, and many ASGs were regulated at two or more time
points (Figures 1B, C), reinforcing the importance of AS modulation in
the infection process. Functional enrichment analysis of the genes that
undergo modulation of AS expression in keratin revealed distinct
molecular functions, such as splicing factor binding, helicase, kinase,
phosphatase activities, and TF binding (Figure 1D). Remarkably,
modulation of 132 ASGs at all incubation times indicated that these
genes are involved in the virulence of T. rubrum and are mostly related
to energy and amino acid metabolism (Figures 1B, 2A).

The results also revealed that a large number of AS events were
repressed in response to keratin (Figure 1C), indicating that AS

pacC (TERG_00838)

10.3389/fcimb.2025.1645525

governs many processes related to cell signaling, transmembrane
transport, energy metabolism, autophagy, and other processes
important for fungal physiology under control and unstressed
conditions (Figure 2B). Based on the gene expression network,
despite regulatory overlaps, AS and DE are distinct processes that
coordinate different aspects of fungal metabolism (Figure 3).

3.2 Keratin metabolism modulates
expression and AS in TF genes

RNA-sequencing data from T. rubrum exposed to keratin
revealed the differential expression of 57 TF-coding genes
(Supplementary Figure S1). Because TFs are key regulators of

Gene 2663 bp
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Protemlinl | 815 aa
Transcript 2521 bp
Alternative - IR-2: .
Protein &= jﬂi 274 aa
con7 (TERG_03087)
Gene — 1600 bp
(:onventional:Transnrlpl 1063 bp
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Alternative - IR-3: Protein d 5197 aa
ap1 (TERG_02940)
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Protein Eespssssssssl 623 aa
} Transcript e — e ———— 1945 bp
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e

FIGURE 5

Schematization of transcription factor isoforms after conventional or alternative splicing. The transcripts and putative proteins resulting from each

isoform are shown. Blue boxes represent exons, and introns are depicted as
number of retained introns.
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several cellular processes, we evaluated whether AS mechanisms,
particularly IR, are involved in this regulation. Our analyses
revealed that 33 TF genes presented IR in response to keratin, 13
of which also presented DE, and 20 were exclusively controlled by
AS (Figure 4). These results demonstrate the importance of this
regulatory layer in the functionality of this gene family.

We selected four TFs exhibiting IR and involved in virulence to
determine the modulation of AS events under ex vivo conditions
(keratinocytes and human nails) and compared them with those
under keratin culture conditions. The four genes and their IR were
pacC (TERG_00838, IR-2), con7 (TERG_03087, IR-3), apl
(TERG_02940, IR-1), and ¢6 (TERG_06830, IR-2). We employed
in silico approaches to investigate the effects of IR on pre-RNA of
the selected genes. IR events generated premature stop codons in
the sequences of retained introns, resulting in specific outcomes
such as changes in phosphorylation profiles and protein shortening
with partial or total domain loss (Figure 5; Supplementary Figure
52). The presence and modulation of IR events were validated for all
genes tested (Figures 6A). Figure 6A also shows that pacC was
highly expressed in medium containing keratin or in human nail
fragments, con7 and apl were overexpressed in keratin and
keratinocytes, and c6 was overexpressed only in keratin,
indicating the specificity of each gene in the infection process.

To compare the levels of transcripts that exhibited IR with those
that were fully processed (Figure 6A; Supplementary Figure S3), we
calculated the percentage of IR under each experimental condition
(Figure 6B). Under several assayed conditions (control or
treatment), the pacC, con7, apl, and c6 transcripts presented IR

10.3389/fcimb.2025.1645525

levels greater than 5%, indicating that these ASs are not
random events.

3.3 Splicing factor genes are induced upon
exposure to keratin

To verify whether keratin metabolism modulates the expression
of splicing factor genes, we assayed four genes following T. rubrum
cultivation in keratin, using glucose as a control. These genes were
induced by exposure to keratin, mainly at 24 h (Figure 7).

4 Discussion

We comprehensively evaluated the functional categories of genes
that undergo AS in the human pathogen T. rubrum using a model
that mimics infection. Our findings revealed that a large proportion
of genes, approximately 12.6% of the genome, underwent AS, and
approximately 39% of these genes are differentially expressed. This
percentage of 12.6% is high considering the rate of AS observed in
other pathogenic fungi, such as Sclerotinia sclerotiorum (5.6%)
(Cheng et al., 2022), Aspergillus oryzae (8.55%) (Wang et al., 2010),
and Ustilago maydis 3.6% (Ho et al., 2007), assayed under different
conditions. Indeed, identification of TF genes that undergo many AS
events in other pathogenic fungi suggests that AS regulates a broad
spectrum of processes, highlighting the complex interplay of
mechanisms regulating these genes in T. rubrum. Notably, at least
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Expression of transcription factor isoforms of Trichophyton rubrum under in vitro and ex vivo conditions. (A) Expression analysis of pacC, conZ, ap1,
and c6 isoforms in T. rubrum upon exposure to several challenges. The control conditions were as follows: keratin (glucose 24 and 96 h),
keratinocytes (RPMI 24 h), and nails (glucose 96 h). Paired controls, indicated by gray bars in each graph, were used as modulation references.
Statistical analyses were performed using t-tests. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Intron retention (IR) percentage of pacC, con7, apl, and c6
transcripts of T. rubrum exposed to different conditions. The proportions of alternative isoform IR are represented in blue, and the conventional
isoform is in gray. The numbers above each bar represent the percentage of alternate splicing isoforms.
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Expression of prps (splicing factors) of Trichophyton rubrum exposed to keratin. Statistical analysis was performed using t-test. *p < 0.05, **p < 0.01.
Paired controls, indicated by the gray bar on each graph, were used as a modulation reference.

61% of ASGs did not exhibit differential expression, suggesting that
AS plays a crucial role in regulating T. rubrum infection beyond the
level of gene expression. These findings have significant implications
for the understanding of pathogen-host interactions.

As a major step towards characterizing the role of the
spliceosome machinery in dermatophytes, we assessed the global
impacts of AS regulation on T. rubrum physiology. Functional
enrichment analysis revealed that AS might contribute extensively
to fungal metabolic adaptation during changes in nutrition sources,
with direct impacts on the infection dynamics. During keratin
degradation compared to glucose growth, AS influenced sensing
and regulatory processes that are required for efficient physiological
responses, such as kinase and phosphatase activities, transcription
factors and splicing factors, transporters, enzyme activators,
chaperones, and histone modifications (Figure 1D). Interestingly,
considering the genes modulated in common in all time points in
response to keratin, T. rubrum showed increased spliceosome
influence over central carbon and nitrogen metabolism, affecting
glycolysis, glycogen biosynthesis, amino acid metabolism, and
proteasome function (Figure 2A). Those pathways indicate that
dermatophyte physiology requires specific tuning of function to
degrade complex substrates such as keratin, which is potentially
influenced by nutrient limitation during keratin-based host
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colonization. Those findings are in accordance with previous data,
which demonstrate keratin influence over dermatophyte central
metabolism, including the control of nitrogen catabolite repression
for regulating the TCA and urea cycles (Martins et al., 2020).

The number of ASGs in T. rubrum is particularly important
during the initial phase of infection, when the pathogen must rapidly
adapt to the new environment. Based on these findings, splicing
factor genes such as prpl, prp22, prp28, and prp43, which are crucial
in this process, were induced upon exposure to keratin, mainly at 24
h. This activation underscores the pivotal role of these four splicing
factors in adaptation. Furthermore, AS events in TFs were present at
all three tested time points, indicating that this phenomenon is an
indispensable regulatory pathway for the adaptation, establishment,
and maintenance of T. rubrum infection. The extensive range of
categories that perform vital functions in cells under control of the
splicing machinery in this infection-like context enhances the
understanding of the crucial role of AS in fungal adaptation and
pathogenicity. These findings may lead to the development of new
strategies for combating fungal infections. The four selected TF genes
revealed different expression profiles and IR in keratin medium,
keratinocytes, and human nails. These results suggest that the fungus
uses an intricate mechanism in its interaction with the host,
depending on the tissue type and culture time.
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The PacC signal transduction pathway, a crucial element in
fungal infection, regulates the synthesis of a diverse range of
enzymes and proteins with optimal activity at specific pH values
dictated by fungal metabolism. This complex process enables the
fungus to adhere to and penetrate host tissue, obtain nutrients, and
subvert host defense mechanisms. Because human skin has an
acidic pH, the first contact of dermatophytes during infection
occurs in an acidic environment. We previously showed that the
growth of pacC mutant strains of various fungi, including T.
rubrum, is severely impaired under alkaline conditions (Ferreira-
Nozawa et al., 2006; Trushina et al., 2013; Wiemann et al., 2009;
Barda et al., 2020). The strong expression of pacC observed in
keratin reinforces the involvement of this gene in keratin
metabolism (Martins et al., 2020). The presence of IR-2 in pacC
transcripts leads to the formation of protein isoforms that maintain
three zinc-finger domains. In addition, in silico analyses indicated
that the putative PacC protein generated by splicing (274 amino
acids (aa)) resembled the activated form of the homolog protein of
Aspergillus nidulans after proteolytic cleavage (254 aa) in terms of
size, sequence, and domain number (three zinc finger domains)
(Supplementary Figure S4). Functional activation of PacC in A.
nidulans is a two-step proteolytic process, one of which is mediated
by PalB, a calpain-family protease (Tilburn et al., 1995; Martinez-
Rossi et al, 2012; Li et al, 2022), generating a minor protein
containing three zinc fingers domains (Tilburn et al., 1995).
Similarly, in silico data suggested that the putative version of
PacC enzymatically activated in T. rubrum exhibited a
conformation, size, and domain number similar to the putative
isoform generated by IR-2 (Figure 8). Our RNA-seq data revealed

10.3389/fcimb.2025.1645525

high pacC expression, whereas differential expression of the T.
rubrum palB homolog was not detected. This observation
suggests the potential for alternative pathways to activate PacC
protein at an acidic pH when culturing T. rubrum in glucose.
Previous studies suggested that PacC protein in A. nidulans can be
activated through an alternative pathway to PalB proteolysis due to
the induction of an alternative palB isoform that is potentially
nonfunctional, whereas PacC is functional (Trevisan et al., 2011).
Our results suggest that IR-2 of the pacC pre-mRNA is an
alternative mechanism to enzymatic activation of PacC at acidic
pH in T. rubrum.

Although IR-3 in the con7 transcripts resulted in a minor
protein (197 aa) compared to the conventional isoform (263 aa),
the zinc-finger domain was present in both isoforms. The
prediction of phosphorylation sites in Con7 protein isoforms also
revealed interesting differences between the two isoforms. These
isoforms share 20 phosphorylation sites on the serine, threonine,
and tyrosine residues. However, the alternative isoform had seven
distinct phosphorylation sites resulting from the alternatively
generated amino acid sequence, with five serine and two
threonine residues (Supplementary Figure S2). These findings
have important functional implications. Changes in the
phosphorylation profile of TFs represent a mechanism employed
by cells to mediate the activity of these proteins in response to
environmental changes by regulating their transcriptional activity,
cellular localization, stability, protein—protein interactions, DNA
binding, and coregulators (Riedl and Egly, 2000; Whitmarsh and
Davis, 2000; Zhou et al., 2020). Moreover, the IR-3 of con7
transcripts of T. rubrum was more prevalent when the fungus was
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FIGURE 8

Comparison of putative PacC protein isoforms of Trichophyton rubrum. Three-dimensional structures of PacC protein enzymatically processed, in
blue (A), from IR-2, in green (B), and their superposition (C). Additionally, alignment of the amino acid sequences of these two protein variants is

shown (D).
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cultured with keratinocytes than in the control (Figure 6B),
suggesting a role of this isoform in tissue-specific interaction with
the host. The role of this gene in fungal virulence and host
interactions has been revealed in Fusarium oxysporum (Ruiz-
Roldan et al., 2015). con7 in Magnaporthe grisea and F.
oxysporum also have splicing variants, including isoforms
generated through IR during vegetative growth and infection
(Odenbach et al., 2007; Ruiz-Roldan et al., 2015).

IR-1 in apl transcripts generated a small protein of 153 amino
acids lacking the essential leucine zipper domain, indicating loss of its
function as a transcriptional regulator. However, notably, IR-1 isoform
showed a high percentage among ap1 transcripts when cultured with
keratinocytes (63%), suggesting that this isoform is essential for
interactions with HaCaT cells (Figure 6B). This alternative isoform
may lead to the formation a putative mini-protein without a typical
Ap1l domain. However, we cannot rule out the possibility that the
RNA produced participates in fungal interactions with keratinocytes.
As previously reported, the Aapl mutant of T. rubrum exhibited
increased growth in cocultures with keratinocytes and nail fragments
compared to the wild type, suggesting that apl participates in the
negative control of virulence-related attributes and contributes to the
chronicity of infection caused by this dermatophyte (Peres et al,
2022). The regulation of fungal virulence traits affects the chronicity of
the disease and evasion of the host immune system (Martinez-Rossi
et al, 2021; Peres et al, 2022). We hypothesized that the correct
balance in the production of these apl isoforms contributes to the
control of the chronic infection.

The presence of IR-2 in the c6 isoforms resulted in a minor
protein, with a partial loss of the fungal-specific TF domain.
However, the Zn(2) Cys(6) DNA-binding domain was maintained,
suggesting that the function of this putative protein differed from that
of the conventional isoform. In keratin, human nails, and
keratinocytes, the IR-2 isoform of ¢6 was more prevalent than in its
respective controls, suggesting that it functions under infectious
conditions (Figure 6B). These data revealed the post-transcriptional
regulation of the mechanisms involved in fungal pathogenicity. In
Magnaporthe oryzae, TFs are a vital group of genes regulated by AS
during fungal infections, with the C6 TF group being the most
common (Jeon et al., 2022). The C6 TF of Aspergillus fumigatus
(AFUB_043270) exhibits IR, which is a potential mechanism of self-
protein activation control (Sieber et al., 2018). These data highlight
the importance of C6-type TF AS events in several fungal infections.

Finally, the presence of alternative isoforms, even under control
conditions (glucose or RPMI), indicates that infection conditions do
not always dictate the presence of AS but instead influence the
proportion of these events. These data underscore the importance
of investigating the proportion of alternative isoforms compared to
total isoforms, providing precise quantification of this phenomenon.

In conclusion, our data for these TF genes validate AS events
and corroborate the idea that pathogenic fungi show different AS
patterns in their infection environments (Jeon et al., 2022; Sieber
etal., 2018; Cheng et al., 2022; Ibrahim et al., 2021). Our results also
improve the understanding of the involvement of TF isoforms in
this process, as pacC, con7, apl, and c6 are crucial TFs for virulence
and fungal adaptation to the host environment (van der Does and
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Rep, 2017; Wang et al.,, 2024; John et al., 2021). Exposure of the
fungus to keratinolytic substrates induces the modulation of
transcriptional and post-transcriptional responses, particularly of
virulence factors and metabolic regulation. The regulatory
amplitude exerted by AS under infection-like conditions suggests
the impact of this mechanism on providing adequate responses to
T. rubrum pathogenesis. The consequences observed in the TF
genes from this regulation clarify how this mechanism contributes
to the strategies employed by the fungus to adapt and colonize the
host. This study provides a foundation for future fungal infection
management by improving the understanding of the molecular
mechanisms employed by pathogens to infect their hosts.
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