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Background: Hepaciviruses (family Flaviviridae) are significant pathogens
affecting both human and animal health. While the hepatitis C virus
(Hepacivirus hominis) is extensively studies in humans, related viruses have
been identified across various animal species. Bovine hepacivirus (BovHepV) is
capable of persistent infection in cattle, facilitating mutation accumulation and
recombination events that may generate novel variants. BovHepV has also been
found in wild boars and sheep, suggesting a broader host range than
previously recognized.

Methods: In this study, metagenomic sequencing was performed on 21 serum
samples collected from reindeer (Rangifer tarandus) in Inner Mongolia, China.
Two near-complete hepacivirus genomes were identified and designated as
Rangifer tarandus hepacivirus (RtHepV) isolates GHO1 and GHO2. Phylogenetic
and p-distance analyses were used to assess genetic relatedness to known
hepaciviruses. Recombination detection and host-virus co-evolutionary
analyses were also conducted.

Results: Among 21 reindeer serum samples, the positivity rates of RtHepV GHO1
and GHO02 were 42.9% (9/21) and 4.8% (1/21), respectively. These isolates shared
the highest sequence identities with the BovHepV Bulgaria 9 strain, with
nucleotide identities of 68.2% (GHO1) and 67.9% (GHO02), and amino acid
identities of 75.0% (GHO1) and 74.8% (GHO02). Phylogenetic analysis clustered
RtHepV within the Hepacivirus bovis lineage, but in a distinct clade separate from
previously reported BovHepV strains. P-distance calculations indicated that
RtHepV does not constitute a novel species; instead, it qualifies as a novel
genotype within Hepacivirus bovis, as its amino acid identity with other
subtypes falls below the 77% threshold. Recombination analyses revealed
evidence of genetic exchange between RtHepV and BovHepV strains. Co-
evolutionary analyses further highlighted frequent host-switching events within
the genus Hepacivirus.
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Conclusion: This study reports the identification of two novel hepacivirus
variants in reindeer from northeastern China, closely related to bovine
hepaciviruses. These findings expand the known host range and geographic
distribution of Hepacivirus, highlighting its ecological adaptability and the risk of
cross-species transmission. The results underscore the potential public and
veterinary health implications of hepaciviruses, warranting further investigation
into the epidemiology of hepaciviruses.
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1 Introduction

Hepacivirus, a member of the family Flaviviridae, is an enveloped
virus with a positive-sense, single-stranded RNA genome. The
genome spans approximately 8.9-10.5 kb and contains a single
open reading frame (ORF) flanked by 5 and 3’ untranslated
regions. The ORF encodes a polyprotein that is processed by both
viral and host proteases into ten distinct proteins: three structural
proteins (core, E1, and E2) and seven non-structural proteins (p7,
NS2, NS3, NS4A, NS4B, NS5A, and NS5B) (Parola, 2004). Hepatitis
C virus (HCV), or Hepacivirus hominis, is a major human pathogen
responsible for cirrhosis and hepatocellular carcinoma. According to
the World Health Organization, approximately 58 million people
globally are living with chronic HCV infection, with around 1.5
million new cases each year. HCV-related diseases caused an
estimated 290,000 deaths in 2019 (https://www.who.int/news-room/
fact-sheets/detail/hepatitis-c). HCV, first identified in 1989, was long
thought to infect only humans as its natural host (Alter, 1989).
However, this notion was challenged in 2011 with the identification
of a novel HCV homolog in the respiratory tract of dogs (Kapoor
et al,, 2011). Subsequent studies have identified a diverse range of
hepaciviruses in various hosts, including mammals such as horses
(Bezerra et al,, 2022), cattle (Yesilbag et al, 2018), non-human
primates (Simons et al., 1995), bats (Wang et al., 2017), and rodents
(An et al, 2022), as well as non-mammalian species like ducks
(Zhang et al., 2022). These hepaciviruses have been classified into at
least 14 distinct species, with recent additions such as Hepacivirus P
(Li et al., 2019) and Hepacivirus Q (Zhang et al.,, 2022).
Furthermore, advances in metagenomic sequencing have enabled
the identification of hepaciviruses and hepacivirus-like viruses in
diverse hosts, including marine organisms (e.g., Proscyllium
habereri, Mauremys megalocephala, Rhinobatos hynnicephalus)
(Shi et al,, 2016, 2018), terrestrial reptiles (Teratoscincus
roborowskii) (Shi et al., 2018), birds (Cyanistes caeruleus) (Porter
et al., 2020), and invertebrates like ticks (Shao et al., 2021) and
mosquitoes (Williams et al, 2020). These findings highlight the
remarkable genetic diversity and broad host range of these viruses.
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Currently, bovine hepacivirus (BovHepV) is recognized as the
sole member of the species Hepacivirus bovis (formerly known as
Hepacivirus N). It is classified into two genotypes, with genotype 1
further divided into eight subtypes (A-H). Recent studies in
Bulgaria have identified novel BovHepV variants, provisionally
designated as subtypes I to K (Breitfeld et al, 2022). Notably,
several host spillover events have been reported, with BovHepV
detected in red deer (Breitfeld et al., 2022), sheep (Ma et al., 2025),
and wild boar (de Martinis et al., 2022), indicating that the virus
lacks strict host specificity. Similar findings have been reported for
equine hepacivirus (EqHV), which has been detected in donkeys
and dogs (Pybus and Theze, 2016; Walter et al., 2017). These studies
suggest the potential for interspecies transmission of BovHepV, but
knowledge of its transmission routes and host range
remains limited.

Reindeer (Rangifer tarandus) are the only fully domesticated
species within the Cervidae family. They inhabit tundra, Arctic, and
subarctic regions across Asia, the Americas, and Europe (Li et al,
2017). In China, the Ewenki people of the northern Greater
Khingan Mountains practice reindeer herding, a tradition of great
cultural and economic importance (Zhai et al., 2017). However, the
frequent daily interactions between herders and reindeer increase
the potential risk of cross-species transmission of zoonotic
pathogens. Reindeer have been recognized as sentinel species for
monitoring a wide range of viruses, including multiple zoonotic
pathogens (Paulsen et al., 2020; Lamsal et al., 2023). These viruses
sustain a natural transmission cycle within a region, involving
humans, ruminants, and arthropods (Sanchez Romano et al,
2019). A study demonstrated the transmission of hepatitis E virus
between reindeer and their herders, suggesting that both may serve
as natural hosts for various zoonotic viruses (Slukinova et al., 2021).
Moreover, with the growth of reindeer-themed tourism in China,
activities such as feeding, petting, and other forms of close
interaction between tourists and reindeer have become more
prevalent. This trend has not only expanded the number of
individuals exposed to reindeer but also broadened the scope and
frequency of such interactions.
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Moreover, with the growth of reindeer-themed tourism in
China, activities such as feeding, petting, and other forms of close
interaction between tourists and reindeer have become more
prevalent. This trend has not only expanded the number of
individuals exposed to reindeer but also broadened the scope and
frequency of such interactions.

This study identified a new genotype of Hepacivirus bovis in
reindeer from Northeastern China, expanding our understanding of
the diversity and distribution of this viral genus. Hepacivirus bovis
has been detected in cattle, wild boars, and sheep (Ma et al., 2025),
and the present study reports, for the first time, its presence in
reindeer, further expanding the known host range of the virus.
These findings suggest that reindeer may serve as a novel natural
host, contributing to the ecological persistence and transmission
cycle of Hepacivirus bovis, and offers valuable insights for enhancing
surveillance strategies targeting zoonotic viruses. The ongoing
discovery of hepacivirus variants across various hosts underscores
the necessity for continuous surveillance and research to fully
understand their impact on animal and human health.

2 Materials and methods
2.1 Sample collection and ethics

In June 2022, 21 blood samples were collected from reindeer in
Inner Mongolia Autonomous Region, China, via jugular vein
puncture by professional veterinarians to minimize tissue damage.
The samples were centrifuged at 3,000 rpm for 10 minutes to
separate serum, which was then stored at -80°C for subsequent
analysis. This study was approved by the Animal Management and
Ethics Committee of the First Hospital of Jilin University, and all
procedures strictly complied with the Ethical Principles and
Guidelines for Animal Experimentation in the People’s Republic
of China.

2.2 RNA extraction and metagenome
sequencing analysis

From each sample, 50 pL of serum was collected and combined
into a pooled sample. The pooled samples were digested with
micrococcal nuclease (NEB, USA) at 37°C for 2 hours. Total viral
RNA was then extracted from the digested samples using the
TIANamp Virus RNA kit (TTANGEN, China) according to the
manufacturer’s instructions for metagenomic sequencing. The
metagenomic sequencing procedure, described previously [27],
involved fragmenting the RNA and reverse-transcribing it into
c¢DNA. The cDNA fragments underwent end repair, followed by
ligation with sequencing adapters using the TruSeqTM DNA Sample
Prep Kit (Illumina) to construct sequencing libraries. Bridge PCR
was subsequently performed to amplify adapter-ligated DNA
fragments on the sequencing flow cell. Sequencing was carried
out on the Illumina NovaSeq 6000 platform. After filtering out low-
quality reads and adapter sequences, the raw data were further
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processed using BBMap (https://github.com/BiolnfoTools/bbmap)
to remove host contamination and rRNA, yielding clean data. De
novo assembly of clean reads was conducted using SPAdes (https://
github.com/ablab/spades) and SOAPdenovo (https://github.com/
aquaskyline/SOAPdenovo-Trans). The assembled contigs were
compared against the virus-NT database using BLAST (V2.10.0+)
to identify viral species and infer evolutionary relationships.

2.3 Polymerase chain reaction

To validate the accuracy of the assembled hepacivirus
sequences, primers spanning the entire viral genome were
designed (Supplementary Table S1). RNA was extracted from
each individual sample and subjected to reverse transcription
followed by nested PCR. The PCR reaction mixture contained
12.5 pL of Premix Taq (TaKaRa), 9.5 uL of ddH,O, 1 uL each of
forward and reverse primers, and 1 pL of cDNA. Thermal cycling
conditions were as follows: initial denaturation at 94°C for 5
minutes; 35 cycles of denaturation at 94°C for 30 seconds,
annealing at 50°C for 30 seconds, and extension at 72°C for 30
seconds; and a final extension at 72°C for 5 minutes. For the second
round of PCR, the products from the first round were used as
templates under the same conditions. The amplified PCR products
were subsequently subjected to Sanger sequencing.

2.4 Rapid-amplification of cDNA ends

The 5’ and 3’ ends of the viral genome were amplified using the
SMARTer® RACE 573’ Kit (TaKaRa) (Lu et al., 2025). RACE-PCR
was performed with universal and gene-specific primers
(Supplementary Table S1). PCR products were cloned into the
pMD19-T vector (TaKaRa) and transformed into Stellar competent
cells. Recombinant clones were sequenced by Sanger sequencing at
Sangon Biotech (Shanghai) Co., Ltd., and the data were used to
assemble the complete viral genome.

2.5 Genome annotation and phylogenetic
analysis

The assembled viral sequences were analyzed using online
BLASTn searches against the Nr/Nt database (https://
blast.ncbinlm.nih.gov/Blast.cgi). ORFs were predicted using
ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder). Cleavage
sites in viral proteins were inferred by comparing the protein
sequences with those of BovHepV Bulgaria 9 strain (ON402465).
N-glycosylation sites in the E1 and E2 proteins were predicted via
the NetNGlyc 1.0 service (https://services.healthtech.dtu.dk/
service.php?NetNGlyc-1.0). All hepacivirus sequences were
retrieved from the GenBank database and aligned with ClustalW
(Supplementary Table S2). Nucleotide (nt) and amino acid (aa)
sequence identities were calculated using MegAlign in DNAstar
(v7.1). Average amino acid p-distances between sequence groups
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were calculated using the Simple Sequences Editor (SSE) v1.4,
generating amino acid distance line graphs (window size: 200
residues, step size: 20) (Smith et al., 2016). Evolutionary
relationships were inferred by maximum likelihood (ML) analysis
using MEGA v7.0. Bootstrap analysis was performed with 1,000
replicates; values above 70 were considered significant and are
shown on the phylogenetic tree.

2.6 Recombination analysis

The RDP4 package was employed to detect potential
recombination events in Hepacivirus bovis (Martin et al., 2015).
Recombination analysis was conducted on aligned sequences using
seven detection methods (RDP, GENECONYV, BootScan, MaxChi,
Chimaera, SiScan, and 3Seq) under default parameters. A
recombination event was considered valid only if it was detected
by at least two independent methods and met the Bonferroni-
corrected significance threshold of p < 0.007 (0.05/7). Additionally,
RDP-identified recombination events with RDP recombination
confidence scores ranging from 0.40 to 0.60 were classified as
potential recombination events (Ma et al., 2025).

2.7 Co-evolution analyses

To investigate the co-evolution between hepaciviruses and their
vertebrate hosts, a host species evolutionary tree was constructed
using TimeTree 5 (http://www.timetree.org). Hepacivirus
phylogenetic events were mapped onto the host tree using Jane 4
(Conow et al,, 2010). The mapping sought to minimize total cost
according to set values: 0 for cospeciation, and 1 each for
duplication, host switch, loss, and failure to diverge (Shi et al,
2018). TreeMap3 (http://sites.google.com/site/cophylogeny) was
used to visualize host-virus associations. The untangle function
minimized crossing lines, and default settings estimated the relative
frequency of co-evolution events.

3 Result

3.1 Virus identification and genomic
characterization

In June 2022, blood samples from 21 reindeer were collected to
construct an RNA library for metagenomic sequencing. The
Metagenomic sequencing yielded 6.4 gigabytes of data, from
which 38.5 million high-quality reads were obtained after filtering
out low-quality and host-derived sequences. Eleven contigs related
to BovHepV were identified in the dataset. Using RACE, two nearly
complete viral genomes were amplified and designated as Rangifer
tarandus hepacivirus (RtHepV) GHO1 and GHO02 (accession
numbers OQ164634-0Q164635). All 21 samples were tested for
RtHepV, with a positivity rate of 42.9% (9/21) for GHO1 and 4.8%
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(1/21) for GHO02. No co-infection with both GHO01 and GHO02
strains was detected.

The average sequencing depths for the GHO1 and GHO2 strains
were 445.5 and 58.1, respectively (Figures 1A, B). Both strains
exhibited similar GC content: 53.6% for GHO1 and 53.4% for GHO2.
The GHO1 genome consisted of 8,904 nucleotides and encoded a
polyprotein of 2,802 amino acids. Compared to GHO1, GH02 lacked
three nucleotides at positions 6860-6862, leading to the deletion of
one amino acid in the NS5A protein (Figure 1C). Genome
annotation revealed highly conserved cleavage sites within the
polyproteins of both viral strains. Additionally, three N-
glycosylation sites were predicted in the El protein and six in the
E2 protein (Figure 1C).

3.2 Sequence comparison

The two RtHepV strains, GHOl and GHO02, share a high
nucleotide identity of 90.2% and an amino acid identity of 96.8%.
Both strains exhibit the highest sequence similarity with the Bovine
hepacivirus isolate BovHepV Bulgaria 9 (accession no. ON402465),
with nucleotide identities of 68.2% (GHO01) and 67.9% (GHO02), and
amino acid identities of 75.0% (GHO1) and 74.8% (GHO02).
Compared to other BovHepV subtypes, their nucleotide identity
ranges from 62.4% to 65.5%, and amino acid identity from 69.5% to
74.7%. In contrast, their similarity to other hepacivirus species is
notably lower, with nucleotide identities ranging from 22.2% to
32.9%, and amino acid identities from 33.8% to 41.4% (Table 1).

Based on p-distance analysis of the conserved NS3 and NS5B
regions, GHO1 and GHO02 do not meet the species demarcation
threshold for classification as a novel Hepacivirus species
(Figure 1D). However, their amino acid identities with other
BovHepV isolates fall below 77%, supporting their classification
as a novel genotype. Thus, they are provisionally assigned as
genotype 3 (Table 1).

3.3 Phylogenetic analysis and homologous
recombination

Phylogenetic analysis based on the amino acid sequences of the
NS3 region revealed that RtHepV clustered within Hepacivirus
bovis, forming a distinct branch closely related to Bovine
hepacivirus (BovHepV) (Figures 2A, B). However, a topological
shift was observed in the NS5B-based phylogenetic tree: the
BovHepV Bulgaria 9 strain, which was previously classified as
genotype 1, clustered within genotype 3 together with RtHepV
(Figures 2C, D).

Homology analysis of individual viral proteins demonstrated a
high similarity between the GHO1 and GHO2 strains of RtHepV,
with nucleotide identities ranging from 87.0% to 93.3% and amino
acid identities from 94.2% to 98.8%. Among BovHepV strains, the
core-to-p7 region of GHO1 exhibited the greatest similarity to the
IME BovHep 01 strain, with nucleotide identities ranging from
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FIGURE 1

Genomic characteristics of Rangifer tarandus hepacivirus (RtHepV). (A, B) Histograms showing the sequencing depth of mapped reads, illustrating
the distribution and abundance of sequencing reads across the RtHepV genome. (C) Schematic representation of the genome structure and
predicted polyprotein cleavage sites, based on alignment with the Bovine hepacivirus strain BovHepV Bulgaria 9 (ON402465). Vertical arrows
indicate predicted N-linked glycosylation sites. (D) Amino acid p-distance analysis of RtHepV compared with Bovine hepacivirus isolates BovHepV
Bulgaria 9 and IME BovHep 01(MN691105), calculated using SSE v1.4 (window size = 200, step size = 20). (E) Amino acid identity analysis among
different Hepacivirus bovis genotypes, performed using Simplot v3.5.1 with a sliding window of 200 and a step size of 20.

62.0% to 70.5% and amino acid identities between 72.1% and 83.3%.
In the NS2-NS3 region, GHO1 shared amino acid identities of
63.5% in NS2 and 85.0% in NS3 with both IME BovHep 01 and
BovHepV Bulgaria 9. Within the NS4A-NS5B region, GHO1
showed the highest similarity to BovHepV Bulgaria 9, with
nucleotide identities ranging from 66.0% to 81.6% and amino
acid identities from 67.0% to 93.1% (Table 2).

The observed patterns strongly indicated the occurrence of
recombination events. Therefore, the RDP4 software package was
employed to analyze homologous recombination between RtHepV
and BovHepV. Seven recombination events associated with
RtHepV were detected, comprising two confirmed and five
potential events. In each event, RtHepV functioned as the minor
parental strain, while the major parental strains were derived from
BovHepV isolates reported in China (Guangdong), Germany, and
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Bulgaria (Table 3). These results imply that RtHepV not only shares
evolutionary relationships with BovHepV strains in China but also
exhibits distant relatedness to European strains, indicating complex
evolutionary processes and possible cross-regional viral exchanges.

3.4 Co-evolutionary analysis

To investigate the co-evolutionary relationships between
hepaciviruses and their hosts, we utilized Jane 4 to map each
evolutionary event of hepaciviruses onto the host phylogenetic
tree, aiming to minimize the total reconciliation cost. The analysis
identified a total of 21 evolutionary events, including 7
cospeciations, 3 duplications, 8 host-switching events, and 2
losses, with no failures to diverge (Figure 3A). Further analysis of
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242

242

44.9

44.9

237

67.4

31.0

338

339

33.6

34.6

33.7

359

42.7

351

41.4

334

338

34.5

337

334

335

33.7

338

33.8

34.0

33.8

338

342

32.0

34.0

7. NC009827
Th580

8. KC551800
GHV-1 BWC08/
Uganda

244

27.8

245

27.9

45.6

22.1

45.6

220

23.6

293

74.3

212

21.4

30.9

338

343

335

34.7

332

34.1

34.1

352

343

35.0

354

342

42.9

323

34.7

39.6

41.0

31.6

339

35.6

344

352

345

35.4

34.0

355

34.1

35.4

34.5

352

34.0

354

34.3

353

34.6

35.6

34.0

35.1

343

354

34.6

35.6

34.0

349

322

318

342

34.5

9. KC815310
RHV-339/USA

30.9

30.9

24.1

242

317

23.1

234

26.7

57.1

48.8

47.5

40.0

355

34.7

40.2

35.0

39.1

39.3

39.1

39.3

39.4

39.5

39.2

39.2

39.0

39.1

389

393

39.7

325

50.5

10.KC411784
Hepacivirus/
NLRO7-oct70/
NEL/2007/
Netherlands

11. KJ950938
NrHV-1/NYC-
C12/USA

30.0

29.0

29.9

289

239

23.8

24.0

238

313

313

232

23.0

229

231

274

26.1

60.7

48.0

47.3

50.0

46.8

46.6

38.8

37.8

36.8

36.2

354

35.6

39.1

389

351

351

385

372

37.6

37.7

37.9

37.2

37.8

373

38.4

37.3

377

37.0

38.5

371

37.8

375

38.0

37.2

382

37.6

37.6

371

38.1

371

384

374

325

317

49.8

47.5

12. KJ950939
NrHV-2/NYC-
E43/USA

13. KC411806
Hepacivirus/SAR-
3/RSA/2008/South
Africa

14. KC411777
Hepacivirus/
RMU10-3382/
GER/2010/
Germany

29.1

259

29.1

30.1

259

239

243

24.5

239

243

24.4

30.4

30.3

26.0

23.7

23.7

242

24.0

24.7

25.0

269

27.0

235

42.8

311

25.0

41.3

29.9

253

41.3

29.8

24.8

30.7

24.0

39.8

25.7

355

36.2

354

355

37.7

39.6

40.5

36.3

34.7

35.6

36.9

38.1

40.0

36.9

38.2

39.2

36.9

37.7

39.5

36.8

383

39.7

36.6

38.2

393

36.5

38.1

40.2

36.8

38.1

39.7

37.2

37.8

39.7

36.3

38.1

40.1

37.0

38.1

39.8

36.8

38.1

39.5

36.8

38.0

40.1

36.7

39.2

39.2

36.4

31.8

325

349

48.7

40.9

353

15. KC796074
PDB-829/Kenya

252

344

343

24.7

333

33.8

225

24.7

24.6

243

252

358

51.4

349

35.1

353

34.8

348

35.0

353

353

35.0

353

352

355

33.6

35.1
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16. KC796077
PDB-112/Kenya

17. KC796078
PDB-491.1/Kenya

329

259

32.8

25.9

25.8

35.7

25.8

35.6

36.6

24.6

247

333

24.8

332

337

225

32,6

254

320

249

31.6

25.0

31.0

255

31.7

26.3

26.7

26.0

253

48.4

252

349

40.7

354

40.4

352

40.8

35.1

40.4

352

40.3

34.8

40.7

353

40.8

35.8

41.1

35.1

40.7

35.0

40.5

35.1

40.4

35.0

40.7

355

414

354

33.5

339

40.5

35.0

18. ON402465
BovHepV Bulgaria
9/Bulgaria

19. MZ221927
GDZJ/China

75.0

70.0

74.8

69.7

25.7

25.6

25.6

25.6

31.7

31.8

234

235

239

23.6

27.3

27.0

30.5

30.4

30.0

29.6

29.3

29.0

29.3

29.5

30.4

30.0

26.8

26.6

25.2

253

327

315

25.6

252

82.8

72.6

73.1

84.4

72.2

81.6

72.5

81.6

734

80.0

73.8

79.6

72.7

80.5

73.0

79.5

72.9

80.2

72.2

81.5

74.4

80.2

63.8

66.4

34.4

34.1

40.3

39.9

20. MG781018 BR
MA236B017/
Brazil

70.2

69.9

25.6

25.6

315

233

237

26.8

30.1

294

289

293

29.9

26.5

252

31.8

253

83.4

95.6

82.1

82.4

80.7

80.8

80.1

79.9

80.5

82.1

81.1

66.4

344

39.9

21. MW830376
CQ/166/China

22. KP641125
BovHepV 379/
Ger/2014/
Germany

23. KP265950
GHC100/Ghana

69.7

70.4

70.3

69.8

70.3

69.9

252

252

25.7

25.2

25.2

25.6

315

314

31.6

23.1

233

234

23.1

232

235

26.8

26.8

269

30.3

30.4

30.3

29.3

29.7

295

28.7

28.8

29.0

29.4

29.3

29.1

30.1

29.7

30.1

26.5

26.7

26.8

25.1

253

25.2

31.8

317

322

25.2

25.2

25.2

82.7

83.3

84.0

94.2

94.3

92.5

94.3

94.4

93.2

95.8

92.6

84.4

93.0

80.1

80.1

80.3

80.2

82.5

79.1

79.4

81.9

79.4

79.9

81.4

79.8

79.6

81.4

92.4

84.6

79.8

80.2

80.6

82.5

67.0

66.3

66.8

33.7

339

335

40.1

39.8

40.1

24. KP265946
GHC52/Ghana

70.6

70.4

255

25.5

31.7

234

23.6

26.8

30.6

295

29.0

293

30.1

26.8

253

322

25.4

83.5

91.9

92.5

92.0

92.2

95.4

81.3

81.2

81.9

80.0

86.7

66.5

339

39.9

25. MG257793
BovHepV/GD/01/
China

26. MH027948
BH181/16-20/
Germany

69.9

70.1

70.0

69.9

25.6

25.8

25.6

25.8

315

31.8

23.1

234

232

23.6

26.7

26.9

30.3

30.6

294

29.7

29.1

29.1

29.4

293

30.2

303

26.4

27.0

253

254

32.0

322

25.2

255

83.3

83.6

91.7

91.9

92.4

92.4

91.9

91.7

91.9

92.0

95.3

95.1

94.3

94.3

94.2

80.9

81.4

82.1

79.1

79.2

81.6

81.5

66.6

67.0

33.7

338

39.9

40.0

27. ON402464
BovHepV Bulgaria
19/Bulgaria

70.1

70.0

258

25.8

31.7

233

234

26.7

30.6

29.7

29.1

295

30.3

26.7

253

321

253

83.4

92.4

92.4

923

92.9

95.5

94.5

94.3

95.5

79.5

81.8

66.7

339

40.0

28. OP716809
HLJ-72/China

69.6

69.5

255

25.4

31.6

232

232

27.0

30.0

29.1

28.7

29.2

29.9

26.5

25.2

316

25.2

82.6

94.2

94.5

97.2

95.5

92.5

91.9

91.7

91.6

92.2

80.1

66.8

338

40.1

29. 0U592967
Bovine hepacivirus

70.1

317

30.6

29.2

30.1

320

25.4

83.5

91.6

92.5

91.9

92.1

95.3

96.3

94.3

94.2

94.5

91.9

66.7

335

39.8

30. MN691105
IME BovHep 01/
China

31. MG211815
RHV-GS2015/
China

32. OM203121
GDZQ-15/China

74.6

317

222

74.7

31.7

223

254

24.8

20.5

253

24.9

20.5

31.6

323

213

234

23.8

20.1

23.6

24.6

204

26.7

27.1

19.9

30.8

48.9

21.2

29.5

47.8

20.8

29.1

45.0

20.9

29.9

44.2

20.5

30.4

332

21.0

26.4

25.8

222

25.4

25.7

21.7

325

33.8

223

254

25.9

222

72.6

31.9

21.8

76.3

313

21.6

76.5

31.1

214

76.5

312

21.6

76.3

31.3

21.7

76.0

312

21.7

76.3

31.2

21.6

75.8

30.9

21.7

76.3

313

219

76.6

31.4

21.7

76.3

31.2

21.6

75.9

31.2

215

315

21.7

335

21.6

39.7

332
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the relative frequencies of four key evolutionary

processes—

codivergence, duplication, host-switching, and loss—revealed that

host-switching was the predominant co-evolutionary

mechanism,

accounting for the majority (24-30 events) of occurrences

(Figure 3B). Additionally, the tanglegram illus
associations between virus and host phylogenies c¢
these findings, demonstrating consistent ev
patterns (Figure 3C).
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This study identified a novel hepacivirus, designated RtHepV,

in reindeer. Although it is classified with

in the species Hepacivirus

bovis, RtHepV shows significant genetic divergence from all known

BovHepV genotypes and has therefore been provisionally assigned

to genotype 3. Unlike earlier hepacivirus
viruses identified in new hosts closely
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Phylogenetic trees based on amino acid sequences of hepaciviruses. (A) Phylogenetic analysis of hepaciviruses based on NS3 amino acid sequences.
(B) Phylogenetic analysis of Hepacivirus bovis based on NS3 amino acid sequences. (C) Phylogenetic analysis of hepaciviruses based on NS5B amino
acid sequences. (D) Phylogenetic analysis of Hepacivirus bovis based on NS5B amino acid sequences. The J subtype was excluded due to the

absence of a complete genome sequence. Bootstrap values greater than 70 were considered significant and are indicated on the trees. The Rangifer
tarandus hepaciviruses identified in this study are highlighted in red.
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TABLE 2 Nucleotide (italicized) and amino acid (regular) sequence identity analysis of individual proteins of Hepacivirus bovis*.

Sequence identity (%)

Strain
Core E1 NS3 NS4A NS4B NS5A NS5B
0Q164635 3 — GHO02
966 | 943 943 966 961 | 988 94.4 98.4 94.2 98.4
539 | 565 539 666 585 | 712 64.8 71.8 50.7 68.1
KP641125 A ZB(())I'fepV 379/Ger/
63.6 | 541 490 783 611 | 865 74.0 86.0 533 77.7
552 | 565 532 627 597 | 708 64.8 724 52.0 67.5
KP265950 B GHC100
617 | 520 501 733 616 | 847 72.2 85.6 54.7 77.9
541 | 579 548 627 572 | 723 62.9 717 53.1 67.2
KP265946 C GHC52
63.0 | 525 509 750 601 | 858 74.0 84.8 554 78.4
549 | 554 539 655 571 | 708 61.7 72.1 51.8 67.1
MG781018 D BR MA236B017
624 | 510 490 766 611 | 858 72.2 85.6 535 77.9
550 | 554 531 616 584 | 703 60.4 71.8 54.0 67.8
MG257793 E BovHepV/GD/01
613 | 525 479 716 606 | 855 74.0 86.0 55.6 78.1
1
573 | 589 530 650 584 | 69.6 623 72.6 53.6 67.0
MH027948 F BH181/16-20
63.0 | 520 494 733 60.6 | 844 72.2 86.8 54.9 78.1
543 | 567 536 672 574 | 702 61.1 712 513 67.8
MW830376 G CQ/166
624 | 520 490 783 572 | 863 72.2 85.6 53.8 77.7
552 | 563 539 677 587 | 713 60.4 72.1 514 67.8
MZ221927 H GDZJ
624 | 515 483 783 611 | 866 72.2 83.2 533 77.7
BovHepV Bulgaria 554 | 572 539 650 592 | 717 62.9 70.4 524 67.6
ON402464 I 1o
617 | 525 498 750 611 | 854 74.0 86.0 54.7 77.5
) 558 | 579 543 694 597 | 716 66.0 712 65.6 81.6
BovHepV Bul
ON402465 K 9°V epV Bulgaria
63.6 | 520 494 766 635 | 850 72.2 82.8 67.0 93.1
620 | 685 695 705 605 | 716 60.4 69.8 54.1 65.2
MN691105 2 — IME BovHep 01
781 | 721 775 833 635 | 850 66.6 83.6 56.4 75.8

* All data are presented as homology calculations comparing different viruses with Rangifer tarandus hepacivirus strain GHO1.

original hosts, RtHepV shares less than 77% amino acid identity =~ Zoonotic viruses are capable of crossing species barriers and are
with all known BovHepV subtypes. Furthermore, based on the  often associated with changes in virulence that can result in severe
current classification criteria of the Hepacivirus genus, RtHepV is  diseases, such as HIV, coronaviruses, and influenza viruse (Sharp and
the first virus within a single hepacivirus species to be identified ~ Hahn, 2011; Flanagan et al., 2012; Morse et al., 2012). Direct contact
from different host species. The emergence of RtHepV suggests that ~ with animals or vector bites results in prolonged exposure to
cross-species transmission of hepaciviruses has already occurred  genetically diverse zoonotic viruses, increasing the risk of cross-
among distinct animal species, potentially posing significant  species transmission (Mackenzie and Jeggo, 2013). Therefore, the
implications for both public health and veterinary medicine. identification and characterization of viruses from various animal
Over the past 15 years, advances in metagenomic technologies  origins are essential for public health safety.
have greatly facilitated the identification of hepaciviruses in a wide The discovery of BovHepV in 2015 marked a significant
range of animal hosts. Initially thought to have narrow or host-  milestone (Bacchlein et al., 2015; Corman et al., 2015). BovHepV,
specific ranges, these viruses have challenged previous assumptionsas  the only member of Hepacivirus bovis, exhibits remarkable genetic
studies have progressed. For example, in addition to infecting  diversity (Breitfeld et al., 2022). The virus has a global distribution,
humans, HCV has also been detected in non-human primates  having been detected in seven countries across five continents (Lu
(Akari et al., 2009). Equine hepacivirus has been detected not only et al., 2019). Current research suggests that its host range may be
in donkeys but also in dogs (Pybus and Theze, 2016; Walter et al.,  broader than previously thought. For instance, sequences highly
2017), highlighting its potential for cross-species transmission. — homologous to BovHepV subtype F have been identified in wild
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TABLE 3 Detection of recombination events within Hepacivirus bovis using RDP4 package.

Detection methods (p-value)

Recombinant Major parent Minor parent RDPRCS
GENECONV BootScan MaxChi Chimaera Siscan 3Seq
9.138x10° 6.122x10° 8.651x10°
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FIGURE 3

Co-evolutionary analysis of hepaciviruses. (A) Reconciliation of the hepacivirus phylogeny with that of their vertebrate hosts. Host and virus
phylogenetic trees are shown in black and blue, respectively. Arrows indicate host-switching events; solid and hollow circles at branch tips represent
co-speciation and duplication, respectively; dashed lines indicate gene loss. (B) Relative frequencies of four co-evolutionary events: codivergence,
duplication, host-switching, and loss. (C) Tanglegram showing individual host—virus associations. Rangifer tarandus hepaciviruses identified in this

study are highlighted in red.

boars (de Martinis et al., 2022), and BovHepV subtype G has been
detected in sheep in Inner Mongolia, China, indicating a potentially
wider host spectrum. Moreover, studies in red deer in the Czech
Republic revealed partial NS3 coding sequences closely related to
BovHepV (Breitfeld et al., 2022), suggesting that cervids might serve
as additional reservoir hosts for Hepacivirus bovis extending
beyond cattle.

Phylogenetic analysis revealed that RtHepV forms a distinct clade
within Hepacivirus bovis, although topological incongruences were
also observed. Although several recombination signals were detected
between RtHepV and BovHepV, the methodological constraints of
RDP4 warrant caution. Inferred breakpoints may fail to distinguish
true recombination from convergent evolution or technical artifacts,
and low RDP recombination confidence scores indicate reduced
confidence. Nevertheless, these putative recombination events still
provide intriguing insights into the potential origin of RtHepV. Given
the well-developed livestock farming infrastructure in Inner
Mongolia, reindeer and cattle share overlapping habitats, creating
opportunities for cross-species viral transmission. Such transmission
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could occur via direct pathways (e.g., aerosolized particles or
exchange of body fluids) or indirect routes (e.g., contact with
contaminated feed, drinking water, feces, or carcasses).
Furthermore, BovHepV has been detected in cell culture sera
worldwide (Lu et al,, 2019), suggesting the possibility of reindeer
infection via vaccination. Mechanical transmission by vectors,
especially ticks (Harvey et al.,, 2019; Shao et al., 2021) and tabanids
(Pybus and Theze, 2016), may facilitate contact between reindeer and
cattle populations, thereby enhancing the likelihood of BovHepV
transmission across species. To test this hypothesis, we collected
engorged Ixodes persulcatus ticks from reindeer and captured free-
roaming ticks of the same species from surrounding wild habitats.
However, all samples tested negative for RtHepV, resulting in
disappointing findings. In Inner Mongolia and other regions,
reindeer and cattle engage in potential ecological interactions,
including cross-regional trade and transportation. These factors
may provide opportunities for genomic exchange between RtHepV
and BovHepV strains from different geographic origins. In addition,
the migration of wild animals may facilitate cross-regional viral
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dissemination. Considering these ecological and management factors,
it is plausible that recombination between RtHepV and BovHepV
occurs under conditions of close host contact or environmental co-
exposure, highlighting the real possibility of cross-host and cross-
regional genetic exchange among hepaciviruses.

Genome analysis of RtHepV revealed a single amino acid
deletion in the NS5A protein of the GHO2 strain, a feature with
potential functional significance. NS5A is a multifunctional non-
structural protein that plays critical roles in viral RNA replication,
virion assembly, and modulation of host immune responses
(Bulankina et al., 2022). Previous studies have shown that amino
acid deletions or substitutions in NS5A can markedly affect viral
replication efficiency, interfere with interferon signaling, and alter
the virus’s sensitivity to host antiviral defenses (Enomoto et al.,
1995; Scheel et al., 2011). Although the precise functional
consequences of the GHO02 NS5A deletion remain to be
experimentally validated, this alteration may influence viral
replication dynamics or facilitate immune evasion, potentially
impacting viral fitness and pathogenicity. Future studies using
reverse genetics and functional assays are warranted to elucidate
the specific effects of this deletion on the biology of GH02.

In conclusion, our study underscores the increasing genetic
diversity of hepaciviruses and highlights the need for sustained
surveillance and research to reduce public health risks associated
with cross-species transmission.
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