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Low temperature increases
adenovirus replication via
intracellular alkalization

Wenwu Sun, Zhuang Ma*, Jianping Cao and Junli Zhang*

Department of Respiratory Medicine, General Hospital of Northern Theatre Command,
Shenyang, China

Changes in environmental temperature contribute to a higher incidence of
respiratory tract viral infections during the colder months of the year.
However, the effect of low temperature on the replication of viruses in
pulmonary epithelial cells is still elusive. In this work, we measured the change
of intracellular pH (pH;) and the replication of adenovirus in A549 cells. We
observed that exposure of cells to a cooler temperature (33°C) resulted in
increases in both intracellular pH and adenovirus replication. In addition, the
enhanced replication of adenovirus induced by 33°C was attenuated by inhibition
of glycolysis with either 2-deoxy-D-glucose (2-DG) or PFK158. Moreover,
oligomycin, which stimulates the glycolytic flux, led to a significant increase in
viral replication at 37°C. Further experiments showed that low-temperature-
promoted virus replication and intracellular alkalization were efficiently inhibited
by the acidification of the extracellular medium. Taken together, these data
suggest that intracellular alkalization and glycolysis caused by low temperature
enhance adenovirus replication in host cells.
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Introduction

Acute exposure to cold temperatures contributes to the onset of the common cold
(Eccles, 2020). Low temperatures also worsen cold symptoms and even lead to respiratory
morbidity and mortality, with increased burden on society in terms of health services and
hospital admissions during the winter season. The common cold is primarily caused by
respiratory tract infections from a broad variety of respiratory viruses, such as adenovirus,
parainfluenza virus, rhinovirus, respiratory syncytial virus, enterovirus, coronavirus, and
influenza virus (Eccles, 2020; Heikkinen and Javinen, 2003).

Human adenovirus (HAdV) is one of the highly contagious respiratory viruses that can
result in epidemics of seasonal infections of the upper and lower respiratory tract. Multiple
HAGJV species, including species B, C, and E, account for 5.8%-13% of patients with acute
respiratory infections. Human adenovirus type 55 (HAdV-55) belongs to species B, which
was first isolated from Shanxi Province in 2006. HAdV-55 has spread widely in China
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during the period between 2006 and 2016 (Mao et al., 2022). The
seasonal frequency of HAdV infection varies throughout the year.
As the temperature rises, the number of HAdV-related pneumonia
cases tends to decrease. In contrast, a higher frequency of HAdV
infections happens during winter and early spring (Pscheidt
et al., 2021).

Many respiratory viruses, including human adenovirus,
cytomegalovirus, SARS-CoV-2, rhinovirus, and Epstein-Barr
virus, reprogram host cell metabolism to promote glycolysis for
their replicative advantage. The metabolic alterations produce the
main energy and a carbon source for the synthesis of nucleotides,
amino acids, and lipids to meet the needs of the virus for survival
and reproduction (Awad et al., 2022; Allen et al., 2022). Further
research studies revealed that the varying productivities of viruses
are associated with virus-type specificity and species- and time-
related metabolic patterns of infected host cells under different
conditions (Allen et al., 2022; Awad et al,, 2025). For instance, high
glucose alters the glycolytic pattern, which increases SARS-CoV-2
replication in monocytes and decreases influenza and parainfluenza
productivity in A549 cells, respectively (Codo et al., 2020; Awad
et al,, 2025). It has been reported that low temperature leads to
intracellular pH elevation and subsequently enhances glycolysis
(Fang et al., 2017). However, the effect of cold-induced intracellular
alkalization and glycolysis on adenovirus replication in the host cell
is still unclear. In the present study, we investigated the role of the
change of pH; induced by low temperature in the replication of
HAdV-55.

Materials and methods
Reagents

The pH-sensitive fluorescent probe BCECF-AM (2',7'-bis-(2-
carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester)
(Cat#51012) was purchased from Biotium Inc. (Hayward, CA,
USA). Mouse monoclonal adenovirus hexon protein antibody (sc-
80671) and FITC-conjugated m-lgG, BP (sc-516140) were
purchased from Santa Cruz Biotechnology (Shanghai) Co., Ltd. 2-
Deoxy-D-glucose (2-DG, CAS 154-17-6) and oligomycin (CAS
1404-19-9-17-6) were purchased from MedChemExpress LLC
(Shanghai), and PFK158 (Cat#S8807) was purchased from
Selleckchem (Shanghai, China). The other agents were of
analytical grade.

Cell line and virus

The A549 cell, a human alveolar epithelial cell line, was
purchased from the National Collection of Authenticated Cell
Culture (Shanghai, China). The cell was grown in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine
serum (pH 7.2). Human adenovirus-55 was kindly provided by
Professor Hao Ren from the Naval Medical University (Shanghai,
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China). The virus was propagated and stored according to
previously described methods (Hashimoto et al, 1991). The
infectivity titer of the stock adenovirus was 2 x 107 PFU/mL, and
the adenovirus was stored at —80°C.

Measurement of ECAR and pH; by BCECF
fluorescence

To examine the extracellular acidification rate (ECAR), A549
cells were seeded on 6-cm cell culture dishes at a density of 2.5 x
10%/dish for 24 h. Then, cells were incubated in 10 mL of DMEM
with 10% fetal bovine serum at 37°C and 33°C for 2 h, respectively.
The pH of the culture medium was measured using a pH meter. The
ECAR was calculated with the change of media pH.

The pH; was measured using the BCECF-AM. A549 cells were
seeded in six-well dishes at a density of 2.5 x 10° cells per well and
were cultured in DMEM with 10% fetal bovine serum at 37°C for 1
day. The cells were incubated at different temperatures (37°C, 33°C)
and extracellular pH values (pH 6.4, pH 7.2), respectively. The
medium pH was adjusted with HCL. After cells were treated for 20
min with 5 uM of BCECF-AM, the cells were then rinsed to fully
remove the dye. Fluorescence (excitation wavelength, 488 nm;
emission wavelength, 510 nm) was measured using a fluorescence
microscope (Olympus IX53, Tokyo, Japan). The cell images were
recorded by a cooled CCD. Fluorescence images were repeated at
least three times. For quantization, the area of the cell was selected,
and the mean fluorescence intensity of BCECF probe images was
determined. A calibration was performed using nigericin (10 pg/mL)
in a buffer solution (140 mM of KCI, 1 mM of MgCl,, 1 mM of CaCl,,
5mM of glucose, and 15 mM of HEPES) at fixed pH values of 7.2 and
7.6, respectively.

Immunohistochemistry

Six coverslips (22 mm x 22 mm) were plated in 10-cm cell
culture dishes. After the cells were cultured in DMEM with 10%
fetal bovine serum at 37°C and 5% CO,, the adhered cells were
incubated with adenovirus at a multiplicity of infection (MOI) of 5
for 1 h. The cells were then washed three times with phosphate-
buffered saline (PBS). This operation ensures the same number of
virions in each cell as much as possible. Each cover glass with cells
was allowed to culture for 30 h under different conditions. The cells
were fixed with 3.7% PFA for 30 min. After three washes with PBS,
the cells were subjected to 0.1% Triton X-100 for cell membrane
perforation. After treatment with protein block for 30 min, the cells
were stained with a mouse monoclonal antibody against the
adenovirus hexon protein overnight at 4°C. After three washes
with TBS, FITC-conjugated m-1gG. BP was added and incubated
for 90 min at room temperature. After removing the excess of
fluorescence-conjugated protein, the cell nuclei were stained with
Hoechst 33342. The fluorescence intensity of the adenovirus hexon
protein was analyzed with Image] software.
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Quantitative RT-PCR

Total RNA was extracted using TRIzol reagent (TaKaRa, Dalian,
China) as the lysis buffer. Complementary DNA (cDNA) was then
synthesized using PrimeScript RT reagent Kit (TaKaRa, Dalian,
China), and subsequently, quantitative RT-PCR was performed. All
reaction components were obtained from the same source (TaKaRa
biotechnology, Dalian, China). The mRNA expression levels were
normalized to the housekeeping gene GAPDH. The primers used
were as follows: PFKFB3 F: 5'-CTGCAGAGGAGATGCCCTAC-3/,
R: 5'-AGGTCCCTTCTTTGCATCCT-3'CATCCT-3’; and GAPDH
F: 5'-CCACCCATGGCAAATTCCATGGCA-3’, R: 5-TCTAGAC
GGCAGGTCAGGTCCACC-3'.

Statistical analysis

All data were presented as the means + standard error of the
mean (SEM). Student’s ¢-test was used for comparison between the
two groups. A P-value <0.05 was considered statistically significant.

Results

Low temperature enhances the HAdV
replication

We first examined the effect of low temperature on HAdV
replication in A549 cells. The fluorescence intensity of HAdV in a
single cell was detected using immunohistochemistry. The
fluorescence images showed that low temperature (33°C)
significantly increased HAdV replication in cells (Figure 1Aa,b).
Statistical analysis of multicellular data indicated that HAdV
replication was significantly higher in the host cells incubated at
33°C than in the host cells incubated at 37°C (Figure 1B, n = 30,
P < 0.01). These observations confirmed that low temperature
increases the HAAV replication in A549 cells.

The low temperature-induced HAdV
replication via glycolysis

We next assessed glycolytic function by measuring ECAR at 33°C
and 37°C. Results indicated that 33°C significantly promoted ECAR
of A549 compared to 37°C (Figure 2A, n = 3, P < 0.05), which
confirmed that low temperature enhanced glycolysis. To further
determine if the glycolysis pathway could affect HAdV replication
at low temperature, two inhibitors of glycolysis were used. Results
showed that both 5 mM of 2-DG and 2.5 uM of PFK158 obviously
prevented the low temperature-induced enhancement of viral
replication, respectively (Figures 1Ac, d, B, n = 30, P < 0.01). In
order to further confirm the importance of glycolysis in HAdV
replication, we used oligomycin to inhibit ATP synthesis and to
promote glycolysis at core body temperature (37°C). The results
showed that 1 uM of oligomycin remarkably enhanced the HAdV
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replication at 37°C (Figures 1Ae, B, n = 30, P < 0.01). The above
results indicate that glycolytic activation is responsible for the
enhanced replication of HAAV at low temperature.

HAdV replication is dependent on
intracellular alkalization

At last, the change of pH; was examined at a low-temperature
condition. The results showed that exposure to a 33°C medium for
1 h induced a significant increase in the fluorescence of pH; (Fgures
3Aab, B, n = 30, P < 0.01). In view of the evidence that low
temperature increases both pH; and HAdV replication, the
extracellular pH (pH,) was shifted from 7.2 to 6.4 in the next
experiment. Results showed that an acidic medium largely blocked
the enhanced pH; caused by 33°C in A549 cells (Figures 3Ac, B, n =
30, P < 0.01). At the same time, the acidic medium almost
completely attenuated the cold-induced elevation of HAdV
replication (Figures 1Af, B, n = 30, P < 0.01). Statistical results in
Figures 1B and 3B confirmed the suppressive effect of the acidic
medium on the increases in both pH; and the replication of HAdV
at 33°C. The above results suggested that intracellular alkalization
induced by low temperature is necessary for HAdV replication in
A549 cells.

Discussion

Temperature sensitivity is an important influencing factor in acute
viral respiratory infections. The present explanation is that cold
exposure causes vasoconstriction, which impairs extracellular vesicle
swarm-mediated nasal antiviral immunity (Eccles, 2020; Huang et al,,
2023). However, the mechanism underlying the association between a
cooler temperature and higher virus replication still remains obscure.
The possible reasons behind this phenomenon are multifaceted.

It has been reported that the recombinant adenovirus yield is higher
at 32°C-35°C than at 37°C in human embryonic kidney cells (Jardon
and Garnier, 2003). Airway epithelial cells are not only central to the
defense against respiratory viruses but also the main hosts for
respiratory viruses (Vareille et al, 2011). Here, our results confirm
that low temperature promotes HAdV replication in A549 cells.
Therefore, the inhalation of cold air possibly creates a cooler
temperature advantage in respiratory epithelial cells for virus replication.

Metabolic reprogramming of host cells is critical in viral
infections. Virus reprograms the host cell metabolism to
preferentially use glycolysis as a rapid energy source and the
synthesis of amino acids, lipids, and nucleotides, which
contributes to virus multiplication (Thai et al.,, 2014; Allen et al,
2022). In this study, after the enhancement of glycolysis in A549
cells at 33°C has been confirmed, we evaluated the impact of
glycolysis on virus replication under low-temperature conditions.
2-DG is an inhibitor of glycolysis. Previous studies have
demonstrated that 2-DG inhibits SARS-CoV-2 replication in host
cells (Bojkova et al., 2020; Codo et al., 2020). We observed the effect
of 2-DG on HAAV replication at 33°C. Additionally, the 6-

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1648576
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Sun et al. 10.3389/fcimb.2025.1648576

nucleus

adenovirus

a:37C b:33°C ¢: 33°C+2-DG

nucleus

adenovirus

d: 33°C+PFK158 e: 37°C+ oligomycin f: 33°C+HCI

240- * %

200 -

160 4

120

[+
o
1

H
o
1

mean fluorescent intensity of virus
I+

FIGURE 1

The effect of temperature and extracellular pH on adenovirus replication. (A) The fluorescence images of adenovius in A549 cells. (a) 37°C. (b) 33°C
(c) 33°C and 2-DG. (d) 33°C and PFK158. (e) 37°C and oligomycin. (f) 33°C and acide medium. (B) Statistical analysis of the replication of adenovirus in
multiple experiments. **P < 0.01, cold and oligomycin increased the adenovirus replication. #P < 0.01, Acide medium, 2-DG and PFK158 reduced the
replication of adenovirus in A549 cells at 33°C.
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FIGURE 2

33degree

The effect of temperature on ECAR and PFKFB3 mRNA expression. (A) Statistical analysis of ECAR at 37°C and 33°C, respectively. * P<0.05 (n=3),
33°C increased ECAR compared with 37°C. (B) Statistical analysis of PFKFB3 mRNA expression at 37°C and 33°C, respectively. P>0.05 (n=3), There

are no difference in mMRNA expression of PFKFB3 between 37°C and 33°C.

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is
a critical enzyme that controls the glycolytic flux. PFK158, a specific
inhibitor of PFKFB3 (Sarkar Bhattacharya et al.,, 2022), has been
used at 33°C to further clarify the involvement of glycolysis. On the
other hand, oligomycin, a glycolysis stimulator (Mirveis et al,
2024), specifically blocks proton conductance through the
mitochondrial inner membrane, which contributes to
mitochondrial dysfunction and glycolysis (Pagliarani et al., 2013).
Oligomycin can increase SARS-CoV-2 replication in host cells
through the glycolysis pathway (Codo et al., 2020). Here,
oligomycin was used as a positive control at 37°C. Both results of
the inhibitory effect of the two glycolysis inhibitors at 33°C and the
promotion effect of the glycolysis stimulator on virus replication at
37°C would suggest that metabolic reprogramming of the host cell
contributes to adenovirus replication at low-temperature
conditions. Thus, low temperature may induce a metabolic

Frontiers in Cellular and Infection Microbiology 05

advantage for airway viral infections, which could explain the
higher frequency of virus infection in cold environments.

Some regulatory enzymes are involved in the non-oxidative branch
of the pentose phosphate pathway (PPP) after viral infections. For
example, in the non-oxidative PPP, the transketolase enzyme (TKT)
converts ribose-5-phosphate and xylulose-5-phosphate to
sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate.
Glyceraldehyde 3-phosphate is an essential intermediate in the
glycolytic pathway (Guo et al, 2024). Another key glycolysis-related
enzyme is transaldolase 1 (TALDO1), which produces erythrose 4-
phosphate and fructose 6-phosphate with sedoheptulose 7-phosphate
and glyceraldehyde 3-phosphate (Lou et al, 2024). Both regulatory
enzymes are increased in the SARS-CoV-2-infected host cells (Bojkova
et al, 2021). The human adenovirus protein early region 1A (E1A) also
promotes the expression of several glycolytic genes, including 6-
phosphogluconolactonase (6PGL), which converts 6-phosphoglucono-
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of pHi in A549 cells. **P < 0.01, Cold increased pHi compared with control. # P < 0.01, Acid medium decreased the elevated pHi in A549 cells,

respectively.

d-lactone into 6-phosphogluconate ( ). Because
the cold-induced enhancement of virus replication was markedly
attenuated by the PFKFB3 inhibitor ( d), we next assessed
whether PFKFB3 expression was upregulated at 33°C. However, the
showed that the expression of the PFKFB3 mRNA

level did not increase under cold conditions. These results suggest that

results in

the cold-induced increase in viral replication depends on glycolytic
activation mediated through pathways other than upregulation of the
rate-limiting enzyme PFKEB3. It is possible that alternative mechanisms
enhance glycolytic flux under cold stress. Previous studies have
demonstrated that low temperature increases pH; and subsequently

Frontiers in
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). Intracellular
alkalization not only directly stimulates the activity of several glycolytic
enzymes, including TKT, TALDOI, and 6PGL ( ;

), but also rapidly induces Smad5 protein
nucleocytoplasmic shuttling leading to glycolysis ( )

enhances glycolysis ( ;

Based on the above viewpoints, it is reasonable to speculate that cold-
induced high pH; could enhance HAdV replication in host cells. To
investigate the effect of the change of pH; on the enhanced HAdV
replication at 33°C, the pH; was assessed. The results showed that low
temperature rapid increases pH; at 1 h, which can be decreased with an
acidic medium. In fact, similar changes of pH; have also been observed
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FIGURE 4
The difference of adenovirus replication between 37°C and 33°C.

even after 30 h (data not shown). The decreasing pH; also obviously
inhibits low-temperature-promoted virus replication. These results
suggest that intracellular alkalization is a critical factor that enhances
HAGJV replication in host cells under a cold environment.

In conclusion, this study demonstrates that low temperature
facilitates HAdV replication in host cells through promoting
intracellular alkalization and glycolysis (Figure 4). These findings
may provide a potential explanation for the clinical phenomena that
cold temperature increases respiratory virus infection prevalence,
morbidity, and mortality during the winter period. Perhaps, this
work might be helpful for a better understanding of the pathogenic
process of “catching a cold.”
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