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Characterization of gut
microbiota signatures in
Indian preterm infants with
necrotizing enterocolitis: a
shotgun metagenomic approach
Prabavathi Devarajalu1†, Savita Verma Attri 1†, Jogender Kumar2,
Sourabh Dutta2 and Jayakanthan Kabeerdoss1*

1Pediatric Biochemistry Unit, Department of Pediatrics, Post Graduate Institute of Medical Education &
Research (PGIMER), Chandigarh, India, 2Newborn Unit, Department of Pediatrics, Post Graduate
Institute of Medical Education & Research (PGIMER), Chandigarh, India
Introduction: Necrotizing enterocolitis (NEC) is an inflammatory bowel disease

that primarily affects preterm infants. Predisposing risk factors for NEC include

prematurity, formula feeding, anemia, and sepsis. To date, no studies have

investigated the gut microbiota of preterm infants with NEC in India.

Method: In the current study, shotgun metagenomic sequencing was performed

on fecal samples from premature infants with NEC and healthy preterm infants (n

= 24). Sequencing was conducted using the NovaSeq X Plus platform, generating

2 × 150 bp paired-end reads. The infants were matched based on gestational age

and postnatal age.

Result: The median time to NEC diagnosis was 9 days (range: 1–30 days).

Taxonomic analysis revealed a high prevalence of Enterobacteriaceae at the

family level, with the genera Klebsiella and Escherichia particularly prominent in

neonates with NEC. No statistically significant differences in alpha or beta

diversity were observed between stool samples from infants with and without

NEC. Linear regression analysis demonstrated that Enterobacteriaceae were

significantly more abundant in stool samples from infants with NEC than

without NEC (q < 0.05). Differential abundance analysis using Linear

Discriminant Analysis Effect Size (LEfSe) identified Klebsiella pneumoniae and

Escherichia coli as enriched in the gut microbiota of preterm infants with NEC.

Functional analysis revealed an increase in genes associated with

lipopolysaccharide (LPS) O-antigen, the type IV secretion system (T4SS), the L-

rhamnose pathway, quorum sensing, and iron transporters, including ABC

transporters, in stool samples from infants with NEC.

Conclusion: The high prevalence of Enterobacteriaceae and enrichment of LPS

O-antigen and T4SS genesmay be associated with NEC in Indian preterm infants.
KEYWORDS

Necrotizing enterocolitis, gut microbiota, preterm infants, shotgun metagenomics, LPS
O-antigen, TLR4, type IV secretion system (T4SS), India
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Introduction

Necrotizing enterocolitis (NEC) is a devastating inflammatory

disease that significantly contributes to morbidity and mortality in

preterm infants. The incidence of NEC is approximately 7% (95% CI:

6–8%) among very low birth weight (VLBW) infants (Alsaied et al.,

2020). Risk factors for NEC, such as formula feeding, maternal and

neonatal antibiotic exposure, and premature birth, have been shown to

induce alterations in gut microbiota (Thänert et al., 2020). The

immature intestines of preterm infants, when exposed to

inappropriate bacterial colonization alongside a hyperactivated

immune system, may drive the development of NEC (Mara et al.,

2018). Dysbiosis of the gut microbiota has been observed in individuals

with NEC even beyond five years of age (Magnusson et al., 2024). The

severity of dysbiosis correlates with the stage of NEC and is more

pronounced in patients who undergo surgical treatment (Magnusson

et al., 2024). These findings demonstrate how the sequelae of NEC lead

to persistent perturbations in the gut microbiota of affected children.

Despite two decades of extensive research using next-generation

sequencing techniques, the specific microbial communities

responsible for the development of NEC have not yet been

identified. Several factors contribute to this challenge, including

heterogeneity among studies, such as variations in the timing of

sample collection, duration of clinical presentations, and differences

in sequencing methods—ranging from targeting variable regions of

the 16S rRNA gene to whole-genome bacterial sequencing.

Additionally, the gut microbiota of preterm infants is influenced

by environmental factors related to hospital admission, antibiotic

use, feeding methods, medications, and other supportive

interventions (Thänert et al., 2024). During hospitalization, feed

intolerance, sepsis, and other comorbidities commonly co-occur

with NEC, further contributing to alterations in the gut microbiota.

Probiotics have been shown to restore dysbiosis in infants, thereby

reducing the incidence of NEC (Samara et al., 2022). Disruptions in

the gut microbiota during the early weeks of life in preterm infants

are associated with an increased risk of NEC.

Several studies conducted in high-income countries have

established an association between the microbiome and NEC

(Thänert et al., 2020; Tarracchini et al., 2021); however, data from

low- and middle-income countries remain scarce. Investigating the

gut microbiota is valuable not only for identifying microbial

biomarkers but also for developing bacterial-mediated therapies,

such as fecal microbiota transplantation and bacteriophage

treatment. In this study, we employed a shotgun metagenomic

approach to characterize the gut microbiome and identify

functional metabolic pathways as the primary and secondary

outcomes in fecal samples from preterm infants with NEC.
Methods

Participant recruitment

This prospective observational cohort study was conducted from

September 2022 to January 2025 at a tertiary care neonatal unit in
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Northern India. Preterm infants born between 26 and 32 weeks of

gestation, with a birth weight of less than 1500 grams, and admitted

to the NICU were recruited. Participants’ demographic information

and clinical details were collected prospectively until discharge or

death using a standardized proforma. NEC was diagnosed according

to the Bell staging criteria and classified as cases. Healthy preterm

infants matched for gestational and postnatal age were recruited as

controls. The study was approved by the Institutional Ethics

Committee (IEC) of the Postgraduate Institute of Medical

Education and Research (PGIMER), Chandigarh, and was

conducted in accordance with the Declaration of Helsinki.
Sample collection

The fecal samples from infants were collected in sterile

containers during the first month of life as described in previous

studies (Devarajalu et al., 2024; Devarajalu et al., 2025). Fecal

samples from control subjects were collected on days of life

matched to those of the NEC group. Participants were recruited

after obtaining written informed consent from one of the parents.

Stool samples were stored in an ultra-low temperature freezer (-80 °

C) until further processing.
Whole genome sequencing

Genomic DNA was isolated from approximately 100 milligrams

of fecal specimens using the QIAamp PowerFecal Pro DNA Kit

(Qiagen Inc., Germany). The purity of the extracted DNA was

assessed by 1% agarose gel electrophoresis. DNA concentration was

determined using the Qubit DNA High Sensitivity (HS) assay

(Invitrogen). A paired-end DNA library was prepared using the

Twist EF Library Prep Kit (Illumina, Inc., USA). Briefly, the DNA

was first fragmented to the desired size, then end-repaired and mono-

adenylated at the 3’ end in a single enzymatic reaction. Next, adapters

were ligated to the DNA fragments using a T4 DNA ligase-based

reaction. Following ligation, the fragments were prepared as substrates

for PCR-based indexing in the subsequent step. During PCR, barcodes

were incorporated using unique primers for each sample, enabling

multiplexing. All prepared libraries were assessed for fragment

distribution using a 5300 Fragment Analyzer system (Agilent

Technologies, Inc., CA, United States). The resulting libraries were

pooled and diluted to achieve optimal loading concentrations. Finally,

the pooled libraries were loaded onto a NovaSeq X Plus system

(Illumina, Inc., CA, United States) to generate 150 bp paired-end

reads. The average read count of the samples is 22.8 million.

Sequencing statistics are shown in Supplementary Table 1.
Sequencing and mapping

The adapter sequences were trimmed using the fastq-mcf tool

(version 1.04.803). The trimmed reads were then aligned to the

human genome (hg19) using BWA (version 0.7.12) to remove
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human contamination. The remaining unaligned reads were de

novo assembled with MEGAHIT (version 1.2.9). The resulting

assembled genome was used for open reading frame (ORF)

prediction and annotation with Prodigal (version 2.6.3).

Taxonomic classification was performed using datasets from the

National Center for Biotechnology Information (NCBI), and

functional pathways were identified from the predicted ORFs

using SEED protein classification in MEGAN 6 (Huson et al., 2016).
Microbiome composition and statistical
analysis

Alpha diversity metrics, including observed counts and the

Shannon index, were calculated using the Phyloseq package

(McMurdie and Holmes, 2013). Differences in alpha diversity

between groups were assessed using the Wilcoxon rank-sum test.

Beta diversity metrics were computed with the Vegan package. A

permutational analysis of variance (PERMANOVA) was performed

using the adonis2 function from the pairwise package to identify

variation between groups by fitting Bray-Curtis and Jaccard

distance matrices separately, incorporating covariates, with 999

permutations (Oksanen et al., 2001).

Differential bacterial abundance between variables was analyzed

using Linear Discriminant Analysis (LDA) Effect Size (LEfSe) with an

LDA threshold of 4, implemented through the MicrobiomeMarker

package (Cao et al., 2022). Additionally, a linear regression model

employing the LinDA and MaAsLin2 packages was used to identify

taxa and functional pathways associated with necrotizing

enterocolitis (NEC) (Mallick et al., 2021; Zhou et al., 2022).

Multiple testing corrections, Benjamini-Hochberg (BH) was

applied, with a significance threshold of q < 0.05. Welch’s t-test

was conducted for differential functional analysis using STAMP

software (Parks et al., 2014). Correlation and network analyses

were performed using the Network Construction and Comparison

for Microbiome Data (NetCoMi) package (Peschel et al., 2021). All

statistical analyses were conducted using R software (version 4.4.2),

and figures were generated using the ggplot2, pheatmap, and

MicrobiomeStat packages.

Results

Baseline demographic characteristics

The baseline demographic information is presented in Table 1.

The NEC and control groups were matched for gestational and

postnatal ages. One sample (NEC) was excluded from downstream

analysis due to low sequencing read quality.
Microbial richness and diversity

Microbial richness, assessed using alpha diversity, showed no

significant differences in observed operational taxonomic units
Frontiers in Cellular and Infection Microbiology 03
(OTUs) and Shannon index between infants with NEC and the

control group (Figure 1). Alpha diversity indices did not differ

significantly when analyzed against other covariates, including

mode of delivery (vaginal vs. LSCS), sex (male vs. female), birth

weight (<1000 g vs. >1000 g), and gestational age (<28 weeks vs. 28–

32 weeks). Furthermore, no statistically significant differences or

effect size variations were observed between NEC and control

groups for beta diversity, as measured by both Bray-Curtis and

Jaccard distance metrics (Figure 2). PERMANOVA analysis

revealed that mode of delivery accounted for a greater variance in

beta diversity than other covariates within our cohort (Table 2).
Taxonomic composition and differential
abundance

The taxonomic composition at the phylum level indicated that

Pseudomonadota, Bacillota, and Actinomycetota were the

predominant phyla during the first week of life. An increased

abundance of Pseudomonadota was observed in preterm infants

with NEC, accounting for 47% of the total phyla (Figure 3a). The

two major families identified in the gut of preterm infants during

the first week were Enterobacteriaceae and Enterococcaceae, which

together comprised 60% of the total taxonomic families (Figure 3b).

The abundance of Enterobacteriaceae was significantly higher in the
TABLE 1 Demographic details of subjects.

Variables
Control
n=12

NEC
n=12

P value

Gestational age (week), mean
± SD

30.5 ± 2.17 30.4 ± 1.75 0.829

Sex (male/female) 6/6 6/6 1

Birth weight (g), mean ± SD 1235 ± 311 1259 ± 289.4 0.978

No. (%) of mothers with PPROM 3 (25%) 2 (16.67%) 0.615

Mode of delivery (Vaginal/LSCS) 6/6 (50/50%) 6/6 (50/50%) 1

No. (%) of mothers
with preeclampsia

4 (33.3%) 1 (8.3%) 0.314

No. (%) of mothers received
antenatal corticosteroids

12 (100%) 11 (92%) 0.307

APGAR score at 1 min
median (IQR)

7 (6-9) 6 (5-9) 0.922

APGAR score at 5 min
median (IQR)

8 (7-9) 7 (6-9) 0.493

No. (%) of neonates
receiving antibiotic

12 (100%) 12 (100%) 1

Day of life on which stool sample
was collected

6 (3-20) 6 (3-20) 1

Age of diagnosis of NEC (days) NA 9 (3-30) NA

NEC associated deaths NA 2 (16.7%) NA
fro
PPROM, Preterm Prelabor Rupture of Membranes; LSCS, Lower Segment Cesarean Section;
SD, Standard deviation; IQR, Interquartile range; NA, Not applicable.
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gut of infants with NEC than without NEC, as demonstrated by

linear regression analysis (Table 3). There was an increased

prevalence of the genera Escherichia and Klebsiella and a

decreased prevalence of Enterococcus in preterm infants with

NEC. Linear regression analysis indicated a significant increase in

the abundance of the genus Klebsiella in NEC cases. Heatmap

analysis revealed that either Escherichia or Klebsiella was present in

82% of NEC cases compared to 33.3% of controls (Figure 4). Krona

plots showed that the abundance of Klebsiella pneumoniae in the
Frontiers in Cellular and Infection Microbiology 04
NEC and control groups was 24% and 8% of the total microbial

OTUs, respectively, while Escherichia coli accounted for 21% in the

NEC cases and 13% in controls (Figure 5).

Differential abundance analysis using LEfSe revealed that

Klebsiella pneumoniae and Klebsiella quasipneumoniae were

more prevalent in infants with NEC, whereas unclassified

Acinetobacter species were more abundant in the non-NEC

group (Figure 6).
FIGURE 1

Box and whisker plot represents alpha diversity index (a) observed
ASVs and (b) Shannon index for NEC and control groups.
FIGURE 2

Principal coordinate analysis (PCoA) plots showing the beta diversity
with (a) Bray-Curtis and (b) Jaccard measures for NEC and control
groups.
TABLE 2 PERMANOVA multivariate analysis performed based on Bray–Curtis dissimilarity distance.

Variables Df Sums of sqs R2 F.model Pr (>F)

Group (NEC Vs Control) 1 0.4336 0.0565 1.2584 0.217

Preterm (Extreme Vs Very) 1 0.2623 0.0342 0.7437 0.764

Mode of Delivery (Vaginal Vs LSCS) 1 0.6204 0.0809 1.8485 0.038

Gender (Male Vs Female) 1 0.4300 0.05607 1.2475 0.213

Birth weight (<1000 g Vs ≥ 1000 g) 1 0.3123 0.04073 0.8917 0.546
LSCS, Lower Segment Cesarean Section.
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Correlation of microbial community

The relationships between microbial communities at the genus

level were evaluated using Pearson’s correlation analysis. A strong
Frontiers in Cellular and Infection Microbiology 05
positive correlation was observed between Finegoldia and

Cutibacterium as well as between Paraburkholderia and

Clostridioides. Weak positive correlations were found between

Shigella and Klebsiella, and between Escherichia and Klebsiella.
FIGURE 3

Bar plot represents taxonomic composition of both NEC and controls at (a) phylum and (b) family level.
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Additionally, weak negative correlations were noted between

Bifidobacterium and Enterococcus and between Enterobacter and

Acinetobacter (Supplementary Figure 1).
Functional pathway analysis

Functional analysis using SEED classification revealed that

pathways associated with type IV secretion systems, conjugative
Frontiers in Cellular and Infection Microbiology 06
transfer, Enterobacterial common antigen (LPS O-antigen),

quorum sensing in Yersinia, the L-rhamnose pathway, and iron

transport systems—including ABC transporters and the Shikimate

kinase SK3 cluster—were significantly enriched in infants with NEC

compared to controls (Figures 7, 8). These pathways were

significant in both linear regression analysis and Welch’s t-test

using the STAMP tool (Supplementary Figure 2). Additionally,

genes involved in folate biosynthesis and lactose utilization were

reduced in the NEC group compared to the control group.
TABLE 3 Linear regression analysis at family levels between NEC and control groups.

Variable Coefficient SE P value Adjusted p value Abundance Prevalence

Bifidobacteriaceae -0.0182 0.9432 0.9847 0.9847 0.0417 0.2608

Corynebacteriaceae 0.2066 0.7670 0.7902 0.9659 0.01949 0.3043

Enterobacteriaceae 4.1053 1.2305 0.0031 0.0344 0.3660 0.9130

Enterococcaceae 0.07559 1.2171 0.9510 0.9847 0.3470 0.7826

Listeriaceae 0.1316 0.2551 0.6113 0.9453 0.0002 0.1304

Moraxellaceae -3.0507 1.3559 0.0353 0.1294 0.0693 0.5217

Staphylococcaceae -0.7351 1.2153 0.5517 0.9453 0.0364 0.6521

Streptococcaceae 0.9612 1.0025 0.3485 0.9453 0.0133 0.3478
FIGURE 4

Heatmap showing three prominent genera of NEC and control groups.
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Discussion

The present study identified that Enterobacteriaceae were

significantly more abundant in the stool samples of infants with

NEC. Functional analysis revealed an increased abundance of genes

involved in the biosynthesis of lipopolysaccharide (LPS) O-antigen,

the type IV secretion system (T4SS), the L-rhamnose pathway and
Frontiers in Cellular and Infection Microbiology 07
quorum sensing in the stool samples of infants with NEC. To the

best of our knowledge, this is the first study to examine gut

microbial communities using whole-genome shotgun sequencing

in Indian preterm infants with NEC.

PERMANOVA analysis demonstrated that the mode of delivery

influenced the beta diversity of the gut microbiome. However, the

differential bacterial abundance identified through linear regression
FIGURE 5

A Krona plot showing composition at species levels for NEC and controls. (a) NEC. (b) Control.
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analysis between NEC and control groups was not affected by the

mode of delivery. This is likely because the number of infants

delivered vaginally and by C-section was equal in both the NEC and

control groups.

The median gestational age of infants with NEC in our cohort

was 30.5 ± 2.17 weeks, comparable to that reported in Western
Frontiers in Cellular and Infection Microbiology 08
studies evaluating the gut microbiome in these infants, which

showed a median gestational age of 30.1 ± 2.4 weeks (Pammi

et al., 2017). No significant differences were observed between the

NEC and control groups in alpha diversity indices or beta diversity

measures. This finding is consistent with previous meta-analyses on

the subject (Pammi et al., 2017).
FIGURE 6

Bar stack plot showing LEfSe results of differential abundance at species levels between NEC and Controls (p < 0.05, LDA > 4).
FIGURE 7

Significant functional pathways between NEC and control groups. Student t test was performed.
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Differential abundance analysis at the family level revealed

elevated levels of Enterobacteriaceae and Pseudomonadaceae in

the fecal samples of infants with NEC. However, the increase in

Pseudomonadaceae did not reach statistical significance after p-

value adjustment. The overrepresentation of Enterobacteriaceae in

fecal samples from infants with NEC has been documented in

studies using both culture-based and molecular techniques (Millar

et al., 1992; Marolda and Valvano, 1995; Brower-Sinning et al.,

2014). Pseudomonadaceae has also been associated with NEC and

sepsis in preterm infants (Morrow et al., 2013; Wang et al., 2024). A

previous study demonstrated that colonization with uropathogenic

E. coli (UPEC) is associated with NEC-related mortality (76%)

(Ward et al., 2016). In contrast, the current study found that only

21% of the infants were colonized with E. coli.

Klebsiella pneumoniae and Klebsiella quasipneumoniae were the

dominant species identified in infants with NEC in our study. A

previous study found that K. pneumoniae and Klebsiella oxytoca are

associated with NEC (Paveglio et al., 2000; Thänert et al., 2024). K.

quasipneumoniae is a recently classified subspecies of K.

pneumoniae . Numerous studies have reported that K.

quasipneumoniae acquires antimicrobial resistance genes (ARGs)

and is associated with hospital-acquired infections (Mathers et al.,

2019). K. quasipneumoniae has been detected in the rectal and fecal

samples of preterm infants admitted to the neonatal intensive care

unit (NICU) (Crellen et al., 2019; Chen et al., 2020). Previous

studies showed that Clostridium neonatale and Clostridium

perfringens were associated with NEC onset (Tarracchini et al.,
Frontiers in Cellular and Infection Microbiology 09
2021). However, we did not found any association between

Clostridium and NEC in our cohort.

Functional pathway analysis revealed that pathways associated

with type IV secretion systems (T4SS), LPS O-antigen, quorum

sensing in Yersinia, the L-rhamnose pathway, and iron transport

systems including ABC transporters and the shikimate kinase SK3

cluster, were significantly increased in NEC. T4SS facilitates

horizontal gene transfer among bacteria, promoting the

dissemination of antibiotic resistance genes and the delivery of

virulence factors. The LPS O-antigen is a conserved surface antigen

found in the Enterobacteriaceae family. The increased abundance of

Enterobacteriaceae in NEC samples may result in elevated levels of

LPS antigens. LPS antigen-induced activation of Toll-like receptor 4

(TLR4) pathway is a well-characterized mechanism contributing to

intestinal inflammation and necrosis in animal models of NEC as

well as patients (Shaw et al., 2021). The L-rhamnose pathway is

involved in the synthesis of LPS O-antigen in Gram-negative

bacteria, including Enterobacteriaceae (Marolda and Valvano,

1995). The shikimate kinase SK3 pathway is crucial for the

synthesis of aromatic amino acids, such as tyrosine and

tryptophan, which are essential for bacterial growth and survival,

including in E. coli (Ely and Pittard, 1979). Moreover, shikimate

kinase is a target for the therapeutic inhibition of multi-resistant

strains, including K. pneumoniae (Li et al., 2025). Overall, the

functional pathways identified in this study highlight that

Enterobacteriaceae and their metabolic functions contribute to the

pathogenesis of NEC.
FIGURE 8

Heatmap showing differential functional pathway analysis between NEC and control groups.
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The limitations of this study include its single-center design and

small sample size. However, to our knowledge, this is the first study

in India to use a shotgun metagenomic approach to investigate the

association of gut microbiota in fecal samples of infants with NEC.
Conclusion

Enterobacteriaceae were more abundant in stool samples from

infants with NEC than infants without NEC. Differential abundance

analysis using Linear Discriminant Analysis Effect Size (LEfSe)

identified Klebsiella pneumoniae and Escherichia coli as enriched

in the gut microbiota of preterm infants with NEC. Functional

analysis revealed increased expression of genes associated with the

LPS O-antigen, the Type IV secretion system, the L-rhamnose

pathway, quorum sensing, and iron transporters, including ABC

transporters, in the NEC samples.
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