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Background: The emergence of SARS-CoV-2 led to a global pandemic. Delta
and Omicron, classified as concerning variants, differ significantly in
transmissibility, disease severity, and antibody neutralization. Delta is associated
with more severe disease, whereas Omicron is linked to increased transmissibility
yet milder disease. This study investigates plasma metabolomic differences
between Delta and Omicron infections and their associations with disease
severity and treatment response. Importantly, this work examines variant-
specific treatment metabolic effects — an aspect that remains underexplored
despite the ongoing evolution of SARS-CoV-2 variants — and thus begins to fill a
critical gap in the literature.

Methods: A total of 109 hospitalized SARS-CoV-2 patients, confirmed by RT-PCR
positivity (53 Delta, 56 Omicron), were matched by age and sex. Plasma samples
collected on hospitalization days 1, 2, and 7 were analyzed using DI/LC-MS/MS-
based (direct injection, liquid chromatography-tandem mass-spectrometry)
targeted metabolomics. We employed univariate and multivariate statistical
and pathway analyses to investigate and characterize metabolomic differences.
Results: Distinct metabolic profiles differentiated Delta and Omicron infections.
Specific metabolites, including tyrosine, asparagine, leucine, and acylcarnitines
(C3, C4, C5), significantly distinguished variants and severity groups. Delta
infections showed higher associations with severe outcomes. Corticosteroid
treatment influenced metabolic profiles, revealing associations with modulation
of metabolic and clinical responses.
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Conclusion: This study reveals significant plasma-based metabolic differences
between Delta and Omicron SARS-CoV-2 variants, potentially reflecting their
distinct clinical outcomes and severities.
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Introduction

Since the start of the COVID-19 pandemic, the Betacoronavirus
pandemicum species Severe Acute Respiratory Syndrome-related
Coronavirus-2 (SARS-CoV-2; family Coronaviridae, genus
Betacoronavirus) has evolved, mutating into multiple variants of
concern (VOC) with distinct transmissibility and severity of disease
profiles (CDC, 2024). Two of the most clinically relevant VOC are
Delta (lineage B.1.617.2) (Gomari et al., 2023) and Omicron (lineage
B.1.1.529) (Dhawan et al,, 2022), which emerged at different times and
spread rapidly worldwide (Chan, 2022). Delta, identified in India in
April 2021, demonstrated higher disease severity and hospitalizations,
whereas Omicron, discovered in South Africa in November 2021,
showed increased transmissibility but lower severity (Chan, 2022;
Chavda et al,, 2022). Data from Canada reflects these observations,
with Delta resulting in a greater proportion of mechanically ventilated
patients among hospitalized patients and Omicron producing a higher
absolute case count, yet fewer mechanically ventilated cases in
proportion to total hospitalizations (Canada Go, [[NoYear|]).

Several factors influence clinical outcomes of these variants,
including mutations in the spike protein. Treatment and vaccination
status also significantly influence clinical trajectories (Abdool Karim de
Oliveira, 2021; Chan, 2022). Corticosteroids (e.g., dexamethasone)
reduce hyperinflammatory responses and mortality in severe
to critical COVID-19 cases (News, 2020), while vaccines
significantly decrease COVID-19-related severity outcomes (Canada.
Go, [[NoYear]]; Canada Go, [[NoYear]]; Canada IPaC, [[NoYear]]).
Despite these benefits, the timing and nature of interventions, especially
during different variant waves, may lead to distinct metabolic effects that
remain poorly characterized but may help to understand the differential
clinical responses seen in these variants. Because metabolomics captures
the host biochemical state, the contrasting clinical phenotypes of Delta
and Omicron provide a clear rationale to test whether these variants
produce distinct plasma metabolomic signatures.

Metabolomics investigates small molecules (<1000 Da) in
biofluids or tissues, providing insights into COVID-19
pathophysiology (Wishart, 2019). Key findings include disruptions
in amino acid metabolism (particularly the tryptophan-kynurenine
pathway), lipid metabolism and energy metabolism, linked to
immune responses and disease progression (Alboniga et al., 2022;
Liuetal, 2022; Lodge et al., 2023). Several metabolic biomarkers have
been identified for diagnosis and prognosis. For instance, cytosine
and AMP have been proposed as diagnostic biomarkers, while
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hexosylceramides and the arginine/kynurenine ratio have been
associated with prognostic outcomes (Blasco et al., 2020; Fraser
et al,, 2020). Additionally, metabolic changes correlate with multi-
organ dysfunction, particularly liver and kidney alterations (Cornillet
et al.,, 2022; Gama-Almeida et al.,, 2023).

Metabolomics has contributed to predictive models and
therapeutic strategies, such as modulation of the kynurenine
pathway, and highlights sex-specific metabolic variations (Fraser
et al, 2020; Ghini et al, 2023; Lima et al, 2024). By leveraging
techniques like liquid chromatography-mass spectrometry (LC-MS/
MS) (Xiao et al, 2012) and direct injection-mass spectrometry (DI-
MS/MS) (Boccard et al., 2010), researchers can capture the biochemical
status of patients at a point in time. Prior work has shown that severe
COVID-19 is often associated with elevated phenylalanine,
kynurenine, and glucose (Rahnavard et al., 2022), suggesting
hyperinflammatory and energy-intensive processes. Moreover, SARS-
CoV-2 infection may cause long-lasting metabolic perturbations, as
seen in cases of long COVID (Blasco et al,, 2020; Fraser et al., 2020).

Importantly, as SARS-CoV-2 continues to evolve, most recently
with the NB1.8.1 lineage under close monitoring — there is an
urgent need for variant-specific therapeutic metabolomics data. Few
studies to date have integrated metabolomic insights directly into
treatment stratification across evolving VOCs.

Within this framework, we aimed to investigate whether the
differences in transmissibility and severity of Delta and Omicron
SARS-CoV-2 variants manifest distinct plasma metabolomic profiles,
potentially revealing pathways underlying disease mechanisms.
Furthermore, we sought to determine whether corticosteroid therapy
and vaccination modify the plasma metabolic signatures of Delta and
Omicron infections, and whether these metabolic effects help explain
the differential clinical responses.

Materials and methods
Study ethics approval and patient selection

This study was approved by the Conjoint Health Research Ethics
Board (CHREB) at the University of Calgary (Ethics ID: REB23-
0457_RENI). Additionally, ethics approval for the collection and use
of plasma samples from the Biobanque Quebécoise de la COVID-19
(BQC-19) was reviewed and approved by the Research Ethics Board of
the Center Hospitalier de 'Universitée de Montréal (REB-CHUM). The
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BQC-19, a decentralized biobank managed by McGill University and the
Research Institute of the McGill University Health Centre (RI-MUHC),
contains data and biological specimens from approximately 3,000
COVID-19 patients in Quebec, Canada. Plasma samples from 109
hospitalized patients were included in this study, with 53 infected with
the SARS-CoV-2 Delta variant and 56 with the Omicron variant,
manually matched by age (+ 5 years) and sex using an Excel spreadsheet.

Inclusion criteria required patients to (1): be hospitalized with
confirmed COVID-19 infection via real-time polymerase chain
reaction (RT-PCR) (2), be aged =18 years (3), provide consent to
participate in the biobank and related studies, and (4) be categorized by
severity groups using the NIH classification criteria, as well as
vaccination status following the criteria established by the
Government of Canada for complete and incomplete vaccination
(Canada Go, 2023). Vaccine product/brand was not uniformly
available across participants; therefore, vaccination was analyzed as
completeness (=2 vs. <2 doses). Among the subset with product
information, most received mRNA vaccines—Pfizer-BioNTech (n=20)
or Moderna (n=6)—with fewer adenoviral-vector (AstraZeneca/
Covishield; n=2) or protein-subunit (Novavax; n=1) products.
Exclusion criteria included (1): patients testing negative by RT-PCR
(2), patients or surrogates unwilling to participate in the biobank and
studies (3), patients <18 years old, and (4) patients who did not have a
plasma sample from day 1 and at least one from either day 2 or day 7.

Sample collection

Blood samples were collected in acid citrate dextrose (ACD)
tubes, then centrifuged at 850xg for 10 minutes at room
temperature. Plasma was transferred into 500 pL and 250 pL
aliquots and stored at —80°C. Samples were drawn on days 1, 2,
and 7 of hospitalization, resulting in a total of 302 plasma samples
(144 Delta, 158 Omicron) used in this study. Of these, 109 were
collected on day 1 (53 Delta, 56 Omicron), 103 on day 2 (52 Delta,
51 Omicron), and 90 on day 7 (39 Delta, 51 Omicron). Aliquots
were shipped on dry ice to the Critical Care Epidemiologic and
Biologic Tissues Resource (CCEPTR, a tissue bank) at the
University of Calgary for management and further processing.

Sample preparation for metabolomics
analysis

All samples were stored at —80°C immediately upon arrival at
the University of Calgary. At the University of Calgary, the samples
were thawed on ice, and 100 pL aliquots were re-labeled, refrozen at
-80°C, and then shipped on dry ice for metabolite quantification. All
sample management followed biosafety level 2 protocols.

For organic acid, amino acid and lipid quantifications, procedures
are provided in the Methods section of the Supplementary Material.

Mass spectrometry analysis

A total of 143 metabolites were measured using LC-MS/MS and
DI-MS/MS (Supplementary Table S1).
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For mass spectrometry analysis and data processing details, see
the Methods section of the Supplementary Material.

Statistical analyses

Initially, a univariate analysis for each metabolomic and
demographic variable was conducted. For continuous variables,
the data were summarized using the mean and standard
deviation. Group comparisons between two categories were
performed using the Wilcoxon rank-sum test. For categorical
variables, frequencies and percentages were presented, and group
differences were assessed using either the chi-square or Fisher’s
exact test, selected based on cell counts. Statistical significance was
determined at a p-value of less than 0.05. Furthermore, a two-way
analysis of variance (ANOVA) was employed to understand the
main and interaction effects of the two factors.

Subsequently, multivariate analyses were conducted. Principal
component analysis (PCA) was used to identify potential outliers
and inherent data structures. For exploratory data visualization, a
heatmap was created, and hierarchical clustering was carried out
using Euclidean distance as the similarity metric and Ward’s linkage
for cluster aggregation. To clarify group discrimination and identify
key metabolites, partial least squares discriminant analysis (PLS-DA)
was employed. The R2 and Q2 statistics were applied to evaluate the
model’s explanatory and predictive powers, respectively. Finally,
pathway analysis was performed using over-representation
analysis. All statistical procedures were carried out using
MetaboAnalyst 6.0.

Results
Clinical and demographic characteristics

A total of 109 patients were enrolled in this study, comprising
53 individuals infected with the Delta variant and 56 with the
Omicron variant (Table 1). The median age was 61.3 years for Delta
and 59.3 years for Omicron, with no statistically significant
difference (p=0.794) in age. Similarly, the sex distribution was
alike between the two groups because they were matched by sex
(66% male in Delta vs. 67.9% in Omicron; p=1.00). This match was
purposefully designed to reduce confounding metabolomic
variability, given the influence of age and sex on metabolites
(Costanzo et al., 2022).

Hospital stay duration differed significantly: the Omicron group
had a longer median stay (20 days; IQR = 13.25-31) than the Delta
group (15 days; IQR = 9.00-22.00, p = 0.013). Although ICU
admission rates were similar (47.2% Delta vs 50% Omicron, p =
0.921), NIH-based severity classification revealed that Delta patients
had a greater proportion of severe and critical cases combined
(71.7%) compared to Omicron (50.0%, p=0.133). Conversely,
Omicron exhibited a higher rate of mild and moderate cases
(50.0%) compared to Delta patients (28.3%, p=0.033). Complete
vaccination (=2 doses) was more common in Omicron cases
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TABLE 1 Patient’s demographics.

10.3389/fcimb.2025.1649724

Characteristics Category | Overall (h=109) Delta (h=53) Omicron (n=56) P-value* Missing (%)
61.30 [45.10,
Age (median[IQR]) 59.70 [46.50, 71.30] 71 [30] 59.30 [47.60, 69.30] 0.794
Female 36 (33.0) 18 (34.0) 18 (32.1)
Sex (%) 1
Male 73 (67.0) 35 (66.0) 38 (67.9)
Days in hospital
17 [10.50, 24.50] 15 [9.00, 22.00] 20 [13.25, 31.00] 0.013 2 (1.8)
(median [IQR])
Non-ICU 55 (51.4) 28 (52.8) 27 (50)
ICU (%) 0.921 2(1.8)
ICU 52 (48.6) 25 (47.2) 27 (50)
Mild 22 (20.2) 6 (11.3) 16 (28.6)
Moderate 21 (19.3) 9 (17.0) 12 (21.4)
NIH-based severity (%) 0.001
Severe 41 (37.6) 30 (56.6) 11 (19.6)
Critica 25 (22.9) 8 (15.1) 17(30.4)
mild+mod 43 (39.4) 15 (28.3) 28 (50.0)
Severity (%) 0.034
sev-+crit 66 (60.6) 38 (71.7) 28 (50.0)
<2 vaccines 17 (27.9) 13/31 (41.9) 4/30 (13.3)
Vaccination (%) 0.042 48 (43.1)
>2 vaccines 44 (72.1) 18/31 (58.1) 26/30 (86.7)
Not 30 (27.5% 11 (20.8 19 (33.9
Systemic corticosteroid use administered (27.5%) (20.8) (339)
0.185
(%)
Administered 79 (72.5%) 42 (79.2) 37 (66.1)
Not
. 85 (78.0 42 (79.2 43 (76.8
Remdesivir use administered (78.0) (792) (76.8) 0.937
(%) .
Administered 24 (22.0) 11 (20.8) 13 (23.2)
Not
dminitered 85 (78.0) 33 (623) 52 (92.9)
Tocilizumab (%) administere <0.001
Administered 24 (22.0) 20 (37.7) 4(7.1)
Not
dmi ,0 4 109 (100.0) 53 (100.0) 56 (100.0)
Rivabirin (%) administere NA
Administered 0 (0.0) 0 (0.0) 0 (0.0)
Not
dmi F) 4 109 (100.0) 53 (100.0) 56 (100.0)
Lopinavir (%) administere NA
Administered 0 (0.0) 0 (0.0) 0 (0.0)

*p-value obtained from Chi-square test of independence and Fisher’s exact test when frequencies were less than 5. NA, not appropriate

(86.7%) than in Delta (58.1%, p = 0.145), whereas fewer than two
doses were observed in 41.9% of Delta versus 13.3% of Omicron
patients (p = 0.026). Corticosteroid usage rates were high overall
(79.2% Delta vs. 66.1% Omicron, p=0.326), while tocilizumab
administration differed significantly (37.7% in Delta vs. 7.1% in
Omicron, p=0.001) (Table 1).

Plasma metabolomic differences between
Delta and Omicron patients

Twenty-two metabolites were significantly altered (p<0.05) in the
plasma of Delta-infected patients compared to those infected
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with Omicron. Among these, metabolites with increased
median concentrations in Delta relative to Omicron included
asparagine, asymmetric dimethylarginine, decanoylcarnitine (C10),
propionylcarnitine (C3), butyrylcarnitine (C4), hydroxybutyrylcarnitine
(C40H), valerylcarnitine (C5), glutamine, isoleucine, leucine,
lysophosphatidylcholine acyl (LysoPC a) Cl18:2, LysoPC a C20:3,
LysoPC a C20:4, phosphatidylcholine diacyl (PC aa) C38:6, PC aa
C40:6, threonine, and tyrosine. Conversely, aspartic acid,
octadecenoylcarnitine (C18:1), homocysteine, and taurine exhibited
decreased median concentrations in Delta relative to Omicron (see
Supplementary Table S1.1 for day-specific fold changes). For an
overview of all the metabolites significantly altered between variants,
refer to Supplementary Figure S1A.
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Figure 1 provides a visual representation of these metabolomic
differences between Delta and Omicron-infected patient plasma
metabolites. Panel A shows the boxplots of the most significantly
altered metabolites between the Delta and Omicron variants on days 1,
2 and 7 of hospitalization, emphasizing the variant differences. Panel B
is a principal component analysis (PCA) showing the metabolic

10.3389/fcimb.2025.1649724

clustering between the groups, in Delta and Omicron patient plasma.
Overall, as expected, there is a great deal of overlap between the
cohorts, but there are visible differences between them. There are also
inherent differences within the cohorts, which are likely due to the
inherent heterogeneity within the patient cohorts, including factors
such as disease severity, comorbidities, and metabolic responses.
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FIGURE 1

Metabolomic differences between Delta and Omicron SARS-CoV-2 variants.

(A) Boxplots showing the most significantly altered plasma metabolites

differentiating Delta and Omicron variants on days 1, 2 and 7 of hospitalization. (B) PCA illustrating metabolic clustering of Delta and Omicron
variants on days 1, 2 and 7. There is considerable overlap of the two variants, but there are also visible differences.
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Metabolomic profiling associated with COVID-19 severity in Delta and Omicron infected individuals. (A) Boxplots representing the most significant
metabolite changes differentiating mild/moderate (mM) from severe/critical (SC) cases on days 1, 2 and 7 of hospitalization. (B) Heatmap illustrating
the top 50 metabolites distinguishing between critical, severe, moderate, and mild cases in all days of hosptilization (1, 2 and 7) characterizing their

distinct metabolic signatures.

Pathway analysis incorporated all metabolites that showed a
significant difference between the Delta and Omicron variants on
days 1, 2 and 7 (Supplementary Figure S2A; Supplementary Table S2).
The top pathways with the greatest impact scores related to these
variant differences, in descending order, were phenylalanine, tyrosine,
and tryptophan biosynthesis; taurine and hypotaurine metabolism;
alanine, aspartate, and glutamate metabolism; tyrosine metabolism;
and cysteine and methionine metabolism. Whereas, the most
statistically significant pathways, listed in descending order, were
valine, leucine, and isoleucine biosynthesis; arginine biosynthesis;
alanine, aspartate, and glutamate metabolism; valine, leucine, and
isoleucine degradation; and phenylalanine, tyrosine, and tryptophan
biosynthesis pathways.

Severity-based metabolite differences

Thirty-two metabolites were significantly altered (p<0.05) in
the plasma of the severe and critical group (SC) compared to the
mild and moderate (mM) group. Metabolites with increased
median concentrations in SC group included alanine, alpha-
aminoadipic acid, asparagine, carnitine (C0), C3, C4, C5,
creatine, fumaric acid, glutamine, homovallinic acid, kynurenine,
lactic acid, leucine, lysine, LysoPC a C20:4, methionine,
methionine-sulfoxide, ornithine, PC aa C32:2, phenylalanine,
pyruvic acid, succinic acid, threonine, tryptophan, tyrosine, and
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valine. Conversely, acetyl-ornithine, homocysteine, and trans-
hydroxyproline exhibited decreased median concentrations in the
SC group compared to the mM group. For an overview of all
metabolites significantly altered between severity groups, refer to
Supplementary Figure S1B.

Figure 2 provides a comprehensive visualization of these
severity-based metabolomic differences. Panel A displays boxplots
of the most significantly altered metabolites between mild/moderate
(mM) and severe/critical (SC) cases on days 1,2 and 7 of
hospitalization, emphasizing their potential role in disease
progression. Panel B presents a heatmap displaying the metabolic
profiles across COVID-19 severity groups (critical, severe,
moderate, mild), highlighting significant variations in metabolite
levels associated with disease severity. Critical cases (marked in red)
exhibit a unique metabolic signature compared to less severe cases,
reflecting profound metabolic disruptions linked to critical illness.
The hierarchical clustering analysis groups metabolites with similar
expression patterns, revealing clusters of lipid metabolites (e.g., PC
aa C36:0, LysoPC C18:0) that are predominantly altered in severe
and critical cases. Additionally, amino acids and intermediates
related to energy metabolism (e.g., kynurenine, methionine,
tyrosine) are distinctly elevated in critically ill patients, indicating
metabolic stress and dysregulation of amino acid metabolism. The
clustering patterns emphasize co-regulated metabolites that may
play critical roles in the pathophysiology of severe COVID-19 and
serve as potential biomarkers for disease severity.
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Figure 3 illustrates distinct metabolic signatures associated with
SARS-CoV-2 variants (Delta and Omicron) and disease severity
(mild to severe) over three time points (Days 1, 2 and 7). Critical
cases exhibit substantial upregulation of lipids (e.g., LysoPC and SM
species) and amino acids (e.g., lysine, methionine, tyrosine)
compared to milder cases. Metabolite clustering reveals
coordinated regulation patterns, highlighting potential biomarkers
that differentiate variant types and disease severity, reflecting the
dynamic metabolic alterations over time.

Furthermore, the metabolic interaction effects of severity (m+M
and S+C) and SARS-CoV-2 variants (Delta and Omicron) were
assessed. A comprehensive summary of the two-way ANOVA
results for days 1, 2 and 7 are provided in Supplementary
Table 3. Fifteen metabolites demonstrated significant interaction
effects, Pr (>F) 3, p <0.05, including asymmetric dimethylarginine,
betaine, creatine, creatinine, fumaric acid, isoleucine, leucine, lysine,
LysoPC C18:0, methylhistidine, PC aa C38:0, spermidine, spermine,
total dimethylarginine, and valine (Supplementary Figure S3).

Finally, pathway analysis included all significantly altered
metabolites associated with COVID-19 severity between the Delta
and Omicron variants on days 1, 2 and 7 (Supplementary Figure S2B;
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Supplementary Table S2). The pathways with the greatest impact on
severity, in descending order, were phenylalanine, tyrosine, and
tryptophan biosynthesis; alanine, aspartate, and glutamate
metabolism; phenylalanine metabolism; cysteine and methionine
metabolism; and tryptophan metabolism. In contrast, the most
statistically significant pathways, also listed in descending order, were
alanine, aspartate, and glutamate metabolism; arginine biosynthesis;
valine, leucine, and isoleucine biosynthesis; citrate cycle (TCA cycle);
and phenylalanine, tyrosine, and tryptophan biosynthesis.

Effects of corticosteroid treatment on
plasma metabolites in Delta and Omicron-
infected individuals

A comprehensive summary of the metabolite profiles affected
by corticosteroid treatment, categorized as non-corticosteroid use
and corticosteroid use on days 1, 2 and 7 of hospitalization, is
provided in Supplementary Figure 1C. Supplementary Figure S1C
illustrates the significant median changes in metabolomic
concentrations associated with corticosteroid use.
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Metabolomic differences associated with corticosteroid treatment in COVID-19 patients. (A) Boxplots depicting the most significant plasma
metabolite alterations between corticosteroid-treated (Cort.) and non-treated (Non-cort.) patients at days 1, 2 and 7 of hospitalization, stratified by
SARS-CoV-2 variant (Delta and Omicron). (B) Heatmap analysis illustrating hierarchical clustering and metabolic signatures of the top 40 metabolites
differentiating patients treated with corticosteroids from those without corticosteroid treatment across the three sampling days.

Twenty-six metabolites were significantly altered (p<0.05) in the
plasma of the corticosteroid use group compared to the non-
corticosteroid use group. Metabolites with increased median
concentrations in the treated group included alanine, alpha-
aminoadipidic acid, asparagine, beta-hydroxybutyric acid, C3, C4,
C5, fumaric acid, glutamine, leucine, lysine, methionine, PC aa C32:2,
phenylalanine, SM (OH)C14:1, SM(OH)C22:1, threonine,
tryptophan, tyrosine, and valine. In contrast, acetyl-ornithine,
asymmetric dimethylarginine, indole acetic acid, LysoPC a C18:0,
and total dimethylarginine showed decreased median concentrations
in the corticosteroid use group compared to the non-corticosteroid
use group.

In Figure 4B, a heatmap illustrates the hierarchical clustering of
metabolites based on their abundance in COVID-19 patients receiving
corticosteroids and those who did not receive corticosteroids at three
time points (Days 1, 2 and 7) of the study for both Delta and Omicron
variants. The color gradient ranges from blue to red, indicating low and
high metabolite abundance, respectively. Clustering patterns reveal
metabolic differences linked to corticosteroid treatment and variant
type. Patients who received corticosteroids show a marked increase in
certain metabolites, such as lipids (e.g,, LysoPC and SM species) and
amino acids (e.g, lysine and methionine), compared to patients who did
not receive corticosteroids, implying a significant metabolic effect of
corticosteroid therapy. Furthermore, alterations in metabolic pathways
influenced by treatment and variant type result in clusters of coordinated
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metabolites. These findings suggest that corticosteroid administration
may elicit different metabolic responses in SARS-CoV-2 variants and
could serve as potential therapeutic and prognostic biomarkers.

Moreover, the metabolic interaction effects of corticosteroid use
(non-corticosteroid use and corticosteroid use) and SARS-CoV-2
variant (Delta and Omicron) were evaluated. A comprehensive
summary of the two-way ANOVA results from days 1, 2 and 7 is
provided in Supplementary Table 4. Fourteen metabolites
demonstrated significant interaction effects, Pr (>F) 3, p-value <0.05
which included: CO, C4, glycine, homocysteine, indole acetic acid,
kynurenine, LysoPC a C14:0, LysoPC a C18:1, PC aaC36:0, PC aa
C40:1, phenylalanine, hydroxyhippuric acid, hydroxysphingomyeline
C24:1, and taurine (Supplementary Figure S4).

Pathway analysis incorporates all significant metabolites
associated with corticosteroid treatment, comparing Delta and
Omicron variants on days 1, 2 and 7 (Supplementary Figure S2C;
Supplementary Table S2). The pathways exhibiting the greatest
impact, in descending order, included phenylalanine, tyrosine, and
tryptophan biosynthesis; phenylalanine metabolism; tyrosine
metabolism; alanine, aspartate, and glutamate metabolism; and
tryptophan metabolism. In contrast, the most statistically
significant pathways, also listed in descending order, were alanine,
aspartate, and glutamate metabolism; arginine biosynthesis; valine,
leucine, and isoleucine biosynthesis; phenylalanine, tyrosine, and
tryptophan biosynthesis; and phenylalanine metabolism.
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FIGURE 5

Metabolomic differences between completely vaccinated and incompletely vaccinated COVID-19 patients. (A) Boxplots of the most significantly
altered metabolites between completely vaccinated and incompletely vaccinated groups on days 1, 2 and 7 of hospitalization. (B) Heatmap
displaying hierarchical clustering of metabolite abundance between groups, with a color gradient representing relative metabolite levels (red = high,
blue = low). Distinct clustering patterns suggest metabolic differences influenced by vaccination status.

Effects of vaccination on plasma
metabolites in Delta and Omicron infection

A comprehensive summary of the metabolite profiles affected
by vaccination, categorized as incomplete and complete
vaccination, on days 1, 2 and 7 of hospitalization, is provided in
Supplementary Figure 1D. Supplementary Figure S1D illustrates the
significant median changes in metabolomic concentrations
associated with vaccination.

Twenty-three metabolites were significantly altered (p<0.05) in
the plasma of the completely vaccinated group compared to the
incompletely vaccinated group. Metabolites with increased median
concentrations in the completely vaccinated group included acetyl-
ornithine, C10:1, C40H, citrulline, glycine, isobutyric acid,
propionic acid, taurine, hydroxyproline and uric acid. Conversely,
alpha-aminoadipic acid, ketoglutaric acid, asparagine, C3, C4,
lysine, LysoPC a C26:1, methionine, PC aa C36:6, proline, pyruvic
acid, SM C20:2, and threonine showed decreased median
concentrations in the completely vaccinated group compared to
the incompletely vaccinated group.

Figure 5 provides a comprehensive visualization of the
metabolomic differences between vaccination groups. Figure 5A
displays boxplots of the most significantly altered metabolites
between completely vaccinated and incompletely vaccinated cases
on days 1, 2 and 7 of hospitalization. Figure 5B depicts a heatmap of
the top 40 metabolites, illustrating clustering patterns based

on vaccination.
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Furthermore, the metabolic interaction effects of vaccination
status (complete vaccination and incomplete vaccination) and
SARS-CoV-2 variant (Delta and Omicron) were evaluated. A
comprehensive summary of the two-way ANOVA results from
days 1, 2 and 7 are provided in Supplementary Table 5. Three
metabolites demonstrated significant interaction effects, Pr (>F) 3,
p-value <0.05, which included: taurine, C7DC, and C5DC
(Supplementary Figure S5).

Finally, pathway analysis incorporates all significant metabolites
associated with vaccination status, comparing Delta and Omicron
variants on days 1, 2 and 7 (Supplementary Figure S2D, see
Supplementary Table S2). The pathways exhibiting the greatest
impact, in descending order, included glycine, serine, and threonine
metabolism; arginine biosynthesis; alanine, aspartate and glutamate
metabolism; arginine and proline metabolism; and lipoic acid
metabolism. In contrast, the most statistically significant
pathways, also listed in descending order, were arginine
biosynthesis; alanine, aspartate, and glutamate metabolism; lipoic
acid metabolism; glycine, serine and threonine metabolism; and
arginine and proline metabolism.

Discussion

Comparative analysis of the metabolomic profiles between the
Delta and Omicron variants identified distinct metabolic changes
associated with each variant. Specifically, the Delta variant led to
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increased concentrations of amino acids, ACs, and LysoPCs,
whereas Omicron infection was characterized by elevated levels of
aspartic acid, homocysteine, and taurine. Despite considerable
overlap in metabolic signatures shared by both variants, pathway
enrichment analysis indicated variant-specific biochemical
perturbations, particularly within amino acid metabolism pathways.

Further, disease severity markedly impacted metabolism, with
severe and critical COVID-19 cases exhibiting significant changes
related to energy metabolism, immune dysregulation, and protein
degradation (Caterino et al., 2021; Roberts et al., 2023). Increased
concentrations of alanine, kynurenine, and branched-chain amino
acids (BCAAs; leucine, isoleucine, and valine) suggest enhanced
protein catabolism and altered immune function (Caterino et al.,
2021). Corticosteroid therapy further modified metabolic profiles,
elevating alanine, glutamine, and tryptophan while lowering
acetylornithine. These observations suggest adaptive metabolic
responses to immune modulation and altered energy metabolism
(Caterino et al., 2021; Roberts et al., 2023), reinforcing the concept
that host metabolic reactions are influenced by the viral variant,
disease severity, therapeutic intervention, and individual
host factors.

Clinically, we observed variations in hospitalization duration
and disease severity between variants. Although Omicron-infected
individuals had a longer median hospital stay, Delta cases presented
a higher incidence of severe and critical outcomes. The increased
severity in Delta-infected patients likely arises from the
development of diffuse alveolar damage (DAD) or acute
hypoxemic respiratory failure and lower complete vaccination
rates, predisposing them to greater inflammatory responses and
metabolic disruptions (Fall et al., 2022; Jeican et al., 2023).
Conversely, the milder clinical presentations associated with
Omicron infections—potentially reflecting higher complete
vaccination rates and inherently reduced pathogenicity of the
variant (Balint et al., 2022) aligned with metabolomic profiles
indicative of lower systemic inflammation and metabolic stress.

Our findings corroborate earlier metabolomic analyses of
COVID-19, highlighting shared metabolic abnormalities during
disease progression and viral infection. Consistent with previous
research, our study underscores the significance of amino acid
metabolism, energy metabolism, and lipid dysregulation in
COVID-19 pathogenesis. Both our results and referenced studies
identified elevated kynurenine levels in severe cases, confirming the
involvement of tryptophan metabolism in immune modulation
(Blasco et al., 2020). Additionally, altered BCAA concentrations
suggest roles in protein degradation and immune function (Cruzat
et al.,, 2018; Rahnavard et al., 2022).

Corticosteroid treatment, more frequently used in severe Delta
cases due to intense inflammatory responses, significantly altered
inflammatory-related metabolites compared to Omicron cases (van
Paassen et al., 2020; Horby et al., 2021; Neufeldt et al., 2022).
Corticosteroid administration produced distinct metabolic signatures,
characterized by increased methionine, glutamine, phenylalanine, and
alanine—indicators of protein catabolism and gluconeogenesis—and
decreased acetylornithine levels, implying effects on the urea cycle and
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nitrogen balance (Chung et al., 2015; Williams, 2018; Imoto et al,
2022). These biochemical alterations reflect the catabolic state induced
by corticosteroids, emphasizing the importance of tailoring therapeutic
strategies to manage associated metabolic effects.

Metabolomic comparisons of SARS-CoV-2 variants further
explored how specific metabolite alterations affect host immune
functions and disease progression. The Delta variant prominently
disturbed amino acid metabolism, particularly arginine,
glutathione, and tryptophan pathways, contributing to
inflammation and oxidative stress (Lee et al., 2024; Rajaiah et al,
2024). Delta has also been shown to promote hyperglycemia and
altered glucose transporter expression, facilitating viral propagation
(Rochowski et al., 2024).

Hyperglycemia and advanced glycation end-products (AGEs)
enhanced viral entry and oxidative stress (Michaels et al., 2024).
While Delta exhibits more severe metabolic effects, Omicron evades
the immune system through different metabolic mechanisms
(Chan, 2022). These findings indicate that variant-specific
metabolic phenotypes can provide crucial biomarkers for
COVID-19 severity assessment and therapeutic interventions.

Temporal analysis revealed distinct metabolic alterations
corresponding to infection progression. Early (day 1) increases in
asparagine, glutamine, LysoPCs, and threonine, particularly in
Delta infections, indicate initial immune activation and
inflammation, as glutamine supports lymphocyte proliferation
and LysoPCs mediate inflammatory signaling (Cruzat et al., 2018;
Qaradakhi et al., 2020; Tan et al., 2020; Li et al., 2021; Jin et al,,
2023). By day 2, metabolic adaptations were evident through altered
threonine, homocysteine, oleic acid (C18:1), and propionic acid
(C3) levels, implicating ongoing protein synthesis, oxidative stress
management, and immune regulation (Tang et al., 2021). Persistent
alterations in acetylornithine underscore sustained metabolic stress
and urea cycle disruption in SARS-CoV-2 infection.

By day 7, metabolite profiles further diverged, particularly in
Delta cases, displaying significant elevations in metabolites such as
C4, C40H, PC ae C40:6, capric acid (C10), tyrosine, asymmetric
dimethylarginine (ADMA), and valeric acid (C5). These changes
likely reflect prolonged inflammatory responses and metabolic
stress, potentially explaining worse clinical outcomes in Delta
infections (Nie et al., 2018; Al-Mekhlafi et al., 2021; Jung et al.,
2021; Pimentel et al., 2024). Pathway analyses underscored
disruptions in alanine, aspartate, glutamate metabolism,
phenylalanine, tyrosine, tryptophan biosynthesis, and taurine
metabolism pathways, highlighting their roles in energy demand,
neurotransmitter synthesis, immune modulation, and oxidative
stress management (Cruzat et al,, 2018; Qaradakhi et al.,, 2020;
Tan et al., 2020; Li et al.,, 2021; Jin et al., 2023).

Despite these compelling insights, limitations warrant
acknowledgment. Exclusion of certain critical metabolites due to
targeted analysis and sample collection constraints (use of acid citrate
dextrose (ACD) tubes for sample collection), limits examination of
some metabolites. A predominantly male population (67%) and
significant missing vaccination data (43.1%) constrain vaccine-related
generalizability. Additionally, the absence of a SARS-CoV-2 PCR-
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negative control group precludes direct comparison with uninfected
individuals. Further research involving larger and diverse cohorts is
needed to validate these observations.

There are also additional limitations related to potential
confounders (eg., diet), and selection bias inherent to a non-random,
retrospective design. Comorbidity burden (e.g., diabetes, chronic
kidney/liver, cardiovascular or chronic lung disease, obesity) may
prolong recovery and length of stay (LOS). Baseline comorbidity
data were unavailable, and the “condition” variables captured largely
represent in-hospital events (some possibly present on admission).
Because these conditions can influence the metabolome and may lie on
the causal pathway, we treated them as outcomes rather than covariates
to avoid over-adjustment. Accordingly, we report their between-variant
differences as exploratory, unadjusted risk differences (Supplementary
Figure S6) with full counts and 95% confidence intervals (CIs)
(Supplementary Table S6), whereas our primary mortality inference
is based on a covariate-adjusted Cox model using only baseline
admission covariates (Supplementary Table S7). Another limitation is
that patient-level viral-load data were unavailable, therefore some
metabolite differences may reflect viral-load variation rather than
purely variant effects.

Despite these limitations we believe this work contributes to the
understanding of metabolomic signatures in Delta and Omicron
infections. Further detail is provided in the Limitations
Supplementary Material.

Conclusion

In summary, this study shows that SARS-CoV-2 variants induce
distinct clinical and metabolic responses. Delta infections were
characterized by increased severity and prolonged metabolic
stress compared to Omicron, reflecting variant-specific
pathophysiological mechanisms. Importantly, the interplay
between vaccination status and corticosteroid use emerged as an
important factor influencing these metabolomic alterations. Higher
vaccination rates in Omicron cases were associated with moderated
metabolic profiles, while the therapeutic impact of corticosteroids
varied considerably between variants. These findings not only
deepen our understanding of the metabolic disruptions
underlying COVID-19 severity but also show potential metabolic
targets for therapeutic intervention. This work paves the way for
tailored diagnostic and treatment strategies, showing the need for
variant-specific approaches to optimize patient outcomes in the
evolving landscape of ongoing COVID-19.
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