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Fungal infections pose a significant threat to human health, particularly in

immunocompromised individuals, driving a sustained increase in the demand

for effective antifungal agents. These agents can be classified into several

categories based on their mechanisms of action and chemical structures,

including inhibitors of sterol synthesis, cell wall synthesis, DNA synthesis, and

cell membrane function. Each class exerts its antifungal effects through distinct

molecular pathways that disrupt fungal cell growth and reproduction. However,

the clinical utility of current antifungal therapies is hindered by challenges such as

the emergence of drug resistance, limited antifungal spectra, and adverse side

effects. Consequently, the development of safe and efficacious antifungal agents

remains a pressing need. This review provides a comprehensive overview of the

classification and molecular mechanisms of antifungal drugs, discusses the

current challenges in antifungal therapy, and explores potential strategies for

future drug development, aiming to inform and advance antifungal research

and treatment.
KEYWORDS

fungal infections, antifungal resistance, antifungal agents, drug development,

drug design
1 Introduction

The incidence of fungal infections has significantly increased in recent years, ranging

from mild allergic reactions to potentially life-threatening invasive fungal diseases (IFDs)

(Kronstad et al., 2011; Stop neglecting fungi, 2017; Almeida et al., 2019; Fisher and

Denning, 2023; Denning, 2024). Globally, over one billion people worldwide are affected by

fungal infections each year, among whom more than 6.55 million suffer from fungal

diseases that threaten their lives immediately (Denning, 2024). Such infections not only

seriously damage the quality of life of patients, but also impose a heavy burden on the global

healthcare system (Bongomin et al., 2017; Denning, 2024; Iliev et al., 2024).

In the battle against human pathogenic fungi, antifungal drugs have emerged as

indispensable tools. Currently, the treatment of invasive fungal infections relies exclusively

on three main classes of antifungal drugs: polyenes, azoles, and echinocandins (Perfect,
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2017). Consequently, the development of resistance by pathogenic

fungi to any one of these drug classes would drastically narrow the

range of available clinical treatment options. From a market

perspective, the demand for antifungal drugs continues to rise:

The market is expected to expand at a compound annual growth

rate (CAGR) of 2.81% from 2020 to 2033, with a size of 14.09 billion

US dollars in 2024, expected to rise to 14.48 billion US dollars in

2025, and reach 18.08 billion US dollars by 2033 (Figure 1)

(Insights, 2025).However, the development and application of

antifungal drugs face numerous challenges (Fisher et al., 2018;

Iyer et al., 2021). Notably, with the increasing clinical utilization

of antifungal drugs, the problem of fungal drug resistance has

become increasingly prominent (Fisher et al., 2018; Vitiello et al.,

2023; Iliev et al., 2024). The resistance rates of some fungi to existing

antifungal drugs have risen significantly, directly resulting in

treatment failures (Fisher et al., 2022; Antimicrobial resistance: a

silent pandemic, 2024). Moreover, current drugs may suffer from

inadequate selectivity for specific fungal species and significant side

effects, which limits their widespread clinical use (Puumala

et al., 2024).

With advancements in molecular biology and medicinal

chemistry, research on antifungal drugs has been continuously

progressing. New strategies for the development of antifungal

drugs have gradually become a research hotspot, including the

targeting of novel biological pathways, the combination of

antifungal drugs, the development of fungal vaccines, the creation

of innovative therapeutics (such as small-molecule peptides and

nanoparticles), the extraction of active ingredients from traditional

Chinese medicine, and the utilization of artificial intelligence in

drug design (Figure 1) (Wall and Lopez-Ribot, 2020; Wu et al.,

2023; Zhu et al., 2023; Saini et al., 2025). These studies offer new

insights for the future development of antifungal medications. This

review aims to systematically discuss the classification, molecular

mechanisms, and drug development strategies in fungal treatment,
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providing valuable references for researchers and clinicians in

related fields. Additionally, we will explore the current challenges

in antifungal drug research and future directions, with the goal of

promot ing innova t ion and progress in the fie ld o f

antifungal therapy.

This infographic outlines the landscape of fungal infections and

antifungal efforts. Globally, fungal infections affect 6.55 million

yearly, with rates climbing, as shown by the varied incidence of

different fungal diseases (A, data are derived from Denning, D. W.,

Lancet Infect Dis, 2024 (Denning, 2024)). Antifungal drugs exist in

classes like azoles, polyenes, and echinocandins, yet drug resistance

complicates treatment (B). The market for these drugs, growing at a

2.81% CAGR from 2020–2033, was $14.09 billion in 2024, projected

to reach $14.48 billion in 2025 and $18.08 billion by 2033 (C). To

tackle challenges, new approaches are underway: combining

antifungal drugs, developing fungal vaccines, creating innovative

medications (including small - molecule peptides and

nanoparticles), extracting actives from traditional Chinese

medicine, and leveraging AI for drug design—all aiming to

improve fungal infection management (D).
2 Major invasive fungal pathogens and
their drug resistance status

Fungi represent a major biological kingdom with an extensive

evolutionary history, comprising an estimated global diversity of

over 5 million species, among which more than one million have

been formally identified (Schueffler and Anke, 2014; Hawksworth

and Lücking, 2017). While many fungi play beneficial roles in

medicine (e.g., Ganoderma lucidum, Poria cocos), agriculture (e.g.,

mycorrhizal fungi enhancing plant nutrient uptake), and the food

industry, a considerable number also pose serious threats to human

health, agricultural productivity, and ecosystem stability. Notably,
FIGURE 1

Global fungal infection challenges and antifungal efforts.
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fungi have become one of the most formidable targets in anti-

infective therapy (Lange, 2014; Liu et al., 2024; Cargill et al., 2025;

Guo et al., 2025; Lei et al., 2025; Moora et al., 2025).

According to the World Health Organization (WHO),

approximately 6.5 million cases of invasive fungal infections

occur globally each year, resulting in an estimated 3.8 million

deaths, of which 68% (around 2.5 million) are directly attributed

to fungal diseases (Organization, W. H., 2022; Lockhart et al., 2023;

Denning, 2024). Despite this, the threat of fungal pathogens to

human health has long been underestimated. Regardless of

economic development status, the incidence of invasive fungal

diseases is steadily increasing, exerting a profound impact on

public health (Seagle et al., 2021; Denning, 2024; Thompson et al.,

2024a). Since 2016, Aspergillus fumigatus (associated with a

mortality rate of 50%–90%), Cryptococcus neoformans (20%–

70%), and Candida albicans (20%–40%) have been recognized as

the leading causes of life-threatening fungal infections (Vandeputte

et al., 2012; Han et al., 2016). In recognition of their clinical

significance and growing resistance profiles, the WHO has

designated these pathogens, along with Candida auris, as part of

the “Critical Priority Group” in its Fungal Priority Pathogens List
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(Lockhart et al., 2023). Additionally, a growing number of emerging

and re-emerging fungal pathogens, such as species of Fusarium,

Mucorales, Histoplasma capsulatum, and Sporothrix, pose

significant threats to immunocompromised populations.

Although these pathogens are less prevalent globally, their

morbidity and mortality may be substantially underestimated due

to limited surveillance, low prioritization in public health

frameworks, and geographically restricted endemicity. These

pathogens often exhibit intrinsic or acquired resistance to

antifungal agents, severely limiting treatment options. For

example, Fusarium solani and F. oxysporum are intrinsically

resistant to multiple antifungals, including azoles and

echinocandins, making infections exceedingly difficult to treat

(Dignani and Anaissie, 2004; Lortholary et al., 2010; Wiederhold

et al., 2010; Demonchy et al., 2024). Although mucormycosis is rare

globally, its incidence in India is approximately 80 times higher

than elsewhere (Prakash and Chakrabarti, 2019; Skiada et al., 2020;

Kottarathil et al., 2023). Histoplasma capsulatum is endemic to

tropical and subtropical regions of the Americas (Teixeira Mde

et al., 2016; Woods, 2016; Araúz and Papineni, 2021), while

Sporothrix species (e.g., S. schenckii, S. brasiliensis, S. globosa) are
FIGURE 2

WHO critical priority fungal pathogens. (A) Candida auris is a multidrug-resistant fungus that can survive at 40 °C, tolerate high-salt conditions, and
resist common disinfectants. A key risk factor for infection is its ability to adhere to abiotic surfaces, particularly medical devices such as ventilator
tubes, central lines, feeding tubes, and urinary catheters. Its strong biofilm-forming capacity on these surfaces and skin promotes persistent
colonization and increases the risk of invasive infection. Initial adhesion is mainly mediated by the Als family and Hwp1, while tissue invasion involves
enzymes such as Saps, Plb1/2, Lip, and hemolysins. (B) Cryptococcus species produce classical virulence factors such as capsule and melanin, and
exhibit thermotolerance at 37 °C. Interactions with environmental hosts like pigeons and amoebae have contributed to their resistance to heat and
phagocytosis. C. neoformans displays notable neurotropism, disseminating from the lungs and crossing the blood-brain barrier (BBB) to cause
meningoencephalitis. Translocation occurs via endothelial transcytosis or a “Trojan horse” mechanism mediated by monocytes. Inhaled spores are
taken up by circulating monocytes, transported to the brain, and released into the parenchyma. Fungal cells also attach to the endothelium via
CD44 to cross into tissue. To facilitate CNS invasion, C. neoformans secretes enzymes such as fibrinolysin, urease, and proteases that degrade host
barriers. (C) Aspergillus fumigatus is a widespread environmental mold, with optimal growth at 37 °C. Triazole fungicides, structurally similar to
medical azoles, can select for resistant strains in the environment. Inhalation of such strains by susceptible individuals may lead to azole-resistant
infections. Humans inhale 100-1,000 conidia daily, typically cleared by the mucociliary system and alveolar macrophages. In immunocompromised
hosts, conidia may evade clearance, germinate, and cause invasive disease. Surviving conidia can cross epithelial barriers via macrophage-mediated
translocation or direct epithelial uptake involving CD14, ECM, and E-cadherin. Secreted phospholipases, ureases, and proteases further disrupt
epithelial integrity, promoting tissue invasion.
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closely linked to zoonotic outbreaks, particularly in China and

Brazil (Alvarez et al., 2022; Rodrigues et al., 2022). The resistance

profiles and regionally concentrated disease burdens of these fungi

underscore the need for intensified mycological research.

It is noteworthy that fungal pathogens affecting plants and

wildlife also pose significant global threats and offer unique insights

into human fungal diseases. For instance,Magnaporthe oryzae (rice

blast disease) and Fusarium oxysporum (vascular wilt in crops) are

major plant pathogens that threaten global food security and cause

substantial economic losses (Nalley L et al., 2016; Dita M et al.,

2018). In the wildlife domain, Batrachochytrium dendrobatidis and

B. salamandrivorans have been implicated in catastrophic

amph i b i a n popu l a t i o n d e c l i n e s wo r l dw i d e , wh i l e

Pseudogymnoascus destructans is the causative agent of white-

nose syndrome, which has led to mass mortality in North

American bat populations (Drees KP et al., 2017; Grogan LF

et al., 2018). Studies on these non-human pathogenic fungi have

shed light on cross-species virulence mechanisms and provided

valuable models for understanding fungal pathogenesis, host

interaction, and immune evasion in humans. However, in the face

of the rising burden of fungal infections, current treatment

strategies remain inadequate.

Despite recent progress in antifungal therapy and the

advancement of several novel agents into clinical trials, the rapid

emergence of antifungal resistance has emerged as a critical barrier

to effective treatment and is now recognized by the World Health

Organization as one of the top ten global public health threats

(Ferdinand et al., 2023; Vitiello et al., 2023). Currently available

antifungal drugs are frequently associated with significant toxicity,

pronounced side effects, narrow spectra of activity, and a high

propensity for inducing resistance (Albrecht, 2019; Szymański et al.,

2022; Zhou et al., 2022; Cavassin et al., 2024; Puumala et al., 2024;

Gu et al., 2025). These limitations are particularly critical in the

management of multidrug-resistant (MDR) and pan-drug-resistant

(PDR) fungal infections, where therapeutic options remain

extremely limited. These growing challenges underscore the

urgent need for the development of antifungal agents with novel

mechanisms of action, improved specificity, and reduced toxicity,

alongside the identification of new molecular targets and

therapeutic strategies to mitigate the escalating global burden of

fungal diseases.
2.1 Candida

Candida species are major fungal pathogens, particularly in

immunocompromised individuals, where infections are associated

with high mortality, up to 45% despite antifungal therapy

(Chowdhary et al., 2023; Robbins and Cowen, 2025). With the

widespread use of antifungal agents, resistance among Candida

species has become increasingly concerning, especially with the

emergence of multidrug-resistant strains such as Candida auris,

now recognized as a global health threat (Clancy and Nguyen, 2016;

Lockhart et al., 2017; Rhodes and Fisher, 2019).
Frontiers in Cellular and Infection Microbiology 04
Among Candida species, C. albicans remains the most

prevalent, followed by C. parapsilosis, C. glabrata and C.

tropicalis. These non-albicans species are showing rising

resistance, particularly to azoles like fluconazole, complicating

treatment and increasing the risk of clonal outbreaks (Lass-Flörl

et al., 2024; Khan et al., 2025). A 10-year study at Duke University

(2001–2010) reported an increase in C. glabrata resistance to

echinocandins from 4.9% to 12.3%, and fluconazole resistance

rates from 18% to 30% (Alexander et al., 2013). In Europe, from

2016 to 2022, echinocandin resistance in 15,400 C. glabrata isolates

ranged from 1.5% to 12% (Rodrıǵuez-Cerdeira et al., 2025).

Globally, fluconazole resistance in C. parapsilosis had exceeded

10% before 2019. Since 2020, echinocandin and multidrug-

resistant C. parapsilosis strains have been increasingly reported

(Daneshnia et al., 2023). A multicenter study across 11 hospitals in

China (over three years, 1,072 non-albicans Candida isolates) found

that C. tropicalis exhibited a 7.1% resistance rate to both fluconazole

and voriconazole, while C. glabrata showed 14.3% resistance to

fluconazole and 11.6% cross-resistance to voriconazole (Xiao et al.,

2015). Candida auris has drawn considerable attention due to its

high level of multidrug resistance, with fluconazole resistance

detected in 70%-90% of isolates (Navalkele et al., 2017; Ostrowsky

et al., 2020). Its tolerance to 10% NaCl and quaternary ammonium

disinfectants enhances its persistence in healthcare settings (Ahmad

and Alfouzan, 2021) (Supplementary File 1). Most notably, unlike

other Candida species, C. auris displays a remarkable ability to

colonize abiotic surfaces (Santana et al., 2023). This trait facilitates

its presence on a wide range of medical equipment, including

catheters, ventilators, and surgical tools, contributing to

nosocomial transmission (Haq et al., 2024). Skin colonization by

C. auris is a known risk factor for bloodstream infections (BSIs),

with approximately 5%-10% of colonized individuals developing

fungemia (Lyman et al., 2023) (Figure 2).

In recent years, Candida-related breakthrough BSIs have

emerged as complex clinical challenges, often occurring despite

standard antifungal therapy. These infections are mainly attributed

to C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis (Zhai et al.,

2020; Puerta-Alcalde et al., 2023). Recent reviews indicate that such

breakthrough infections are strongly associated with antifungal

resistance (Kontoyiannis et al., 2010; Fisher et al., 2019; Jenks

et al., 2020). Notably, beyond classical resistance mechanisms,

heterogeneous resistance has been implicated in C. parapsilosis

breakthrough infections during echinocandin prophylaxis,

suggesting more nuanced resistance dynamics (Zhai et al., 2024).
2.2 Cryptococcus

Cryptococcosis is a life-threatening invasive fungal infection

primarily caused by Cryptococcus neoformans and Cryptococcus

gattii, accounting for approximately 152,000 new cases and 110,000

deaths annually, predominantly among immunocompromised

individuals such as HIV/AIDS patients and organ transplant

recipients (Chayakulkeeree and Perfect, 2006; Kwon-Chung et al.,
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1662442
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2025.1662442
2014). Cryptococcus species are widely distributed in nature, and their

environmental adaptation strategies have facilitated the evolution of

traits enabling human infection. Natural hosts such as pigeons,

amoebae, and nematodes have contributed to the development of

thermotolerance and resistance to phagocytosis in Cryptococcus (May

et al., 2016). Notably, C. neoformans exhibits pronounced

neurotropism and frequently invades the central nervous system

(Chen et al., 2022). Both C. neoformans and C. gattii disseminate

from the lungs and cross the blood-brain barrier (BBB) to cause

meningoencephalitis (Kronstad et al., 2011) (Figure 2). Fungal cells

penetrate the BBB either through transcytosis across endothelial cells

lining cerebral vessels or via a “Trojan horse” mechanism involving

carriage within phagocytes, ultimately leading to life-threatening

meningoencephalitis (Kronstad et al., 2011). Globally, nearly

250,000 cases occur each year, and without timely intervention, the

mortality rate approaches 100% (Iyer et al., 2021). Current treatment

options are limited to three major classes of antifungal agents. Azoles,

especially fluconazole, are widely used for consolidation and

maintenance therapy. However, resistance to fluconazole in

emerging Cryptococcus strains is on the rise (Ngan et al., 2022).

Echinocandins are largely ineffective against Cryptococcus, and the

efficacy of other agents is often compromised by host toxicity or

fungal resistance (Denning, 2003) (Supplementary File 1).

Amphotericin B (AmB), the only approved fungicidal agent for

cryptococcosis, targets ergosterol in the fungal membrane and

remains a cornerstone of induction therapy. However, despite its

effectiveness, AmB often fails to achieve complete fungal clearance,

and relapses are common (Guidelines for The Diagnosis, Prevention

and Management of Cryptococcal Disease in HIV-Infected Adults,

Adolescents and Children: Supplement to the 2016 Consolidated

Guidelines on the Use of Antiretroviral Drugs for Treating and

Preventing HIV Infection, 2018). Its clinical utility is further

limited by severe toxicity and restricted availability due to

economic and logistical barriers (Perfect et al., 2010). Recent

studies highlight the role of drug tolerance and persistence in

cryptococcosis (Chen et al., 2024; Ke et al., 2024). Unlike genetic

resistance, these phenotypes enable fungal cells to survive high

concentrations of antifungals without a measurable increase in

minimum inhibitory concentration (MIC), contributing to chronic

and relapsing infections (Berman and Krysan, 2020). For example,

during pulmonary infection, Cryptococcus can enter a quiescent state

that confers high tolerance to AmB (Ke et al., 2024). Upon CNS

invasion, activation of the glucose repression regulator Mig1 has been

linked to enhanced AmB tolerance (Chen et al., 2024). These

mechanisms significantly reduce AmB efficacy in animal models of

cryptococcal meningitis. A growing hypothesis proposes that drug

tolerance and persistence may precede and facilitate the development

of stable resistance, as observed in bacterial pathogens. Despite their

clinical implications, these non-classical mechanisms of antifungal

failure remain underexplored and warrant further investigation to

inform new therapeutic strategies.
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2.3 Aspergillus

Invasive aspergillosis (IA) is one of the most common fungal

infections in immunocompromised hosts, including invasive

pulmonary aspergillosis, sinusitis, disseminated aspergillosis, and

infections affecting individual organs (Schauwvlieghe et al., 2018).

In the European Union alone, more than 2.25 million people suffer

from infections caused by Aspergillus (Prevention, E. C. f. D. &

Control, 2013). Unfortunately, recent studies have reported global

emerging resistance to azole antifungals in clinical and

environmental isolates (Barber et al., 2021; Rhodes et al., 2022)

(Supplementary File 1). Azole resistance in A. fumigatus can arise

via two main routes. In the clinical setting, prolonged azole

exposure in patients undergoing antifungal therapy may lead to

the selection of resistant strains that persist despite treatment and

continue to cause infection (Howard et al., 2009). Alternatively, in

the external environment, A. fumigatus strains residing on decaying

plant material may be exposed to azole-based agricultural

fungicides, which share structural and functional similarities with

medical azoles (Prigitano et al., 2019; Schoustra et al., 2019; Pontes

et al., 2020). This environmental route has been increasingly

recognized as a major driver of resistance development (Snelders

et al., 2009; Verweij et al., 2020). Notably, these resistance

mechanisms have been shown to spread globally via horticultural

products, particularly plant bulbs, and the airborne dissemination

of conidia is uncontrollable (Dunne et al., 2017). Humans inhale an

estimated 100-1,000 Aspergillus conidia daily, most of which are

cleared by the mucociliary system of airway epithelial cells and

resident alveolar macrophages (van de Veerdonk et al., 2017).

However, in immunocompromised individuals, conidia that

escape clearance can persist, germinate, and initiate invasive

infection (Margalit and Kavanagh, 2015; van de Veerdonk et al.,

2017) (Figure 2).

Effective treatment measures for IA include optimized

prevention, timely diagnosis, and early antifungal therapy, which

may also involve immunomodulation and surgery. The

development of new antifungal drugs for aspergillosis includes

Re-zafungin (CD101-IV), a novel echinocandin with unique

pharmacokinetic properties that allows for weekly dosing and

shows effective in vitro and in vivo activity against multiple

Aspergillus species (Sandison et al., 2017; Wiederhold et al., 2018);

Fosmanogepix (E1210/APX001), a broad-spectrum antifungal

agent with a novel mechanism of action (inhibition of fungal

glycosylphosphatidylinositol-insulin glucose biosynthesis), which

has shown efficacy in IA animal models (Shaw and Ibrahim,

2020); Ibrexafungerp (SCY-078), a new class of unique glucan

synthase inhibitors (triterpene compounds) (Rivero-Menendez

et al., 2021); and Olorofim (F901318), a broad-spectrum

antifungal agent with fungal-specific inhibition (Maertens et al.,

2025). Voriconazole, isavuconazole, and posaconazole are

substrates and inhibitors of CYP3A4 (Townsend et al., 2017).
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Long-term use of carbamazepine, phenytoin, and rifampin can

significantly reduce the steady-state plasma concentrations of

these drugs, leading to treatment failure. Additionally,

voriconazole is also a substrate and inhibitor of CYP2C19, and

glucocorticoids (CYP2C19 inducers) and CYP2C19 gene

polymorphisms can influence its metabolism (Tian et al., 2021).

Genomic epidemiology methods further suggest a potential link

between the increasing clinical incidence of azole-resistant IA and

the increasingly widespread presence of azole-resistant genotypes in

environmental isolates (Cao et al., 2021).
3 Common antifungal drugs and
associated resistance mechanisms

Common antifungal drugs include polyenes, azoles,

allylamines, morpholines, and echinocandins, all of which
Frontiers in Cellular and Infection Microbiology 06
function as antimetabolic agents targeting essential fungal

structures or biosynthetic pathways (Fisher et al., 2022; Vitiello

et al., 2023). Their mechanisms of action are summarized in

Figure 3, and the classification, molecular targets, and known

resistance mechanisms are listed in Table 1. Fungal responses to

antifungal agents typically fall into three categories: resistance,

tolerance, and persistence. Additionally, many intracellular or

latent fungal cells can enter a dormant state, resulting in

downregula t ion of drug targets , reduced membrane

permeability, and decreased susceptibility to treatment

(Arastehfar et al., 2023). These adaptations significantly limit

the efficacy of antifungal therapy. For example, phagocytosis of

fungal cells can be influenced by macrophage surface receptors

interacting with fungal ligands, affecting drug access and immune

clearance (Uribe-Querol and Rosales, 2020). Clinically, antifungal

resistance has become an emerging challenge with both spatial

and temporal dimensions (Fisher et al., 2018; Lockhart et al.,
FIGURE 3

Fungal Resistance Mechanisms of Common Antifungal Drugs. (A) Polyene drugs cause cell death by inhibiting ergosterol synthesis and forming ion
pores on the cell membrane. Resistance to polyenes is mainly caused by mutations in ergosterol biosynthesis genes, which deplete the target
ergosterol, leading to the production of alternative sterols that do not interact with polyenes. (B) Azole drugs exert their antibacterial activity by
inhibiting lanosterol 14-a-demethylase (encoded by ERG11 in Candida and CYP51A/B in Aspergillus), and blocking the ergosterol synthesis and
accumulation of toxic sterols. Resistance to azole drugs occurs mainly through mutations in the drug target, resulting in reduced drug-binding
affinity, and also through overexpression of the drug target through the transcriptional activator Upc2. In addition, overexpression of ABC/MFS efflux
pumps is also involved in drug resistance. (C) Echinocandin prevents 1,3-b-D-glucan and chitin biosynthesis by inhibiting 1,3-b-glucan synthase and
chitin synthase, thereby causing loss of cell wall integrity and cell wall stress. Resistance to echinocandin mainly involves mutations in the genes
encoding the drug target FKS. (D) 5-FC enters the cell by cytosine permease, interferes with RNA and DNA synthesis after conversion to 5-FU by
cytosine deaminase. 5-FU is converted to 5-FdUMP, thereby inhibiting thymidylate synthesis and downstream DNA biosynthesis. 5-FU is also
converted to 5-FUMP by UPRT, inhibiting RNA interference to translate proteins. Resistance to 5-FC mainly involves mutations in the cytosine
permeases Fcy1 and Fcy2.
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TABLE 1 Research progress of new antifungal drugs.

Classification Target New drug
Experimental

fungi
Latest study
phase in

Ref.

Triazole

Ergosterol
Fungal cytochrome
P450 family member
CYP51A1 protein

Lanosterol
14a demethylase

Opelconazole (PC945)
Cryptococcus

III (Cass et al., 2021; Ito et al., 2021)
Aspergillus

Oteseconazole Candida albicans

III completed

(Fothergill et al., 2014; Hoenigl
et al., 2021; Sobel and Nyirjesy,
2021; Martens et al., 2022)

Oteseconazole(VT-1161) Candida albicans
(Martens et al., 2022; Wang

et al., 2024)

Quilseconazole(VT-1129) Candida auris III (Treviño-Rangel et al., 2022)

TFF voriconazole Aspergillus II (Sigera and Denning, 2023)

Echinocandin
Cell wall Beta-1, 3-
glucan synthase
related proteins

Ibrexafungerp
In VVC

Candida albicans III completed
(Schwebke et al., 2022; Goje

et al., 2023)

Ibrexafungerp
In IC/Candidemia

Candida albicans III ongoing
(Spec et al., 2019; Sobel

et al., 2022)

Ibrexafungerp

Candida auris III (Arendrup et al., 2020)

Aspergillus IIb
(Petraitis et al., 2020; Angulo

et al., 2022)

Rezafungin(CD101)

Candida albicans III completed (Thompson et al., 2023)

Candida auris III
(Helleberg et al., 2020; Kovács
et al., 2021; Thompson et al.,
2021; Thompson et al., 2023)

Aspergillus III (Helleberg et al., 2020)

Gwt-1 inhibitor

Phosphatidylinositol
glycan anchor

biosynthesis class W
(Gwt-1)

protein inhibitor

Fosmanogepix(Prodrug of
APX001A N-

phosphonyl oxymethyl)

Candida albicans II completed (Pappas et al., 2023)

Candida auris II (Vazquez et al., 2023)

Cryptococcus None
(Petraitiene et al., 2021; Hodges

et al., 2023)

Aspergillus II (Gebremariam et al., 2022)

Manogepix(APX001A)

Candida
Aspergillus
Cryptococcus

Some rare molds

II
(Kapoor et al., 2019; Gintjee
et al., 2020; Maphanga et al.,
2022; Pfaller et al., 2022)

Chs
competitive
inhibitor

Cell wall chitin
synthase protein

Nikkomycin Z
Saccharomyces

cerevisiae
II

(early termination)
(Wu et al., 2022)

Polyene
(encochleated

AMB)
Cell wall ergosterol

Oral lipid nanocrystal
amphotericin B
(MAT 2203)

Cryptococcus III (Boulware et al., 2023)

Aspergillus I (Kriegl et al., 2025)

Antimicrobial
peptide

Protein killer-resistant
9 (KRE9), a b-1,6-
glucan synthase

CGA-N12 Candida albicans Experimental phase
(Li et al., 2018; Li X. et al., 2022;

Li R. et al., 2023)

Eterocyclic
compounds

thiazolylhydrazones

Fungal
antioxidant system

RN104-SEDDS Candida albicans Experimental phase (Silva et al., 2024)

Orotomide

Inhibit pyrimidine
synthesis

(dihydroorotic
dehydrogenase)

Olorofim (F901318) Aspergillus III
(Wiederhold, 2020; Escribano

et al., 2022; Egger et al., 2023; Su
et al., 2023; Feuss et al., 2024)

(Continued)
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2023). Notable examples include resistant variants of Aspergillus

fumigatus and Candida auris, a multidrug-resistant species that

has spread globally (Chowdhary and Meis, 2018; Rhodes and

Fisher, 2019). The vast diversity of fungal species and the

evolutionary pressures driving resistance highlight the

unpredictable nature of future fungal threats. Therefore,

continuous surveillance and rapid response are critical to

mitigating the growing burden of antifungal resistance.
3.1 Mechanisms of resistance to cell wall-
targeting antifungals: echinocandins

Antifungal agents targeting the fungal cell wall exert their effects

by disrupting the biosynthesis of essential structural components.

Among them, echinocandins, such as caspofungin, are the most

clinically advanced class. These agents are cyclic hexapeptides with

lipid side chains that inhibit 1,3-b-D-glucan synthase, an enzyme

critical for glucan synthesis and fungal cell wall integrity (Chen

et al., 2011). Echinocandins exhibit fungicidal activity against

Candida species and fungistatic activity against Aspergillus spp.

However, they have limited or no efficacy against certain emerging

Candida species, such as Candida auris and Candida parapsilosis,

highlighting a growing concern regarding their spectrum of activity

(Roemer and Krysan, 2014). Other antifungal agents, including

polyoxins and nikkomycins, act as chitin synthase inhibitors (Li

et al., 2011). These compounds are structural analogs of chitin

synthase substrates and competitively inhibit enzyme activity,

thereby disrupting chitin biosynthesis and impairing fungal cell

wall construction (Jackson et al., 2013). Although promising in

vitro, their clinical application remains limited, and further

development is required to evaluate their therapeutic potential.

The primary mechanism of resistance to echinocandins involves

point mutations in the FKS1 and FKS2 genes, which encode

subunits of 1,3-b-D-glucan synthase (Deane, 2023; Hu et al.,

2023; Li J. et al., 2025; Zajac et al., 2025). These mutations reduce

drug binding affinity and are associated with treatment failure in

invasive candidiasis (Schikora-Tamarit and Gabaldón, 2024; ElFeky

et al., 2025; Zajac et al., 2025).
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3.2 Mechanisms of resistance to
membrane-targeting antifungals: polyenes
and azoles

3.2.1 Polyene antifungal antibiotics interact with
cell membrane sterols

Polyene antifungal agents—such as nystatin, AMB, and

natamycin—are broad-spectrum drugs commonly used to treat

opportunistic fungal infections caused by Candida, Cryptococcus,

Aspergillus, and Lentinus species (Carolus et al., 2020; Tugume et al.,

2023; Lass-Flörl et al., 2024; Vishwakarma M and Soni, 2024). AMB

exerts its antifungal activity through a dual mechanism. Their

primary mode of action involves binding to ergosterol, a key

sterol component of fungal cell membranes, leading to the

formation of pores that disrupt membrane integrity and cause

leakage of intracellular ions such as Na+, K+, H+, and Cl-,

ultimately inhibiting fungal growth (Gray et al., 2012; Wang

et al., 2021; Lee et al., 2023). In addition to membrane disruption,

AMB induces an oxidative burst by promoting the generation of

reactive oxygen species (ROS) within fungal cells. This ROS

production, linked to mitochondrial respiratory chain

dysfunction, leads to oxidative damage of critical cellular

components including membranes, mitochondria, proteins, and

DNA (Mesa-Arango et al., 2014; Singh et al., 2017). The

combined effects of ionic imbalance and elevated ROS levels

cause multiple deleterious impacts culminating in fungal cell

death (Phillips et al., 2003; Sangalli-Leite et al., 2011; Mesa-

Arango et al., 2014). Unlike protein-based targets, ergosterol is

not gene-encoded, making polyene resistance relatively rare.

However, when resistance does occur, such as in Candida

albicans or Aspergillus, it is typically associated with mutations in

the ergosterol biosynthesis pathway, particularly in genes such as

ERG2, ERG3, ERG5 and ERG11 (Bhattacharya et al., 2018). These

mutations lead to altered membrane sterol composition, including

depletion or substitution of ergosterol, reducing drug binding and

effectiveness (Cannon et al., 2009; Jensen et al., 2015). Despite their

potency, polyenes, especially AMB, are associated with significant

toxicity, including nephrotoxicity, infusion-related reactions (e.g.,

fever, chills), and venous irritation at the injection site (Deray, 2002;
TABLE 1 Continued

Classification Target New drug
Experimental

fungi
Latest study
phase in

Ref.

Non-ribosomally
synthesized

cyclic hexapeptide

Transported by Sit1
transporter

(The mechanism and
target are unknown)

BAL2062(GR-2397) Aspergillus I (Shaw, 2022)

Arylpyrimidine
derivatives

Disrupting the fungal
mitochondrial

membrane protein
T-2307

Candida
Cryptococcus

Experimental phase

(Mitsuyama et al., 2008;
Nishikawa et al., 2010;
Yamashita et al., 2019;
Wiederhold et al., 2020;

Wiederhold, 2021)
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Kagan et al., 2012; Lakhani et al., 2019; Wang et al., 2021).

Moreover, their intravenous administration requirement limits

outpatient and long-term use (Gray et al., 2012).

3.2.2 Azole antifungal agents can inhibit
cytochrome P450

Azoles are a major class of antifungal drugs characterized by a

five-membered heterocyclic ring. Clinically relevant azoles include

fluconazole, clotrimazole, miconazole, and ketoconazole, which are

widely used for treating mucosal and cutaneous candidiasis as well

as dermatophytosis, particularly in immunocompromised patients

(Shapiro et al., 2011; Roemer and Krysan, 2014). Azoles exert their

antifungal effect by inhibiting lanosterol 14-a-demethylase (Erg11),

a cytochrome P450-dependent enzyme essential for ergosterol

biosynthesis, thereby disrupting cell membrane integrity and

function (Roemer and Krysan, 2014). However, azoles are less

effective for aspergillosis or systemic yeast infections, and long-

term use may result in hepatotoxicity, though they are generally

better tolerated than polyenes (Benitez and Carver, 2019).

Resistance to azoles is increasingly reported and involves several

mechanisms: Overexpression of efflux pumps, including members

of the ABC transporter superfamily and major facilitator

superfamily (MFS); Point mutations or overexpression of ERG11,

reducing azole binding to the target enzyme (Lee et al., 2021). These

resistance mechanisms reduce intracellular drug accumulation and

undermine treatment efficacy, posing a major challenge in the

clinical management of fungal infections.
3.3 Mechanism of resistance to fungal
nucleic acid synthesis: 5-fluorocytosine

Among antifungal antimetabolites, 5-fluorocytosine (5-FC) is

the most prominent example. As a fluorinated analog of cytosine, it

enters fungal cells and is converted intracellularly to 5-fluorouracil

(5-FU), which inhibits DNA and RNA synthesis, thereby exerting

antifungal effects (Lee et al., 2021). Despite its clinical utility, 5-FC is

prone to rapid resistance development when used as monotherapy.

The primary resistance mechanisms include mutations in FCY2,

encoding cytosine permease (which mediates drug uptake), and

mutations in FCY1, encoding cytosine deaminase (required for 5-

FC activation) (Longley et al., 2003; Després et al., 2022). These

mutations impair drug entry or metabolic conversion, leading to

treatment failure. To enhance efficacy and reduce the risk of

resistance, 5-FC is typically used in combination with AMB,

especially in the treatment of cryptococcal meningitis (Bennett

et al., 1979; Saag et al., 2000; Billmyre et al., 2020). This

combination has demonstrated synergistic effects and remains a

cornerstone of therapy for invasive cryptococcosis. Additionally, it

shows activity against Candida albicans and certain saprophytic

fungi (Hope et al., 2004; Papon et al., 2007).
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4 A decade of progress: novel
antifungal drugs targeting resistance

The main mechanism of antifungal action lies in inhibiting

essential molecules, such as ergosterol (azole class) or 1,3-b-D-
glucan (echinocandins), or by binding to ergosterol (polyene class),

leading to the formation of pores and altering the integrity and

permeability of the cell membrane, thereby affecting the membrane

or fungal cell wall.

Despite the limited number of targets and the emergence of

resistance, which pose challenges for antifungal therapy, new drugs

such as Ibrexafungerp (formerly known as SCY-078), Rezafungin,

Fosmanogepix and Olorofim have shown promising clinical efficacy

(Arendrup et al., 2020; Wiederhold, 2020; Kovács et al., 2021;

Thompson et al., 2021; Thompson et al., 2023; Vazquez et al.,

2023; Feuss et al., 2024). Currently, marketed antifungal drugs have

undergone extensive structural modifications and modifications.

After thorough safety and efficacy evaluations, along with in vivo

and in vitro model studies, the most promising antifungal

compounds in preclinical and clinical development include novel

triazoles, glucan synthase inhibitors, and small-molecule

polypeptides. We have collected the latest 10 years’ developments

in the development of novel antifungal drugs targeting four

common pathogenic fungi: Candida albicans, Candida auris,

Cryptococcus, and Aspergillus (Table 1).
4.1 Antifungal drugs targeting the cell wall

Recent advances in antifungal therapy have introduced new

agents targeting the fungal cell wall, notably Ibrexafungerp and

Rezafungin, both of which have shown promising results in clinical

trials against Candida albicans, Candida auris, and Aspergillus spp

(Spec et al., 2019; Arendrup et al., 2020; Petraitis et al., 2020; Angulo

et al., 2022; Schwebke et al., 2022; Sobel et al., 2022; Goje et al., 2023;

Thompson et al., 2023). These agents represent novel approaches in

overcoming limitations of traditional antifungals, particularly in

addressing resistance and improving patient compliance.

Ibrexafungerp (formerly SCY-078/MK-3118, brand name

Brexafemme) is a first-in-class oral b-(1,3)-D-glucan synthase

inhibitor (GSI) and a fourth-generation triterpenoid antifungal. It

offers a broad-spectrum activity against multiple Candida species,

including strains resistant to azoles and echinocandins, as well as

activity against Aspergillus, Penicillium variotii, and some rare

dimorphic fungi (Spec et al., 2019; Arendrup et al., 2020; Petraitis

et al., 2020; Angulo et al., 2022; Sobel et al., 2022). Preclinical studies

also suggest potential efficacy against Pneumocystis jirovecii (El

Ayoubi et al., 2024). Its dual route of administration, oral and

intravenous, provides dosing flexibility, which is particularly

beneficial for long-term outpatient management. Additionally,

Ibrexafungerp maintains efficacy against Candida strains
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harboring FKSmutations, reducing the risk of cross-resistance with

echinocandins (Nunnally et al., 2019). Its high protein-binding

capacity and preferential accumulation in vaginal tissues make it

especially suitable for treating vulvovaginal candidiasis (Schwebke

et al., 2022; Goje et al., 2023; Kow et al., 2025). However, it has

limited activity against Mucorales and Fusarium spp., and its

relatively low oral bioavailability (~50%) may impact systemic

efficacy (Lamoth and Alexander, 2015). Long-term safety data are

also still being collected. Rezafungin (formerly CD101) is a next-

generation echinocandin with structural modifications that confer a

long half-life (~133 hours), enabling once-weekly intravenous

administration. This feature greatly enhances treatment

convenience and adherence, especially in outpatient or

maintenance settings. FDA-approved for the treatment of

candidemia and invasive candidiasis, Rezafungin demonstrates

strong efficacy against Candida spp., including C. auris, with a

well-documented safety profile (Thompson et al., 2024b). However,

its spectrum of activity is narrower than that of Ibrexafungerp, with

limited data on efficacy against molds or rare fungal pathogens

(Fung and Shirley, 2025). Additionally, its intravenous-only

formulation restricts its use in home-based care or resource-

limited settings. There is currently a lack of clinical data for

infections such as endocarditis, osteomyelitis, and meningitis

caused by Candida. Another promising agent is Fosmanogepix, a

fi r s t - i n - c l a s s Gwt1 enz yme inh i b i t o r t h a t t a r g e t s

glycosylphosphatidylinositol (GPI) anchor biosynthesis, a process

essential for fungal cell wall integrity, adhesion, and virulence

(Wiederhold, 2020; Escribano et al., 2022; Egger et al., 2023;

Vazquez et al., 2023; Feuss et al., 2024). By inhibiting Gwt1,

Fosmanogepix disrupts the anchoring of mannoproteins on the

fungal surface, impairing growth and pathogenicity through a

mechanism distinct from azoles and echinocandins, thereby

reducing the likelihood of cross-resistance (Pappas et al., 2023). It

exhibits potent in vitro activity against a broad range of pathogens,

including Candida spp. (except C. krusei), C. auris, Aspergillus spp.,

and even Mucorales, a group notoriously resistant to conventional

antifungals (Petraitiene et al., 2021; Hodges et al., 2023; Vazquez

et al., 2023). Fosmanogepix also shows favorable pharmacokinetic

properties, with >90% oral bioavailability unaffected by food intake

and a half-life of approximately 2.5 days. Its ability to penetrate

sanctuary sites such as the central nervous system and eyes further

enhances its therapeutic potential (Hodges et al., 2024). Currently in

Phase III trials, Fosmanogepix has demonstrated efficacy in early

studies for invasive candidiasis and is considered a promising

candidate for drug-resistant or difficult-to-treat infections.

Together, these emerging agents represent a significant shift in

antifungal therapy, expanding treatment options beyond traditional

mechanisms, addressing current resistance gaps, and offering

improved pharmacological and patient-centered profiles. Future

research should continue to evaluate these novel agents in diverse

clinical settings and against emerging fungal threats.
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4.2 Antifungal drugs targeting the cell
membrane

Among antifungal agents targeting the fungal cell membrane,

Oteseconazole (VT-1161) has emerged as a promising novel

triazole, with recent clinical and regulatory progress. It has

successfully completed Phase III clinical trials and has been

approved by the U.S. FDA for the treatment of recurrent

vulvovaginal candidiasis (RVVC) (Fothergill et al., 2014; Hoenigl

et al., 2021; Sobel and Nyirjesy, 2021; Martens et al., 2022;

Wiederhold, 2022). Mechanistically, Oteseconazole, like other

triazoles, inhibits 14a-demethylase in the fungal cytochrome

P450 system, thereby disrupting ergosterol biosynthesis, an

essential component of fungal cell membranes (Hoy, 2022). This

inhibition compromises membrane integrity, alters permeability,

and leads to leakage of intracellular contents, ultimately impairing

fungal growth and replication. Compared to existing azoles,

Oteseconazole demonstrates enhanced antifungal activity,

including efficacy against azole-resistant strains of Candida and

Aspergillus spp. It exhibits favorable pharmacokinetics, including a

suitable half-life, wide tissue distribution, and effective tissue

penetration, critical for eradicating infection at various anatomical

sites. In preclinical and clinical studies, it has shown superior in

vitro activity and consistent therapeutic effects in animal models.

Clinically, Oteseconazole has shown significant benefits in RVVC,

achieving symptom relief, fungal burden reduction, and lower

recurrence rates compared to standard therapies (Sobel and

Nyirjesy, 2021; Martens et al., 2022). Its less frequent dosing also

improves patient compliance, making it a potentially superior

alternative to traditional azoles in this indication. In terms of

safety, clinical trials indicate good tolerability, with mild and

transient adverse effects and a low incidence of serious reactions.

However, like other azoles, Oteseconazole inhibits human

cytochrome P450 enzymes, posing a potential risk of drug, drug

interactions, which remains a limitation, especially in patients

receiving multiple medications.

Although azoles remain central to antifungal therapy due to

their broad spectrum and oral availability, the risk of resistance,

drug interactions, and incomplete eradication calls for continued

refinement. Oteseconazole provides a valuable step forward, but

long-term studies are still needed to fully assess its safety,

effectiveness across populations, and utility in additional

indications beyond RVVC.
4.3 Antifungal drugs targeting organelles

Mitochondria are essential organelles in fungi, playing central

roles in energy metabolism, the respiratory chain, redox

homeostasis, and various biosynthetic pathways. Disruption of

mitochondrial function has emerged as a promising antifungal
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strategy, with several novel compounds demonstrating efficacy

through mitochondrial targeting. One such agent is Olorofim, a

dihydroorotate dehydrogenase inhibitor currently in advanced

clinical development, which impairs mitochondrial pyrimidine

biosynthesis, leading to defective DNA synthesis and subsequent

fungal cell death (Oliver et al., 2016). Another example is CGA-

N12, a synthetic antimicrobial peptide that exerts potent antifungal

effects against Candida albicans by inducing reactive oxygen species

(ROS) accumulation and collapsing the mitochondrial membrane

potential, ultimately triggering apoptosis (Li et al., 2018). ATI-2307

(T-2307), an aromatic amidine compound, represents a novel class

of mitochondrial respiratory chain inhibitors (Yamashita et al.,

2019). It selectively targets fungal mitochondrial complexes,

blocking electron transport and disrupting the proton gradient

across the inner membrane. This results in membrane potential

dissipation, ATP synthase inhibition, and energy depletion,

culminating in fungal growth arrest and cell death (Nishikawa

et al., 2010). ATI-2307 has demonstrated strong in vitro activity

against various Candida species, with preliminary evidence

suggesting potential efficacy against other pathogenic fungi,

including Rhizopus arrhizus, Mucor racemosus, Scedosporium

spp., and Trichosporon asahii, although further studies are

warranted. In addition to synthetic compounds, several natural

products have shown mitochondrial-targeting antifungal activity.

For instance, berberine selectively accumulates in fungal

mitochondria, disrupts membrane potential, and binds subunits

of complex I; it also interacts with the Mdr1p efflux pump,

potentially reversing azole resistance in C. albicans (Tong et al.,

2021). Other plant-derived compounds, such as citronellal and

perillaldehyde, induce ROS overproduction, resulting in

mitochondrial and DNA damage (Tian et al., 2016; Chen et al.,

2020; Trindade et al., 2022; Venancio et al., 2025). Moreover,

cyclooxygenase inhibitors, which suppress prostaglandin E2

synthesis, have been shown to reduce fungal biofilm formation,

highlighting their potential as adjunctive agents in antifungal

therapy (Abdelmegeed and Shaaban, 2013).
4.4 Antifungal drugs targeting metabolic
pathways and enzymes

Fungal metabolism involves a wide array of biochemical

pathways essential for growth, survival, and virulence, including

N-acetylglucosamine utilization, trehalose metabolism, lipid

biosynthesis, energy production, and intracellular transport (Pan

et al., 2018; Wijnants et al., 2022). These metabolic processes

present attractive targets for antifungal drug development due to

their indispensable roles in fungal physiology and pathogenesis

(Ramakrishnan et al., 2016). A growing number of intracellular

enzymes have been identified as potential antifungal targets. For

instance, AMP-17, a novel antifungal peptide, interferes with

several critical metabolic pathways in Candida albicans, including

oxidative phosphorylation, RNA degradation, and fatty acid

metabolism, effectively suppressing fungal growth (Yang et al.,

2022). Similarly, ApoB-derived peptides exhibit antifungal
Frontiers in Cellular and Infection Microbiology 11
properties primarily by compromising cell membrane integrity in

C. albicans (Dell'Olmo et al., 2021). Another promising compound,

a-erythromycin myrrh (a-red myrrh), inhibits D;24-sterol
methyltransferase, a key enzyme in ergosterol biosynthesis

encoded by ERG6. This inhibition reduces ergosterol content in a

dose-dependent manner, disrupts membrane integrity, and inhibits

fungal proliferation (Jahanshiri et al., 2017). Notably, a-red myrrh

may also exert indirect effects on fungal gene expression by

modulating host signaling pathways such as NF-kB, p38, and
JNK, which influence ERG6 regulation, suggesting a multifaceted

mechanism of action (Jahanshiri et al., 2017). In addition to these,

several novel enzyme inhibitors have shown promise. (S)-2-amino-

4-oxo-5-hydroxyvaleric acid (RI-331), a homoserine dehydrogenase

inhibitor, acts through an enzyme-assisted suicide mechanism by

irreversibly binding to and inactivating Hom6p, an enzyme

involved in amino acid biosynthesis, ultimately leading to fungal

cell death (Yamaki et al., 1992). Likewise, RI-331 exhibits selective

antifungal activity against C. albicans, C. tropicalis, and C. glabrata,

but not against Aspergillus species (Jacques et al., 2003; Kuplińska

and Rzad̨, 2021). Importantly, some fungal-specific enzymes offer

high target selectivity with minimal risk to the host. For example,

class II fructose-1,6-bisphosphate aldolase (FBA-II) is found

exclusively in fungi and is absent in animals and higher plants,

making it an ideal candidate for developing targeted antifungal

agents with reduced off-target toxicity (Han et al., 2017; Wen

et al., 2022).
4.5 Antifungal drugs targeting iron
transporters

Iron is essential for fungal growth and pathogenicity, but the

host limits its availability to prevent infection (Choi and Bessman,

2025). This has led to the concept of iron hijacking as a novel

antifungal strategy. One promising approach is disrupting

siderophore (ferrifer) biosynthesis, which fungi rely on to acquire

iron (Balhara et al., 2014; Choi and Bessman, 2025). Inhibitors

targeting enzymes such as adenosine phosphate transferase, non-

ribosomal peptide synthase (NRPS), polyketide synthase, and

NRPS-independent siderophore synthases impair microbial iron

uptake and enhance host-mediated clearance (Petrik et al., 2012;

Leal et al., 2013; Süssmuth andMainz, 2017; Qiao et al., 2023; Zhang

L. et al., 2023).

Natural products are also being explored. Celastrol, derived

from Tripterygium wilfordii, inhibits the flavin-dependent

monooxygenase FerA, essential for siderophore synthesis in

Aspergillus fumigatus (Sun et al., 2019). This inhibition disrupts

L-ornithine hydroxylation, a critical step in siderophore

production, resulting in iron starvation and suppressed fungal

growth (Martıń Del Campo et al., 2016; FA et al., 2025). This

highlights celastrol as both a potential therapeutic and a new

antifungal target. Another strategy involves siderophore-drug

conjugates, which improve delivery of antifungal agents by

hijacking the fungal iron uptake system. Conjugates like

ferrimycin combine a siderophore with antifungal drugs (e.g.,
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triazoles, echinocandins, or polyenes) (Lakshminarayanan et al.,

2024). These agents specifically bind fungal iron transporters,

enhancing drug targeting and reducing toxicity to host cells, thus

improving both efficacy and safety. A leading compound in this

class is GR-2397 (also known as ASP2397 or VL-2397), a cyclic

hexapeptide developed by Gravitas Therapeutics (Nakamura et al.,

2017; Kovanda et al., 2019; Shaw, 2022). It enters fungal cells via the

SIT1 transporter, which is absent in humans, ensuring fungal

specificity (Dietl et al., 2019; Nakamura et al., 2019). GR-2397 has

shown rapid fungicidal activity in murine aspergillosis models, and

Phase 1 clinical trials demonstrated it is safe and well-tolerated

(Rubino et al.,; Arendrup et al., 2016; Mammen Mammen et al.,

2019). Recognized by the FDA as a Qualified Infectious Disease

Product (QIDP), orphan drug, and Fast Track agent, GR-2397 is set

to enter Phase 2 trials in 2025. Finally, competitive iron chelators

like lactoferrin and gallium reduce fungal biofilm formation by

replacing iron (Fernandes and Carter, 2017; Bastos et al., 2019;

Fernandes et al., 2020; Li F. et al., 2022). Biofilm thinning enhances

the treatment of mucosal infections and complements conventional

antifungal therapy. Overall, targeting iron acquisition mechanisms

represents a powerful, fungus-specific therapeutic direction with

multiple avenues for innovation.
4.6 Antifungal drugs targeting antioxidant
defense systems

During infection, fungal pathogens are continuously exposed to

oxidative stress generated by the host immune response (Yaakoub

et al., 2022). To survive and establish infection, they have developed

a robust antioxidant defense system, including catalases, superoxide

dismutases (SODs), glutathione peroxidases (GPxs), and

peroxiredoxins (Leal et al., 2012; Arastehfar et al., 2023). These

enzymes work synergistically to eliminate reactive oxygen species

(ROS) and maintain redox homeostasis. Recent studies have

highlighted their critical roles in fungal virulence and identified

them as promising targets for antifungal therapy (Lionakis

et al., 2023).

Amphotericin B (AMB), a widely used antifungal, can broadly

induce reactive oxygen species (ROS) accumulation across 44

fungal species, including Candida albicans, C. parapsilosis, C.

glabrata, C. tropicalis, C. krusei, C.neoformans, and C. gattii

(Mesa-Arango et al., 2014). This oxidative stress is accompanied

by the upregulation of genes encoding antioxidant proteins (Mesa-

Arango et al., 2014). Correspondingly, AMB-resistant isolates often

exhibit elevated catalase levels (Mesa-Arango et al., 2014). In C.

glabrata, however, fluconazole-resistant strains harboring the Pdr1

P927L mutation show reduced catalase expression (Vermitsky and

Edlind, 2004; Edlind and Katiyar, 2022). Similarly, in Candida

auris, fluconazole resistance is associated with an adaptive trade-

off: fluconazole-susceptible isolates display enhanced resistance to

oxidative stress, whereas the majority (94.5%) of fluconazole-

resistant strains exhibit reduced oxidative tolerance (Das et al.,

2024). suggesting that catalase functions differently depending on

the antifungal class involved.
Frontiers in Cellular and Infection Microbiology 12
Several compounds that target fungal antioxidant defenses have

shown synergistic effects with existing antifungals. Cyclams,

macrocyclic polyamines with antimicrobial activity, have

demonstrated antifungal potential. For example, the cyclam salt

H4[H2(
4-CF3PhCH2)2Cyclam]Cl4 inhibits C. albicans biofilm

formation and catalase activity, suppresses morphological

transition, and reduces melanin production in C. neoformans

(Cerqueira et al., 2024). SODs are also emerging attractive targets.

Inhibitors such as N,N′-diethyldithiocarbamate (DDC) and

ammonium tetrathiomolybdate (ATM) impair C. albicans biofilm

formation and sensitize it to AMB (Seneviratne et al., 2008; De

Brucker et al., 2013). Natural dihydroxybenzaldehydes (DHBAs),

including 2,3- and 2,5-DHBA, inhibit SOD and glutathione

reductase in Candida and Cryptococcus species, enhancing AMB

efficacy (Kim et al., 2012b). Benzaldehyde and its analogs (e.g.,

trans-cinnamaldehyde, o-vanillin) inhibit filamentous fungi like

Aspergillus fumigatus and act as chemosensitizers against C.

albicans and Candida auris when combined with AMB,

fluconazole, or itraconazole (Faria et al., 2011; Kim et al.,

2011b).Phenolic compounds with redox-modulating activity also

enhance antifungal action. Thymol (THY) disrupts fungal redox

and ion homeostasis and synergizes with itraconazole against A.

fumigatus (Kim et al., 2012a). Co-administration of THY with AMB

sensitizes yeast pathogens including C. albicans, C. tropicalis, and C.

neoformans (Kim et al., 2012a). Similarly, salicylaldehyde shows

comparable effects (Kim et al., 2011a). Antioxidant defenses are

equally critical in plant-pathogenic fungi (Park and Son, 2024).

Phytic acid inhibits Fusarium oxysporum by compromising

membrane integrity and suppressing antioxidant enzyme activity

such as superoxide dismutase (SOD) and catalase (Li N. et al.,

2023). Dehydroabietic acid (DHA), derived from rosin, inhibits the

growth of multiple plant pathogens (such as Alternaria alternata,

Botrytis cinerea, Valsa mali, Pestalotiopsis neglecta, and F.

oxysporum) and reduces the activity of SOD, catalase, and

peroxidase in Alternaria alternata (Chen et al., 2025).

Combining antioxidant-targeting agents with cell wall synthesis

inhibitors has shown synergistic efficacy in model organisms,

supporting combination therapies. However, due to the

redundancy within antioxidant systems, complete inhibition via

single targets remains challenging, and drug specificity must be

optimized to avoid host toxicity. Targeting fungal redox

homeostasis thus represents a promising strategy to overcome

antifungal resistance.
4.7 Antifungal vaccines

Fungal vaccines offer a proactive strategy to prevent or control

infections by stimulating the host immune system (Levitz and

Golenbock, 2012). As antifungal resistance increases and limits

the efficacy of conventional drugs, vaccines are emerging as

promising adjuncts or alternatives (Dan and Levitz, 2006; Nami

et al., 2019). Unlike single-target antifungals, vaccines trigger both T

cell–mediated and antibody-based responses, enabling multi-

pathway pathogen clearance (Cutler et al., 2007; Lionakis et al.,
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2023). These immune mechanisms are less susceptible to resistance

mechanisms such as mutations, efflux pumps, and biofilm

formation, making vaccines especially valuable against drug-

resistant strains (Cassone, 2013; Sahu et al., 2022).

Several fungal vaccines have shown efficacy in preclinical

studies, with some advancing to early clinical trials. Two

recombinant Candida vacc ines , PEV7 and NDV-3A,

demonstrated safety and immunogenicity in Phase I trials. PEV7,

which incorporates a truncated C. albicans Sap2 protein into

influenza virosomes, protected rats from infection and induced

memory B cell responses in human volunteers (De Bernardis et al.,

2012; De Bernardis et al., 2018). A Sap2 vaccine derived from C.

parapsilosis also conferred cross-species protection in C. tropicalis-

infected mice (Shukla and Rohatgi, 2020). NDV-3A, based on the

N-terminal region of C. albicans Als3 adhesin, elicited broad

immunity and showed efficacy against recurrent vulvovaginal and

oropharyngeal candidiasis (Spellberg et al., 2005; Spellberg et al.,

2006). A Phase II study reported reduced recurrence of vulvovaginal

candidiasis in women under 40 over 12 months (Edwards et al.,

2018). NDV-3A also prevented kidney dissemination and catheter

colonization in murine models, inhibited C. auris biofilm

formation, enhanced macrophage phagocytosis, and improved

micafungin efficacy (Alqarihi et al., 2019; Singh et al., 2019).

Targeting fungal cell wall polysaccharides is another promising

strategy. These components activate complement and are

recognized by receptors like Dectin-1, driving robust immune

responses (Levitz, 2010). Vaccines against Cryptococcus

neoformans capsule have been explored for over 40 years.

Capsule-specific antibodies against the Cryptococcus neoformans

improves survival, reduces fungal burden, and promotes granuloma

formation in infected mice, limiting disease progression (Graybill

et al., 1981; Dromer et al., 1987; Mukherjee et al., 1993b; Mukherjee

et al., 1993a). These antibodies also enhance the efficacy of

antifungals such as amphotericin B, fluconazole, and flucytosine,

demonstrating synergistic effects in animal models and in vitro

assays (Gordon and Lapa, 1964; Dromer and Charreire, 1991;

Mukherjee et al., 1995; Feldmesser et al., 1996; Monari et al.,

1999). The monoclonal antibody 18B7 completed Phase I trials in

cryptococcal meningitis patients (Larsen et al., 2005). b-glucan
conjugate vaccines (Levitz et al., 2015), such as Lam-CRM, a b-
glucan–diphtheria toxin conjugate, and branched oligo-b-glucans,
protect against systemic Candida and Aspergillus infections by

enhancing phagocytosis and prolonging survival (Torosantucci

et al., 2005; Bromuro et al., 2010; Liao et al., 2016). b-glucan
particles (GPs), derived from Saccharomyces cerevisiae, also serve

as effective antigen delivery systems and adjuvants (Huang et al.,

2010; De Smet et al., 2013). Whole glucan particles (WGPs)

conjugated with BSA have demonstrated protection against

systemic aspergillosis and coccidioidomycosis (Clemons et al.,

2014a; Clemons et al., 2015).

Pan-fungal vaccines can provide cross-protection against

multiple fungal pathogens. Heat-killed S. cerevisiae (HKY)

protects mice from infections caused by Aspergillus, Coccidioides,

Candida, Cryptococcus, Rhizopus, and Pneumocystis (Stevens et al.,

2011; Liu et al., 2012; Clemons et al., 2014b; Luo et al., 2014;
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Majumder et al., 2014; Martinez et al., 2017), and induces strong

Th1 immune responses and antibodies against b-glucans and

mannans (Liu et al., 2011). The peptide vaccine NXT-2 targets

pathogens like Candida, Aspergillus, and Pneumocystis, shows

protection in mice and primates (Rayens et al., 2021; Rayens

et al., 2022; Wychrij et al., 2025). Deletion of the F-box protein

Fbp1 in C. neoformans, part of the SCF(Fbp1) E3 ligase, triggers

strong Th1-mediated immunity (Masso-Silva et al., 2018).

Remarkably, heat-killed fbp1D cells confer cross-protection

against diverse fungal pathogens, including C. neoformans, C.

gattii, Aspergillus fumigatus, and Candida albicans, even in CD4+

T cell-deficient hosts, supporting their potential as a broad-

spectrum vaccine (Wang et al., 2019).

mRNA-lipid nanoparticle (LNP) vaccines represent a novel

platform. Fungal-targeted nanoconstructs (FTNx), using antisense

oligonucleotides against FKS1 and CHS3, can inhibit fungal cell wall

synthesis genes, reduce fungal burden and improve survival in

murine candidiasis models, exhibit broad-spectrum antifungal

activity, including against clinical isolates of Candida auris

(Chung et al., 2025). Additionally, CDA1-LNP, an mRNA-LNP

vaccine effective against cryptococcosis in mice, has been shown to

protect the majority of vaccinated animals from lethal infection (Li

et al., 2025a).

Despite promising advances, challenges remain. Fungal

similarity to human cells, immune evasion, and antigen variability

complicate vaccine development. Practical hurdles such as storage,

delivery, and competition with antifungals further limit progress

(Oliveira et al., 2021; Loh and Lam, 2023). Future efforts will benefit

from interdisciplinary approaches, novel platforms, and deeper

insight into host–fungus interactions.
5 New strategies for drug
development

The emergence of resistance from the prolonged or

monotherapeutic use of traditional antifungal agents, combined

with the low success rate of new drug development, continues to

hinder effective treatment of clinical fungal infections. Although

repurposing existing drugs offers a cost-effective and time-efficient

alternative for identifying new therapies, their effective

concentrations—measured as the half-maximal inhibitory

concentration (IC50)—often exceed the maximum safe plasma

levels in humans, creating a major barrier to clinical application.

Promisingly, combination therapy using drugs with different

mechanisms of action can significantly lower the required dose of

each agent, thereby reducing toxicity and limiting the likelihood of

resistance development during treatment. At the same time, the

development of novel antifungal agents remains a major research

focus. Among recent advances, some efforts have centered on

creating new formulations of existing effective drugs, including

nanoparticle-based delivery systems, which improve drug

solubility, bioavailability, and tissue targeting. Furthermore, novel

small-molecule compounds such as cinnamaldehyde have shown

antifungal activity through mechanisms like membrane disruption
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(Shreaz et al., 2016). In parallel, antimicrobial peptides targeting

fungal-specific enzymes, such as chitin synthase, along with other

innovative small molecules, are also under active investigation

(Figure 4) (Ran et al., 2024).
5.1 Drug combination therapy

Combination therapy has gained importance in managing

infectious diseases, especially amid rising antifungal resistance

(Johnson and Perfect, 2007; Spitzer et al., 2017; Lee et al., 2021). It

offers key benefits such as reducing resistance development,

improving efficacy at lower doses, shortening treatment duration,

and lessening toxicities like amphotericin B-associated nephrotoxicity

(Bicanic et al., 2015; Tyers and Wright, 2019). By targeting multiple

fungal pathways simultaneously, combinations can yield synergistic

or additive effects, enhancing clinical outcomes.

The standard of care for cryptococcal meningitis demonstrates

this approach, with AmB plus flucytosine (5-FC) or fluconazole as

preferred regimens. A 7-day course of AmB (1 mg/kg/day) with 5-

FC (100 mg/kg/day) yields the lowest 10-week mortality (24.2%),

with 5-FC outperforming fluconazole (Day et al., 2013; Molloy
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et al., 2018). Liposomal AmB reduces toxicity and prolongs CNS

exposure (Stone et al., 2016). A recent trial found that a single high-

dose liposomal AmB with 5-FC and fluconazole reduced mortality

and halved adverse events compared to WHO recommendations

(Jarvis et al., 2022). In invasive aspergillosis (IA), azole–

echinocandin combinations improve fungicidal activity and

survival (Paulussen et al., 2014; Marr et al., 2015). with meta-

analyses confirming benefits in salvage therapy (Panackal et al.,

2014). Rising azole-resistant Aspergillus fumigatus underscores the

need for novel agents, including ibrexafungerp, fosmanogepix, and

olorofim, now in clinical trials.

Beyond conventional antifungal combinations, a host defense

peptide mimetic has emerged as promising enhancers of existing

antifungal agents. Brilacidin (BRI), a synthetic small molecule that

recapitulates the amphipathic architecture of HDPs, augments

caspofungin (CAS) activity against Aspergillus fumigatus, Candida

albicans, Candida auris, and CAS-resistant Cryptococcus isolates

(Dos Reis et al., 2023; Diehl et al., 2024; Dos Reis et al., 2024).

Additionally, BRI potentiates azole efficacy by disrupting fungal cell

wall integrity pathways and perturbing membrane potential (Dos

Reis et al., 2023). These observations underscore the potential of

BRI as an adjunctive therapy for recalcitrant fungal infections.
FIGURE 4

New strategies for drug development. (A) Combination: i) AMB disrupts fungal cell membrane integrity, thereby increasing intracellular 5-FC
concentration and enhancing drug bioavailability; ii) Insertion of NPD827 into the cell membrane disrupts the efflux pump action and increases the
accumulation time of the drug; iii) Squalene cycloperoxidase could be inhibited by terbinafine and azols, resulting in a dual inhibition of ergosterol
biosynthesis; iv) The small molecule compound BRI enhances drug responsiveness to fungi by affecting the cell wall. (B) AI design: This figure shows
the important target protein sites for the binding of drug small molecule compounds. (C) CGA-N12 inhibited the KRE9 target in b-1, 6-glucan
synthase, disrupting the structural integrity of the fungal cell wall and improving the drug availability. (D) Pharmaceutical nanotechnology: an oral
formulation of lipid nanocrystals, MAT2203, in which targeted cells (e.g., macrophages) swallow these nanocrystals and deliver them to the site of
infection, where lower intracellular calcium concentrations trigger a nanocrystal-release mechanism that allows the drug to be released directly into
the cell interior.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1662442
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2025.1662442
Another promising strategy involves combining antifungal

agents with non-traditional pharmacological compounds. Heat

shock protein 90 (Hsp90) acts as a central regulator of fungal

stress responses, modulating resistance, morphogenesis, and

virulence factor expression (Cowen et al., 2009). Inhibiting Hsp90

markedly reduces resistance to azoles and echinocandins, restoring

susceptibility (Cowen and Lindquist, 2005; Singh et al., 2009;

Lamoth et al., 2016). Radicicol and geldanamycin, both Hsp90

inhibitors, enhance azole efficacy by disrupting membrane integrity

and capsule formation, impairing Hsp90 mitochondrial

localization, and increasing reactive oxygen species in fungal

pathogens (Cordeiro et al., 2016; Xiong et al., 2024). The

echinocandin micafungin is also active against Candida

parapsilosis isolates from neonates (da Silva et al., 2024). High-

throughput screening identified clofazimine as a broad-spectrum

synergist with fluconazole, caspofungin, and AmB, and others,

enhancing activity against Candida albicans, Cryptococcus

neoformans, and additional fungal pathogens (Robbins et al., 2015).

Immunomodulator-based combination strategies aim to both

enhance host antifungal defenses and directly kill the pathogen,

representing a frontier in antifungal therapy (Pirofski and

Casadevall, 2006). Immunomodulatory combinations aim to

boost host defenses while targeting the pathogen. Examples

include the lectin pCramoll plus fluconazole, which improved

survival and reduced fungal burden in Cryptococcus gattii–

infected mice (Jandú et al., 2017); interferon-g with AmB, which

decreased cryptococcal CNS infections; and macrophage colony-

stimulating factor with fluconazole, which enhanced macrophage

fungicidal activity (Brummer and Stevens, 1994).

In summary, the growing array of antifungal combination

therapies plays a vital role in overcoming resistance, enhancing

efficacy, and expanding treatment options against invasive fungal

infections. These approaches, from conventional drug combinations

to novel immunomodulatory and non-antifungal partnerships,

represent a promising advance in antifungal therapeutics.
5.2 Drug repurposing strategies

Drug repurposing, which involves applying approved or known

safe drugs to entirely new therapeutic areas, aims to significantly

shorten the research and development cycle, reduce costs, and

quickly address clinical challenges caused by drug-resistant fungi

(Perfect, 2017; Farha and Brown, 2019; Zhang et al., 2021; Tuci

et al., 2025). In recent years, many non-traditional antifungal drugs

have demonstrated the potential to inhibit and even kill invasive

fungi (Farha and Brown, 2019). Their mechanisms of action are rich

and diverse, covering aspects such as interfering with cell wall/

membrane synthesis, inhibiting virulence factors, disrupting energy

metabolism, and regulating fungal signaling pathways (Lu et al.,

2024; Zhen et al., 2024).

Antibacterial agents display notable broad-spectrum antifungal

activity. They may be used alone or synergistically with antifungals

to alter gene expression related to adhesion, mycelial or biofilm

formation, reduce extracellular polysaccharides, decrease surface
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hydrophobicity, or inhibit efflux pumps. For instance, tobramycin

combined with amphotericin B or voriconazole shows synergistic

enhancement of Fusarium cell wall and membrane permeability

(80% and 76% synergy, respectively) (Pozzebon Venturini et al.,

2016). Minocycline inhibits Aspergillus spp. and Fusarium spp.

(MIC 0.125–4 mg/mL) and potentiates multiple antifungal drugs

(Gao et al., 2020). Polymyxin B binds to anionic membrane lipids

(MIC100 8–256 mg/mL) and, when combined with fluconazole,

disrupts membranes of Fusarium, Cryptococcus neoformans,

Rhizopus oryzae, and Aspergillus fumigatus. Animal models

confirm antibacterial–antifungal synergy: b-lactams, colistin, and

quinolones enhance activity against Candida and Aspergillus when

combined with existing antifungals (Keçeli et al., 2014; Fernández-

Rivero et al., 2017; Mohamadzadeh et al., 2020).

Immunosuppressive agents with intrinsic antifungal activity are

emerging as candidates for drug repurposing, including calcineurin

inhibitors (e.g., cyclosporine, pimecrolimus, tacrolimus/FK506),

mTOR inhibitors (e.g., rapamycin), antimetabolites (e.g.,

mizor ib ine [MZP] , mycophenol ic ac id [MPA]) , and

glucocorticoids. Inosine monophosphate dehydrogenase

(IMPDH), the rate-limiting enzyme in de novo guanine

nucleotide biosynthesis, has gained particular attention

(Hackstein and Thomson, 2004; Pail et al., 2025; Qin et al., 2025;

Tufail et al., 2025). Benzo[b]thiophene-1,1-dioxide, an IMPDH

inhibitor, markedly attenuates or abolishes the virulence of

emerging Cryptococcus isolates and can exhibit fungicidal activity

(Kummari et al., 2018). Other IMPDH inhibitors, including MPA

and MZP, show potent activity against Candida albicans and

Cryptococcus spp. by disrupting GTP biosynthesis (Kummari

et al., 2018). Ribavirin, an antiviral with IMPDH-inhibitory

properties, demonstrates in vitro and in vivo efficacy against C.

albicans, alone or in combination with azoles, potentially via

vacuolar dysfunction and reduced extracellular phospholipase

activity (Yousfi et al., 2019; Zhang et al., 2020). Collectively, these

data highlight IMPDH as a promising antifungal target, warranting

further mechanistic and preclinical evaluation.

Statins were initially known as lipid-lowering and cholesterol-

lowering drugs. Statins inhibit HMG-CoA reductase, decreasing

ergosterol synthesis and impairing biofilms in Candida, Aspergillus,

and zygomycetes, often synergizing with fluconazole (Macreadie

et al., 2006; Callegari et al., 2010; Brilhante et al., 2015).

Antiarrhythmics (e.g., verapamil, amiodarone) disrupt calcium

homeostasis and efflux pumps, enhancing azole efficacy (da Silva

et al., 2013; Yu et al., 2013; Yu et al., 2014; Homa et al., 2017;

Alnajjar et al., 2018; Zeng et al., 2019). Antipsychotics (e.g.,

chlorpromazine, haloperidol derivatives) alter membrane

structure or inhibit calmodulin, potentiating antifungal agents

(Stylianou et al., 2014; Rossato et al., 2016; Holbrook et al., 2017;

Kim et al., 2019). Antidepressants (e.g., fluoxetine, sertraline)

damage membranes or inhibit virulence factors, active even

against resistant fungi (Gu et al., 2016; Treviño-Rangel et al.,

2019; Gowri et al., 2020; Jiang L. et al., 2020). Non-steroidal anti-

inflammatory drugs (NSAIDs) such as aspirin and ibuprofen inhibit

prostaglandin synthesis, induce reactive oxygen species (ROS)

accumulation, and disrupt membrane integrity, leading to fungal
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death (Ogundeji et al., 2016). Ibuprofen additionally shows anti-

spore activity (median MIC 256 mg/mL) and synergizes with

amphotericin B, itraconazole, or terbinafine (Borba-Santos et al.,

2021). Diclofenac sodium downregulates genes linked to RNA

transport and cell cycle in Aspergillus fumigatus, reducing

mycelial formation (Nargesi and Rezaie, 2018).

Antiparasitic drugs also show antifungal potential. Salicylanilide

oxyclozanide has shown activity against Candida albicans,

including azole- and echinocandin-resistant strains, by disrupting

mitochondrial oxidative phosphorylation, collapsing membrane

potential, and impairing utilization of non-fermentable carbon

sources (Pic et al., 2019). The antimalarial chloroquine, in

macrophages infected with Cryptococcus, induces fungal death via

iron complex formation and inhibits thiamine transporter activity

in Saccharomyces cerevisiae, linked to glucose metabolism (Huang

et al., 2012). In azole-resistant C. albicans with abnormal ergosterol

synthesis, chloroquine also disrupts morphogenesis (Shinde et al.,

2013). Auranofin, an anti-rheumatic drug, inhibits inflammatory

pathways and shows broad antifungal activity, including against

Aspergillus fumigatus, Apiospora montagnei, and Apiospora

siamensis, as well as biofilm inhibition (Thangamani et al., 2016).

Overall, drug repurposing leverages the multi-target potential of

existing agents, expands the antifungal arsenal against resistant

pathogens, and provides a theoretical foundation for developing

combination therapy and novel antifungal strategies (Zhang et al.,

2021). However, clinical translation requires thorough

pharmacokinetic profiling and large-scale trials to validate efficacy

and safety.
5.3 Popular target proteins related to
fungal resistance

Fungal resistance represents a critical challenge in clinical

mycology and antifungal drug development. The identification of

resistance-related proteins as therapeutic targets is pivotal for

guiding the rational design of antifungal agents. Drug targets are

typically macromolecules, such as proteins or nucleic acids, that

interact specifically with therapeutic compounds, mediating

pharmacological effects or enabling targeted delivery. With the

integration of bioinformatics resources, such as complete fungal

proteomes from UniProtKB and domain data from Pfam, novel

targets can be systematically identified. Furthermore, artificial

intelligence (AI) enhances the predictive capacity for small

molecule, protein interactions, facilitating the discovery of potent

antifungal candidates (Li et al., 2025c; Yin et al., 2025). Resistance

mechanisms vary with the mode of action (MOA) of antifungal

drugs. In azoles, resistance is commonly attributed to

overexpression of efflux pumps (particularly in Candida) and

alterations in the sterol biosynthesis pathway (Lee et al., 2021). In

Aspergillus fumigatus, Cyp51A point mutations and promoter

insertions are major contributors (Garcia-Rubio et al., 2018;

Roundtree et al . , 2020). In Cryptococcus neoformans ,

chromosomal aneuploidy and hypermutations drive target

overexpression and efflux (Iyer et al., 2021; Zhang et al., 2024).
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Polyenes act by binding ergosterol and disrupting membrane

integrity; resistance results from mutations in ergosterol

biosynthetic genes. For instance, Candida albicans exhibits

resistance via ERG3 deletion and upregulation of ERG5, ERG6,

and ERG25 (Yu et al., 2012; Zhou et al., 2018). Transcription factors

such as Upc2, which regulate ergosterol biosynthesis, have emerged

as critical resistance determinants (Yang et al., 2015; Tan et al.,

2022). Heat shock protein Hsp90, involved in stress adaptation, also

contributes to antifungal resistance (Wei et al., 2024). Echinocandin

resistance is primarily driven by mutations in FKS1, while drug-

induced cell wall stress can activate tolerance pathways such as the

Ca²+/calcineurin and Hsp90/mTOR signaling cascades (Perlin,

2007; Walker et al., 2010; Hou et al., 2019; Tian et al., 2024).

Pyrimidine analogs like 5-fluorocytosine inhibit nucleic acid

synthesis, with resistance arising from FCY1 mutations (Chang

et al., 2021). Additional targets include efflux pumps (e.g., Flu1,

Mdr1, Cdr1, Cdr2), kinases and transcription factors (e.g., Snf1,

Skr1), signaling proteins (e.g., Hog1, calcineurin), ribosomal

proteins (e.g., S3, S6, L4), resistance regulators (e.g., Pdr1), and

phosphodiesterases (e.g., Pde1, Pde2) (Day et al., 2018; Usher and

Haynes, 2019; Shivarathri et al., 2020; Zgadzay et al., 2022; Kim

et al., 2023; Lee et al., 2023; Engle and Kumar, 2024). These proteins

offer a theoretical basis for targeted antifungal development. The

integration of AI with bioinformatics, de novo protein design, and

synthetic biology holds promise for precision therapeutics

addressing fungal resistance.
5.4 Synthetic peptide drugs

Antimicrobial peptides (AMPs) are crucial components of the

body’s defense system, exhibiting broad-spectrum antimicrobial

activity against various pathogens (Pasupuleti et al., 2012).

Peptide-based small-molecule drugs have shown potential in

antifungal therapy, such as echinocandins and defensin-derived

peptides. These peptide molecules possess several key

characteristics, including disrupting cell membrane integrity,

inhibiting DNA and protein synthesis, and interfering with

cellular metabolic processes and cell wall biosynthesis (Buda De

Cesare et al., 2020). Due to their unique mechanism of action,

antimicrobial peptides are emerging as potential candidates for the

control of drug-resistant fungi. For example, antimicrobial peptides

designed based on chromogranin A (CGA) have demonstrated

excellent antimicrobial performance. CGA is a protein widely

distributed in neurons, and its N-terminal 65–76 amino acid

sequence (CGA-N12) has been identified as an antimicrobial

peptide with activity (Li et al., 2018; Li X. et al., 2022; Li R. et al.,

2023). The uniqueness of CGA-N12 lies in its binding target, KRE9,

a highly specific b-1,6-glucan synthase for Candida albicans. By

inhibiting KRE9 activity, CGA-N12 disrupts the structural integrity

of the fungal cell wall, effectively inhibiting fungal growth and

reproduction (Li et al., 2018; Li X. et al., 2022). In terms of

antifungal activity, CGA-N12 has shown stronger inhibitory

effects compared to the traditional antifungal drug fluconazole (Li

R. et al., 2023). This difference suggests that CGA-N12, as a novel
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antimicrobial peptide, has significant potential for future

antifungal treatments.

However, peptide small-molecule drugs have various

limitations. In terms of effectiveness, there are issues with drug

stability and delivery, such as susceptibility to proteases and low

oral bioavailability. In terms of target selection and host toxicity, the

homology with eukaryotic organisms can interfere with host

function, and drug penetration efficiency is insufficient.

Additionally, in pharmacokinetics, many drugs have short half-

lives, which result in high production costs, strict storage

conditions, and poor accessibility. Some drugs also have

immunogenicity and allergy risks. Moreover, their antifungal

spectrum is narrow, making it difficult to address mixed

infections or fungal morphological transitions (Wang et al., 2022;

Luo et al., 2023).

Future research directions include structural optimization, new

target development, innovations in delivery technologies, and

combination therapy strategies. Breakthroughs in these areas

require deep interdisciplinary collaboration between structural

biology, synthetic chemistry, and clinical needs, balancing efficacy,

safety, and accessibility to fill the gaps in antifungal therapy.
5.5 Nanotechnology for antifungal drugs

Changing the drug formulation is one of the commonly used

and effective methods in drug optimization, significantly improving

bioavailability, reducing adverse reactions, and enhancing

therapeutic outcomes. For example, RN104 (2- [2-(cyclohexyl

methylene) hydrazinyl]-4-phenylthiazole) is a thiazole hydrazone

derivative with significant antifungal activity. However, due to its

low solubility in physiological pH conditions, the oral

bioavailability of RN104 is suboptimal (Silva et al., 2020). To

overcome this issue, researchers designed a self-emulsifying drug

delivery system (SEDDS) based on RN104 to improve its

pharmacokinetic properties and oral bioavailability. In

pharmacokinetic studies in mice, RN104-SEDDS significantly

increased its oral bioavailability by 2133% compared to free

RN104, enhancing its bioactivity (Silva et al., 2024).

Another classic example is AMB, a potent antifungal drug that,

when administered intravenously, can cause severe adverse effects,

including kidney, liver, and cardiovascular damage, as well as

anemia and electrolyte imbalances (Jarvis et al., 2022). To reduce

these side effects, a new oral formulation of Amphotericin B, lipid

nanocrystal Amphotericin B (MAT2203), has been developed as an

alternative to intravenous administration (Gu et al., 2024; Kriegl

et al., 2025). The mechanism of action involves targeting cells, such

as macrophages, which engulf these lipid nanocrystals and

transport them to the infection site. At the infection site, the low

intracellular calcium concentration triggers the release mechanism

of the nanocrystals, allowing the drug to be directly released inside

the cells, thereby avoiding systemic tissue damage caused by

Amphotericin B (Boulware et al., 2023). This demonstrates how

improvements in drug formulations play a critical role in antifungal

drug development, enhancing drug efficacy while significantly
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reducing adverse effects. Looking ahead, the development of new

antifungal drug formulations will undoubtedly bring more

possibilities and greater expectations for the treatment of

fungal infections.
5.6 Antifungal compounds of traditional
Chinese medicine will become a new star

Approximately 80% of antibiotics currently used in clinical

practice are derived from natural products, underscoring the value

of natural sources in drug discovery (Newman et al., 2003).

Traditional Chinese Medicine (TCM), with a long history of

treating infectious diseases, has recently gained renewed interest

for its potential in combating fungal infections. Increasing evidence

suggests that various components of traditional Chinese herbs

exhibit significant antifungal activity, functioning through diverse

and often complementary mechanisms (Jiang B-C. et al., 2020).

TCM-derived compounds have been shown to exert antifungal

effects through several pathways, notably by targeting the fungal cell

wall and cell membrane, as well as interfering with key metabolic

and regulatory processes (Figure 5) (Zhang C-W. et al., 2023; Zou

et al., 2023).

The fungal cell wall is essential for maintaining cellular integrity

and morphology, and its absence in mammalian cells makes it an

ideal antifungal target. Several traditional Chinese medicine

(TCM)-derived compounds have been shown to disrupt fungal

cell wall synthesis or compromise its structural stability. For

instance, Plagiochin E, a macrocyclic bis(bibenzyl) compound

isolated from Marchantia polymorpha, exhibits antifungal activity

by targeting chitin synthesis. It significantly downregulates the

expression of CHS1 and alters the expression profile of other

chitin synthase genes, leading to impaired chitin biosynthesis and

subsequent cell wall damage in Candida albicans (Guo et al., 2008;

Wu et al., 2008). Sodium houttuyfonate (SH), a sulfur-containing

compound derived from Houttuynia cordata, has also shown

promising effects in combination with fluconazole against C.

albicans, particularly in resistant strains. SH significantly reduced

MIC values when used with fluconazole and exhibited strong

synergy (FICI < 0.5). Gene expression analysis revealed that SH

modulates the expression of genes involved in b-1,3-glucan
synthesis and transport, including upregulation of ZAP1, ADH5,

XOG1, and FKS1, suggesting its potential mechanism involves

enhancing cell wall-targeted antifungal responses (Shao et al.,

2017; Liu et al., 2021; Cheng et al., 2023). Berberine, an

isoquinoline alkaloid from Coptis chinensis, disrupts Candida

albicans cell-wall architecture by increasing surface exposure of b-
glucans and chitin, thereby weakening the barrier and heightening

susceptibility to immune attack and antifungal agents (Shi et al.,

2017; Liu et al., 2020; Huang et al., 2021). Beyond this remodeling

effect, berberine hydrochloride down-regulates the efflux-pump

gene CDR1 , reducing fluconazole extrusion and further

sensitizing resistant strains (Zhu et al., 2014). These actions are

magnified when berberine is paired with sodium houttuyfonate,

which up-regulates b-1,3-glucan synthesis and transport genes,
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producing marked synergism with fluconazole against recalcitrant

C. albicans (Tong et al., 2021).

Traditional Chinese medicine (TCM), derived compounds

exhibit potent antifungal activity through multiple mechanisms,

notably by targeting the fungal cell membrane and its associated

components. Ergosterol, a key sterol unique to fungal membranes,

is a primary target. For instance, honokiol, a biphenolic compound

from Magnolia officinalis, has been shown to significantly reduce

ergosterol levels in Candida albicans, thereby compromising

membrane integrity and exerting direct antifungal effects (Sun

LM. et al., 2015; Sun et al., 2017). Furthermore, honokiol

enhances the efficacy of fluconazole by diminishing the impact of

membrane transport proteins, thus reducing drug efflux and

increasing intracellular drug accumulation (Jin et al., 2010).

Similarly, essential oil components from Mentha piperita,

including carvone, menthol, and menthone, have been reported

to inhibit fungal growth by decreasing ergosterol content in the cell

membrane (Samber et al., 2015; Giménez-Santamarina et al., 2022;

Hudz et al., 2023). Extracts from Sambucus williamsii, such as

(−)-olivil-9 ′-O-b-D-glucopyranoside, lariciresinol, and

(+)-pinoresinol, also display membrane-disruptive properties;

these compounds depolarize the fungal membrane and increase

its permeability, ultimately leading to cell death (Hwang et al., 2010;

Hwang et al., 2011; Choi et al., 2013). Beyond direct disruption of
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membrane lipids, some TCM compounds interfere with

membrane-bound proteins and enzymes essential for fungal

viability. For example, star anise and peppermint-derived

constituents (carvone, menthol, and menthone) inhibit the

activity of plasma membrane H+-ATPase, causing cytoplasmic

acidification and cell death (Edris and Farrag, 2003; Baazeem

et al., 2025; Nordin et al., 2025). Additionally, eugenol impairs

nutrient uptake by inhibiting amino acid permeases such as Tat1p

and Gap1p, further suppressing yeast growth (Darvishi et al., 2013;

Nisar et al., 2021). These findings highlight the multifaceted

strategies by which TCM compounds compromise fungal

membrane function, offering promising avenues for antifungal

development, particularly against drug-resistant strains.

TCM components can also exert antifungal effects by inhibiting

hyphal and biofilm formation. Several natural compounds have been

reported to inhibit both the hyphal morphogenesis and biofilm

formation of Candida albicans through various mechanisms. For

example, two newly identified lignans from Magnolia, magnolol and

honokiol, suppress the Ras1–cAMP–EFG1 signaling pathway to

inhibit hyphal transition (Sun L. et al., 2015). Similarly, licorice-

derived compounds such as licochalcone A, glabridin, and

glycyrrhizic acid impair fungal growth and morphogenesis (Seleem

et al., 2016). Purpurin from Rubia tinctorum also demonstrates

comparable antifungal activity (Messier and Grenier, 2011; Tsang
FIGURE 5

Mechanism of action of traditional Chinese medicine. (A) Plagiochin E from Marchantia polymorpha inhibited chitin synthesis, Sodium houttuydata
from Houttuynia cordata regulated gene expression related to b-1,3-glucan synthesis, and berberine from Coptis chinensis promoted cell wall
components exposure. (B) Constituents affecting cell metabolism such as star anise and carvone extracts caused cytosolic acidification by inhibiting
H+-ATPase, (+)-medioresinol, isolated from Sambucus williamsii, shikonin and Allium sativum (garlic) extracts caused oxidative stress by inducing the
accumulation of reactive oxygen species, while curcumin synergistically enhanced the ROS generation ability of other antifungal agents. (C)
Membrane-targeting components such as honokiol from Magnolia and carvone, menthol and menthone from Mentha piperita destroy membrane
integrity by reducing ergosterol content, while OLI9, lariciresinol, and (+)-pinoresinol from Sambucus williamsii directly disrupt the membrane
structure. (D) Honokiol and magnolol from Magnolia blocked hyphal formation by inhibiting the Ras1-cAMP-EFG1 signaling pathway, and licorice-
derived compounds such as licochalcone A, glabridin, and glycyrrhizic acid impair fungal growth and morphogenesis. Licochalcone A, Purpurin from
Rubia tinctorum inhibit fungal morphological development and biofilm formation.
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et al., 2012). In addition, licochalcone A, purpurin, magnolol, and

honokiol have been shown to further inhibit biofilm formation

(Tsang et al., 2012; Sun L. et al., 2015; Seleem et al., 2016). Given

the structural complexity of fungal biofilms, their disruption is

particularly valuable. Cinnamaldehyde, derived from cinnamon,

significantly impairs biofilm development by Candida species (Pires

et al., 2011; Khan and Ahmad, 2012). Likewise, berberine, isolated

from Coptis chinensis and Hydrastis canadensis, exhibits notable

biofilm-inhibitory effects, especially in combination with

miconazole (Wei et al., 2011). The treatment with Paeonol shows

effective antifungal and antibiofilm activity against biofilms

containing Candida albicans and/or Cryptococcus spp (Qian et al.,

2022). Other natural compounds, including curcumin, thymol, and

eugenol, have also been reported to interfere with biofilm formation

(Braga et al., 2008; Miladi et al., 2017).

Several Traditional Chinese Medicine (TCM) compounds exert

antifungal activity by disrupting fungal energy metabolism,

primarily through the induction of oxidative stress and

mitochondrial dysfunction. For example, (+)-medioresinol,

isolated from Sambucus williamsii, promotes the accumulation of

reactive oxygen species (ROS) and induces cell cycle arrest,

ultimately triggering apoptosis in fungal cells (Hwang et al.,

2012). Similarly, baicalin interferes with mitochondrial enzyme

activity and cell cycle progression, leading to programmed cell

death (Yang et al., 2014). Shikonin has also been shown to increase

endogenous ROS levels and impair mitochondrial function, thereby

enhancing its antifungal efficacy (Miao et al., 2012). Thymol, a

monoterpenoid phenol, suppresses the expression of genes involved

in the tricarboxylic acid (TCA) cycle, resulting in diminished energy

production and inhibited growth of Fusarium species (Zhang et al.,

2018). Consistent with these mechanisms, Allium sativum (garlic)

induces oxidative stress by elevating intracellular ROS levels, further

suppressing fungal proliferation (Lemar et al., 2005). Notably,

curcumin, a polyphenolic compound derived from turmeric, has

been reported to synergize with azoles and polyenes to amplify ROS

generation in Candida albicans, leading to mitochondrial damage,

apoptosis, and enhanced antifungal activity (Sharma et al., 2010b;

Sharma et al., 2010a). These findings underscore the diverse

mechanisms by which TCM-derived compounds interfere with

fungal energy homeostasis and highlight their potential as

valuable resources for the development of next-generation

antifungal therapeutics.
5.7 AI in developing new molecules with
antifungal activity

Artificial intelligence (AI) has emerged as a transformative tool

in antifungal drug discovery, particularly for identifying and

optimizing novel therapeutic agents. By leveraging large-scale

biological, chemical, and clinical datasets, AI-driven platforms

can accurately predict drug-target interactions, prioritize lead

compounds, and optimize molecular structures (Jović and Šmuc,

2020; Zhou et al., 2025). Machine learning (ML) models trained on

physicochemical properties of known antifungals effectively
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distinguish active from inactive compounds, streamlining virtual

screening and substantially reducing the candidate space (Das et al.,

2021; Randall et al., 2024). Furthermore, ML approaches play a

pivotal role in predicting resistance-conferring mutations, while

advances such as AlphaFold enable high-precision structural

modeling for the identification of antifungal targets (Elfmann and

Stülke, 2025; Li et al., 2025c).

The integration of deep generative models and molecular

dynamics simulations has further accelerated antifungal discovery.

Deep learning, based virtual screening is widely used to predict

binding affinities of compounds targeting fungal proteins such as b-
(1,3)-D-glucan synthase (Fks1), lanosterol 14a-demethylase

(Erg11), and chitin synthase, and other essential genes involved

fungal growth. For instance, one study used chemical descriptors to

develop a machine learning model targeting Candida albicans FKS1,

achieving 96.72% classification accuracy (Gao et al., 2022). Another

study applied deep learning and molecular docking to screen 1,930

FDA-approved drugs against C. albicans dihydrofolate reductase,

identifying paritaprevir, lumacaftor, and rifampin as promising

inhibitors (Joshi et al., 2022). Addressing the rising incidence of

azole-resistant Aspergillus fumigatus, researchers also developed

novel inhibitors targeting AfDHODH, a key enzyme in

pyrimidine biosynthesis, yielded 13 candidate molecules, with two

demonstrating sub-100 mM activity in vitro (Li K. et al., 2025).

AI has also significantly advanced the discovery and design of

antifungal peptides (AFPs) (Kavousi et al., 2020; Szymczak et al.,

2025). DL-QSARES, a framework integrating deep learning with

quantitative structure–activity relationship-based empirical

screening, enabled de novo design of 49 AFPs, with AFP-13

showing potent activity against C. albicans and therapeutic

efficacy in animal models (Yin et al., 2025). Other studies using

diffusion models and molecular dynamics identified 25 peptides

with antifungal properties, among which AMP-29 showed activity

against C. glabrata (Wang Y. et al., 2025). Advanced AI-platforms

like EvoGradient, BroadAMP-GPT, and AMPSphere have

demonstrated success in designing antimicrobial peptides with

high hit rates against resistant pathogens. EvoGradient used oral

microbiome data to generate 32 peptides, all active against at least

one ESKAPE pathogen and effective in mouse wound models

(Wang B. et al., 2025). BroadAMP-GPT combined AI generation,

filtering, and experimental validation, yielding a 57% hit rate against

ESKAPE pathogens (Li et al., 2025b). AMPSphere screened over

150,000 genomes to predict 860,000 peptides; among 100 tested, 63

showed antibacterial activity via membrane disruption (Santos-

Júnior et al., 2024).

Systems biology has further enhanced AI applications. The

integration of comprehensive databases, including genomic,

proteomic, and transcriptomic resources, can greatly accelerate

the discovery of novel antifungal targets and the identification of

genetic variants that confer drug resistance. The first genome-scale

metabolic model (GSMM) iRV973 for Candida auris predicted

growth under various nutrient conditions and identified 50

conserved, serum-essential enzymes—some as novel, non-

homologous drug targets (Viana et al., 2023). In C. albicans,

machine learning and chemogenetic interaction analysis enabled
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1662442
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2025.1662442
screening of ~6,500 genes, expanding the GRACE (gene

replacement and conditional expression) database by 866 entries

and revealing 149 fungus-specific essential genes (Fu et al., 2021).

This led to the discovery of NP-BTA, a N-pyridinyl-b-thienyl-
acrylamide derivative, was discovered to inhibit the essential

enzyme glutaminyl-tRNA synthetase (Gln4), representing a novel

antifungal mechanism of action (Fu et al., 2021). Recent advances

include a predictive machine learning framework utilizing as few as

ten genomic variant features to accurately classify isolates as

heteroresistant or susceptible, enabling rapid detection of

micafungin heteroresistance in C. parapsilosis (Zhai et al., 2024).

Similarly, an ML-driven multi-omics integration approach,

combining transcriptomic and genomic variation data, has

effectively pinpointed highly multidrug-adapted traits within the

Cryptococcus gattii species complex (Fan et al., 2024). Another

study used ML on whole-genome annotations and Erg11 sequences

to predict antifungal resistance profiles in yeasts, achieving 75%

accuracy for fluconazole resistance and identifying novel resistance-

associated residues (Harrison et al., 2025).

The advent of AlphaFold has transformed predictions of

antifungal target protein structures and drug–binding interfaces.

Leveraging AlphaFold, the structure of Fks1, the b-1,3-glucan
synthase targeted by echinocandins, was resolved, revealing

resistance-associated mutations, catalytic mechanisms, and the

GTP-dependent conformational activation by Rho1 (Hu et al.,

2023; Li J. et al., 2025). Furthermore, Simulations of the Erg11–

Ncp1 interaction identified residues V234, F235, and L238 in Erg11

as critical for complex stability; disruption of this interface was

predicted to sensitize Candida albicans to azoles via increased

protein misfolding (Li J. et al., 2025). High-throughput deep

mutational scanning, informed by AlphaFold, further pinpointed

residues in CaErg11 that alter azole binding and resistance (Bédard

et al., 2024). Coupling AlphaFold with FoldX identified conserved,

non–active site mutations in Fcy1, the 5-fluorocytosine target

enzyme, that destabilize the protein, constituting a major

mechanism of 5-FC resistance (Després et al., 2022).

In summary, AI technologies, including machine learning, deep

learning, and natural language processing—offer powerful solutions

to combat antifungal resistance. From drug repurposing and target

prediction to peptide design and personalized strategies, AI is

poised to drive the next generation of antifungal therapeutics.
6 The complex mechanisms behind
the failure of fungal treatment

Antifungal treatment failure is a growing clinical challenge,

driven not only by pharmacological limitations but also by intrinsic

fungal traits. Key factors such as biofilm formation, metabolic

flexibility, genetic plasticity, and evolving resistance mechanisms

significantly influence therapeutic outcomes (Fisher et al., 2022;

Lockhart et al., 2023). Fungi like Candida and Aspergillus form

drug-resistant biofilms, where extracellular matrices limit

antifungal penetration and induce dormant “persister” cells

(Morelli et al., 2021; Kaur and Nobile, 2023). Under nutrient
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stress, fungi reprogram metabolism and produce antioxidant

enzymes, reducing susceptibility to oxidative agents like AMB (Ke

et al., 2024). Additionally, some species, such as Candida auris,

acquire resistance genes from the environment and modify host

conditions to favor survival (Akinbobola et al., 2023). Genetic

exchanges and epigenetic modifications further contribute to

rapid resistance development (Meng et al., 2024; Zajac et al.,

2025; Zhang et al., 2025). Clinical isolates show considerable

genomic diversity, including chromosomal duplications and non-

classical mutations, complicating treatment strategies (Priest et al.,

2022; Rhodes et al., 2022; Ning et al., 2024; Zhou et al., 2024;

Brassington et al., 2025). Traditional laboratory strains no longer

reflect real-world pathogen behavior, highlighting the need to

incorporate contemporary clinical isolates into research. Beyond

genetic resistance, fungi exhibit heterogeneous resistance and drug

tolerance (Chen et al., 2024; Zhai et al., 2024). Subpopulations may

survive high drug concentrations through stress response pathways,

while dormant phenotypes persist within host niches like

macrophages (Arastehfar et al., 2023). These non-genetic

adaptations often precede the emergence of stable, heritable

resistance. The rise of multidrug-resistant strains, such as

Candida auris and Rhodosporidiobolus fluvialis, underscores the

urgency for new therapeutic approaches (Jackson et al., 2019;

Huang et al., 2024). Environmental changes, including climate

warming, may drive the emergence of such pathogens by

promoting stress adaptation and thermal tolerance (Hofer, 2019;

Zhai et al., 2021; Du Toit, 2023; Bottery and Denning, 2024). To

address these challenges, antifungal development must shift toward

targeting tolerance mechanisms, exploring niche-specific strategies,

and expanding surveillance of emerging environmental and clinical

pathogens. Future advances will depend on integrating fungal

biology with ecological and genomic insights to stay ahead of

rapidly adapting fungal threats.
7 Conclusion and future outlook

Antifungal drug research is advancing rapidly, driven by the

urgent need to improve therapeutic outcomes and combat emerging

drug resistance. Current efforts span a wide range of strategies—

from structural optimization and target-specific drug design to the

development of advanced delivery platforms. A successful response

to antifungal resistance demands a multidisciplinary approach that

integrates innovative pharmacology, biotechnology, and systems-

level understanding of host-pathogen interactions.

One promising avenue lies in the development of antifungal

peptide-based therapeutics. Structural optimization through

biomimetic engineering, such as modifying host defense peptides

or incorporating non-natural amino acids, can enhance stability,

membrane permeability, and antifungal activity (Ting et al., 2020).

Targeting fungal-specific biological pathways, such as chitin

synthesis or virulence factor secretion, offers opportunities for

designing highly selective and less toxic agents (Chung et al.,

2025). Advances in drug delivery technologies, including

liposomes, exosomes, and cell-penetrating peptides (CPPs),
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further improve bioavailability and tissue targeting (Zhu et al.,

2023). Moreover, combination therapies involving immune

modulators (e.g., IFN-g) or antibiofilm agents may synergistically

enhance efficacy and delay the onset of resistance (Scriven et al.,

2017). The integration of artificial intelligence (AI), synthetic

biology, and de novo protein design is redefining antifungal drug

discovery (Liu et al., 2025). AI-driven computational modeling

enables the rational design of antifungal agents and the prediction

of resistance mutations, facilitating precision therapeutics. Coupling

pathogen biology with host immunology and computational tools

can help navigate the complexity of fungal infections and guide the

development of targeted interventions. In parallel, technological

innovations in pharmaceutical sciences are reshaping antifungal

delivery strategies. Nanomaterials, such as mesoporous zinc oxide,

are being explored for topical applications, while smart nano-

delivery systems targeting the fungal microenvironment represent

a promising frontier (Bayat et al., 2022; Thapliyal et al., 2025). These

approaches may prolong the efficacy of existing antifungal drugs

and accelerate the discovery of new compounds. Improving early

diagnostic and monitoring capabilities is equally vital. Rapid

detection tools and biomarker-based diagnostic kits can enable

timely intervention, bridging prevention and treatment. Emerging

data from proteomics and genomic studies suggest that the

development of super-resistant fungal strains is associated with

critical genomic transitions (Burrack et al., 2022; Lockhart et al.,

2023; de Moraes and Ferreira-Pereira, 2024; Joste et al., 2025).

Notably, these transitions may involve abrupt conformational

changes in key target proteins. Integrating bioinformatics and

protein structural biology to monitor such changes could facilitate

earlier and more effective interventions.

In summary, the future of antifungal therapy hinges on cross-

disciplinary innovation. Emphasis on targeted drug design,

advanced delivery platforms, AI-driven prediction models, and

early diagnostic tools will be essential in addressing the escalating

challenge of antifungal resistance. Moving forward, a proactive

approach that couple’s prevention with precision therapy will be

critical to shifting the paradigm from treatment to long-term

control of fungal diseases.
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Azevedo Melo, A. S., Neves, R. P., et al. (2024). Taxonomy of Candida parapsilosis
complex isolated from neonates and the role of Hsp90 inhibitors to enhanced the
antifungal activity of micafungin. Lett. Appl. Microbiol. 77, ovae044. doi: 10.1093/
lambio/ovae044

Day, J. N., et al. (2013). Combination antifungal therapy for cryptococcal meningitis.
N Engl. J. Med. 368, 1291–1302. doi: 10.1056/NEJMoa1110404

Day, A. M., McNiff, M. M., da Silva Dantas, A., Gow, N. A. R., and Quinn, J. (2018).
Hog1 regulates stress tolerance and virulence in the emerging fungal pathogen candida
auris. mSphere 3, e00506–18. doi: 10.1128/mSphere.00506-18

Deane, C. (2023). Fungal FKS in focus. Nat. Chem. Biol. 19, 536–536. doi: 10.1038/
s41589-023-01332-3

De Bernardis, F., Amacker, M., Arancia, S., Sandini, S., Gremion, C., Zurbriggen, R.,
et al. (2012). A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy
and safety profile in animal models. Vaccine 30, 4490–4498. doi: 10.1016/
j.vaccine.2012.04.069

De Bernardis, F., Graziani, S., Tirelli, F., and Antonopoulou, S. (2018). Candida
vaginitis: virulence, host response and vaccine prospects. Med. Mycol 56, 26–31.
doi: 10.1093/mmy/myx139

De Brucker, K., Bink, A., Meert, E., Cammue, B. P., and Thevissen, K. (2013).
Potentiation of antibiofilm activity of amphotericin B by superoxide dismutase
inhibition. Oxid. Med. Cell Longev 2013, 704654. doi: 10.1155/2013/704654

Dell'Olmo, E., Gaglione, R., Cesaro, A., Cafaro, V., Teertstra, W. R., de Cock, H., et al.
(2021). Host defense peptides identified in human apolipoprotein B as promising
antifungal agents. Appl. Microbiol. Biotechnol. 105, 1953–1964. doi: 10.1007/s00253-
021-11114-3

Demonchy, J., Biard, L., Clere-Jehl, R., Wallet, F., Mokart, D., Moreau, A. S., et al.
(2024). Multicenter retrospective study of invasive fusariosis in intensive care units,
France. Emerg. Infect. Dis. 30, 215–224. doi: 10.3201/eid3002.231221

de Moraes, D. C., and Ferreira-Pereira, A. (2024). Multidrug-resistant fungi. J. Fungi
(Basel) 10, 686. doi: 10.3390/jof10100686

Denning, D. W. (2003). Echinocandin antifungal drugs. Lancet 362, 1142–1151.
doi: 10.1016/s0140-6736(03)14472-8

Denning, D. W. (2024). Global incidence and mortality of severe fungal disease.
Lancet Infect. Dis. 24, e428–e438. doi: 10.1016/s1473-3099(23)00692-8

Deray, G. (2002). Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 49
Suppl 1, 37–41. doi: 10.1093/jac/49.suppl_1.37

De Smet, R., Demoor, T., Verschuere, S., Dullaers, M., Ostroff, G. R., Leclercq, G.,
et al. (2013). b-Glucan microparticles are good candidates for mucosal antigen delivery
in oral vaccination. J. Control Release 172, 671–678. doi: 10.1016/j.jconrel.2013.09.007

Després, P. C., Cisneros, A. F., Alexander, E. M. M., Sonigara, R., Gagné-Thivierge,
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León, E., et al. (2024). Brilacidin, a novel antifungal agent against Cryptococcus
neoformans. mBio 15, e0103124. doi: 10.1128/mbio.01031-24

Dietl, A. M., Misslinger, M., Aguiar, M. M., Ivashov, V., Teis, D., Pfister, J., et al.
(2019). The siderophore transporter sit1 determines susceptibility to the antifungal VL-
2397. Antimicrob. Agents Chemother. 63, e00807–19. doi: 10.1128/aac.00807-19

Dignani, M. C., and Anaissie, E. (2004). Human fusariosis. Clin. Microbiol. Infect. 10
Suppl 1, 67–75. doi: 10.1111/j.1470-9465.2004.00845.x

Dita M, B. M., Heck, D., Mizubuti, E. S. G., and Staver, C. P. (2018). Fusarium wilt of
banana: current knowledge on epidemiology and research needs toward sustainable
disease management. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01468

Dos Reis, T. F., Diehl, C., Pinzan, C. F., de Castro, P. A., and Goldman, G. H. (2024).
Brilacidin, a host defense peptide mimetic, potentiates ibrexafungerp antifungal activity
against the human pathogenic fungus Aspergillus fumigatus. Microbiol. Spectr. 12,
e0088824. doi: 10.1128/spectrum.00888-24

Dos Reis, T. F., de Castro, P. A., Bastos, R. W., Pinzan, C. F., Souza, P. F. N., Ackloo,
S., et al. (2023). A host defense peptide mimetic, brilacidin, potentiates caspofungin
antifungal activity against human pathogenic fungi. Nat. Commun. 14, 2052.
doi: 10.1038/s41467-023-37573-y
frontiersin.org

https://doi.org/10.1038/s41467-021-23745-1
https://doi.org/10.1038/s41467-021-23745-1
https://doi.org/10.1016/j.idc.2006.07.001
https://doi.org/10.1016/j.bcp.2020.114201
https://doi.org/10.1038/s41564-023-01561-1
https://doi.org/10.3390/jof11040265
https://doi.org/10.3390/jof8101069
https://doi.org/10.2165/11585270-000000000-00000
https://doi.org/10.2165/11585270-000000000-00000
https://doi.org/10.1039/d2fo02369e
https://doi.org/10.1038/s41564-025-02001-y
https://doi.org/10.1038/s41564-025-02001-y
https://doi.org/10.1016/j.bbamem.2013.04.023
https://doi.org/10.1146/annurev-micro-032521-015858
https://doi.org/10.1111/1462-2920.14055
https://doi.org/10.1038/s41467-025-60684-7
https://doi.org/10.1093/cid/ciw696
https://doi.org/10.1099/jmm.0.079681-0
https://doi.org/10.1093/mmy/myt015
https://doi.org/10.1099/jmm.0.000138
https://doi.org/10.1099/mic.0.000222
https://doi.org/10.1099/mic.0.000222
https://doi.org/10.1073/pnas.0813394106
https://doi.org/10.1073/pnas.0813394106
https://doi.org/10.1126/science.1118370
https://doi.org/10.1126/science.1118370
https://doi.org/10.1038/nrmicro1537
https://doi.org/10.1038/nrmicro1537
https://doi.org/10.1016/j.drup.2006.05.004
https://doi.org/10.1016/s2666-5247(23)00067-8
https://doi.org/10.1371/journal.pone.0076028
https://doi.org/10.1371/journal.pone.0076028
https://doi.org/10.1038/s41551-021-00689-x
https://doi.org/10.1038/s41551-021-00689-x
https://doi.org/10.1016/j.heliyon.2024.e32386
https://doi.org/10.1128/aac.00966-12
https://doi.org/10.1093/lambio/ovae044
https://doi.org/10.1093/lambio/ovae044
https://doi.org/10.1056/NEJMoa1110404
https://doi.org/10.1128/mSphere.00506-18
https://doi.org/10.1038/s41589-023-01332-3
https://doi.org/10.1038/s41589-023-01332-3
https://doi.org/10.1016/j.vaccine.2012.04.069
https://doi.org/10.1016/j.vaccine.2012.04.069
https://doi.org/10.1093/mmy/myx139
https://doi.org/10.1155/2013/704654
https://doi.org/10.1007/s00253-021-11114-3
https://doi.org/10.1007/s00253-021-11114-3
https://doi.org/10.3201/eid3002.231221
https://doi.org/10.3390/jof10100686
https://doi.org/10.1016/s0140-6736(03)14472-8
https://doi.org/10.1016/s1473-3099(23)00692-8
https://doi.org/10.1093/jac/49.suppl_1.37
https://doi.org/10.1016/j.jconrel.2013.09.007
https://doi.org/10.1038/s41559-022-01846-4
https://doi.org/10.1128/mbio.01031-24
https://doi.org/10.1128/aac.00807-19
https://doi.org/10.1111/j.1470-9465.2004.00845.x
https://doi.org/10.3389/fpls.2018.01468
https://doi.org/10.1128/spectrum.00888-24
https://doi.org/10.1038/s41467-023-37573-y
https://doi.org/10.3389/fcimb.2025.1662442
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2025.1662442
Drees KP, L. J., Puechmaille, S. J., Parise, K. L., Wibbelt, G., Hoyt, J. R., Sun, K., et al.
(2017). Phylogenetics of a fungal invasion: origins and widespread dispersal of white-
nose syndrome. mBio 8, e01941-01917. doi: 10.1128/mBio.01941-17

Dromer, F., and Charreire, J. (1991). Improved amphotericin B activity by a
monoclonal anti-Cryptococcus neoformans antibody: study during murine
cryptococcosis and mechanisms of action. J. Infect. Dis. 163, 1114–1120.
doi: 10.1093/infdis/163.5.1114

Dromer, F., Charreire, J., Contrepois, A., Carbon, C., and Yeni, P. (1987). Protection
of mice against experimental cryptococcosis by anti-Cryptococcus neoformans
monoclonal antibody. Infect. Immun. 55, 749–752. doi: 10.1128/iai.55.3.749-752.1987

Dunne, K., Hagen, F., Pomeroy, N., Meis, J. F., and Rogers, T. R. (2017). Intercountry
transfer of triazole-resistant aspergillus fumigatus on plant bulbs. Clin. Infect. Dis. 65,
147–149. doi: 10.1093/cid/cix257

Du Toit, A. (2023). Sticky candida auris. Nat. Rev. Microbiol. 21, 770–770.
doi: 10.1038/s41579-023-00986-z

Edlind, T., and Katiyar, S. (2022). Intrinsically high resistance of candida glabrata to
hydrogen peroxide and its reversal in a fluconazole-resistant mutant. Antimicrob.
Agents Chemother. 66, e0072122. doi: 10.1128/aac.00721-22

Edris, A. E., and Farrag, E. S. (2003). Antifungal activity of peppermint and sweet
basil essential oils and their major aroma constituents on some plant pathogenic fungi
from the vapor phase. Nahrung 47, 117–121. doi: 10.1002/food.200390021

Edwards, J. E., Schwartz, M. M., Schmidt, C. S., Sobel, J. D., Nyirjesy, P., Schodel, F.,
et al. (2018). A fungal immunotherapeutic vaccine (NDV-3A) for treatment of
recurrent vulvovaginal candidiasis-A phase 2 randomized, double-blind, placebo-
controlled trial. Clin. Infect. Dis. 66, 1928–1936. doi: 10.1093/cid/ciy185

Egger, M., Bellmann, R., Krause, R., Boyer, J., Jaksǐć, D., Hoenigl, M., et al. (2023).
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