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Introduction: Tubercular meningitis (TBM) is a serious pediatric infection with

high mortality rates. This research aimed to characterize the alterations in

cerebrospinal fluid (CSF) proteome in TBM and to identify biomarker panels

that can distinguish it from other central nervous system infections.

Methods: We retrospectively analyzed the CSF proteome from 104 patients,

including 7 TBM, 28 with purulent meningitis (PM), 20 with viral meningitis (VM), 9

with cryptococcus neoformans meningitis (CNM), 30 non-CNS infected controls

(Ctrl), and 10 brain disease (BD) controls.

Results: The TBM proteome displayed greater similarity to that of PM patients. A

total of 120 cytokines and receptors were significantly dysregulated in TBM CSF.

Pathway analysis indicated marked upregulation of complement activation, fibrin

clot formation, and microautophagy signaling, along with significant suppression

of collagen degradation in TBM. Biomarker panels were established, including F2

and TYMP to differentiate TBM from PM (AUC=0.874, 95% CI, 0.748-0.999),

ENPP2 and WARS1 to differentiate TBM from VM (AUC=0.929, 95% CI, 0.929-1),

F12, APOM and CD163 to differentiate TBM from CCM (AUC=0.993, 95% CI,

0.869-1), and HLA-B and MGAT1 to differentiate TBM from Ctrls (AUC=0.934,

95% CI, 0.825-1).

Discussion: This research will provide a highly valuable proteomics resource for a

better understanding of TBM pathogenesis, yielding insights into important

differential diagnostic biomarkers and potential therapeutic targets in pediatric TBM.
KEYWORDS
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1 Introduction

Tuberculous meningitis (TBM) is a central nervous system

infection caused by Mycobacterium tuberculosis (Mtb),

considered the most devastating manifestation of tuberculosis

(TB), with the highest incidence in the vulnerable early childhood

age group (Solomons et al., 2022). A systematic review of TBM in

children reported an overall mortality risk of nearly 20%, while

severe neurological morbidity is noted in more than 50% of

survivors, even when treated (Chiang et al., 2014). TBM often

presents with non-specific symptoms in the early stages, which are

easily misdiagnosed as other meningitides, such as the purulent

meningitis (PM), viral meningitis (VM), and cryptococcus

neoformans meningitis (CCM). This causes early diagnosis

challenges and delays treatment, resulting in poor outcomes like

death, neurological damage, and neurocognitive disorders.

Therefore, timely diagnosis and differential diagnosis of TBM are

crucial to prompt anti-tuberculosis therapy.

The diagnosis of TBM in children remains a challenge.

Traditional diagnostic methods, such as acid-fast staining, have

low sensitivity, while Mtb culture is time-consuming, resulting in

delayed diagnosis and treatment (Lin, 2024). Alarmingly,

commonly employed clinical markers lack specificity, thereby

increasing the risk of misdiagnosing TBM as other types of

meningitis, such as viral or bacterial forms (Xing et al., 2020).

Recent advancements in diagnostics, such as XpertUltra and

Metagenomic Next-Generation Sequencing (mNGS), have

improved sensitivity and shortened diagnostic delays (Shen et al.,

2021; Li et al., 2023). However, the lowered specificity and positive

predictive value compared to GeneXpert MTB/RIF raised concerns,

which require prospective testing in a large population, including

children (Donovan et al., 2020). Additionally, mNGS may detect

contaminants, causing false positives (Zhu et al., 2022). Other CSF

diagnostic method, such as the Gamma-interferon release assays

(IGRAs), requires large CSF volumes (>6 mL) (Luo et al., 2020),

while the Adenosine deaminase (ADA) levels in bacterial and viral

meningitis complicate ADA testing interpretation in TBM due to

unclear diagnostic cut-offs (Pormohammad et al., 2017). Therefore,

there is an urgent need for new TBM diagnostic tools suitable for

use in children.

Advances in omics technologies offer promising avenues for

identifying TBM diagnostic biomarkers. Previous research used 2D-

based CSF proteomics to identify 19 differential proteins with

ALOX-5 as a potential marker (Kataria et al., 2011). Another

research used iTRAQ-based quantitative proteomics to confirm

the association of S100A8 and APOB with TBM using ELISA (Ou

et al., 2013). Furthermore, another similar iTRAQ-based

quantitative proteomics research identified 111 differential

proteins between TBM and healthy controls, highlighting NELL2

and APOB as potential diagnostic biomarkers (Mu et al., 2015; Yang

et al., 2015). However, all these studies were conducted on adult

TBM patients. Since the incidence rate of TBM is higher in children

than in adults (Kelekçi et al., 2014), it is essential to study the CSF

proteomes in childhood TBM. Currently, various studies have
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identified and validated host protein biomarkers with potential as

diagnostic candidates for childhood TBM (Visser et al., 2015;

Manyelo et al., 2019a; Manyelo et al., 2019b; Manyelo et al., 2022)

using immunoassays, highlighting the urgent need to apply a

proteomic strategy to detect more proteins suitable for diagnosis

in pediatric TBM patients.

In this study, we performed a retrospective analysis using an

unbiased proteomics approach to investigate proteome changes

among patients with TBM, PM, VM, CCM, brain disease patients

(BD), and non-CNS infected controls (Ctrls). To our knowledge,

there is the first CSF proteomics research in pediatric TBM patients.

We uncovered intriguing disparities between TBM and other CNS-

infected meningitis through functional enrichment analysis. Finally,

we generated potential biomarker panels for TBM diagnosis and

differentiation from other CNS infections. This research aimed to

reveal distinctive changes in the CSF proteome in pediatric TBM,

discover valuable CSF protein biomarkers for TBM diagnosis, and

provide potential targets for TBM therapy.
2 Materials and methods

2.1 Ethical approval

This study received approval from the Ethics Committee of

Beijing Children’s Hospital, Capital Medical University (Ethical

approval number: [2023]-E-156-Y). All CSF samples were obtained

from the biobank of Beijing Children’s Hospital. Written informed

consent for participation in this study was provided by the

participants’ legal guardian.
2.2 TBM patients and CSF samples

A total of 104 CSF archived samples from hospitalized patients

were analyzed. Patients enrolled at Beijing Children’s Hospital

(National Children’s Medical Center) between December 2016

and March 2021, with a clinical suspicion of meningitis who

underwent a lumbar puncture (LP) and had CSF samples

collected, were included. Patients were categorized into the

following groups: TBM, PM, VM, CCM, BD, and Ctrl. Patients

with febrile convulsions, traumatic brain injury, and without

etiological evidence were excluded. The inclusion criteria for the

four types of meningitis required the isolation of a pathogen from

CSF or blood culture, or the detection of the virus using PCR.

Finally, 7 TBM, 28 PM, 20 VM, 9 CCM, 10 BD, and 30 Ctrls were

enrolled in this research. All the patients were negative for

HIV infections.

Each CSF sample was collected using a syringe and placed into a

polypropylene sample collection tube. The total volume of CSF

(approximately 1–2 ml) was retained, then centrifuged at 4°C for 10

minutes at 2,000 × g. Then, the supernatant was removed and

stored at -80°C until analysis. Before proteomic analysis, the TBM

samples were filtered by 0.22mm sterilizing filter and processed in a
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CL2 lab with CL3 standards to ensure biosafety. Clinical data were

collected retrospectively from the patient’s medical records

by clinicians.
2.3 Sample preparation

Protein digestion was carried out using the filter-aided sample

preparation (FASP) method with minor modifications (Wiśniewski

et al., 2009). Briefly, 100 mL of each CSF sample was reduced with 20

mM dithiothreitol (DTT) at 95°C for 5 minutes, followed by

alkylation with 50 mM iodoacetamide (IAA) at room temperature

for 45 minutes in the dark. Next, the samples were transferred to 30-

KD ultrafiltration filters and centrifuged at 14,000 × g for 15

minutes at 4°C. Then, the samples were washed three times with

25 mM ammonium bicarbonate (ABC). The treated samples were

digested with trypsin (enzyme-to-protein ratio of 1:50) in 25 mM

ABC and incubated at 37°C for 14 hours. Finally, the digested

peptides were collected after centrifugation at 14,000 g for 20

minutes. The peptide concentration was quantified using the BCA

method and loaded with an equal amount for LC-MS/MS analysis.
2.4 LC-MS/MS analysis

LC-MS/MS analysis was conducted on an UltiMate 3000

coupled to an Exploris 480 Orbitrap mass spectrometer using an

electrospray ion source (all Thermo Fisher Scientific). Purified

peptides were separated at 60°C on 50 cm columns with an inner

diameter of 75 µm C18 analytical column (Omitech). Mobile phases

A and B consisted of 99.9/0.1% water/formic acid (v/v) and 80/20/

0.1% acetonitrile/water/formic acid (v/v/v). The flow rate was

maintained at 1500 nl/min, with the initial concentration of 5% B

being increased linearly to 30% B over 20 minutes, followed by a

further increase to 90% within 2.5 minutes, and a 2.5-minute

plateau at the end.

MS data were acquired using the data-independent acquisition

(DIA) scan mode for single-shot patient samples. The DIA method

employed a variable isolation window of 60 windows for acquisition

(Supplementary Table S1). A full MS scan was performed within the

m/z range of 350-1,200 at a resolution of 120,000, while the DIA

scan was acquired at a resolution of 30,000. The automatic gain

control (AGC) target was set to a custom value. The maximum

injection time was 50 ms. The high-energy collision dissociation

(HCD) energy was set to 30%.
2.5 Mass spectrometry data processing

Raw data generated by MS underwent quantitative analysis

using Spectronaut Pulsar (v18.6, Biognosys AG) with a direct DIA

analysis strategy. The database searched was the SwissProt human

database (released in March 2024, containing 20,433 sequences).

Searches utilized carbamidomethylation as a fixed modification,
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acetylation of the protein N-terminus as a variable modification,

and oxidation of methionines as another variable modification. The

Trypsin/P proteolytic cleavage rule permitted a maximum of 2

missed cleavages. The FDR for PSM, peptides, and protein groups

was set at 0.01. DIA analysis was performed with parameters set as

follows: the precision iRT was calibrated based on local non-linear

regression; the Q-value cutoff for precursors and proteins was 0.01;

the protein label-free quantification (LFQ) method was MaxLFQ;

cross-run normalization was carried out using a local normalization

strategy to adjust for the systematic variance of LC-MS performance

(Callister et al., 2006); the protein inference algorithm was IDPicker

(Zhang et al., 2007); and the quantification MS level was MS1.
2.6 Statistical analysis

The pre-processing of the proteomic data was performed using

the wkomics (https://www.omicsolution.com/wkomics/main/)

analysis platform. Proteins with a missing ratio ≥ 40% across all

three groups (Meningitis, BD, and Ctrl) were removed. The

remaining proteins, which still had a missing ratio of ≥ 40% in

each group, were imputed with the minimum value for that group.

Proteins with a missing ratio < 40% in each group were imputed by

the Sequential K-Nearest Neighbors (SeqKNN) method (Kim et al.,

2004). The imputation method was validated by NAguiderR to

evaluate method priority (Wang et al., 2020).

The abundance of a protein in each sample was normalized to

its median abundance among all proteins in that sample to get the

relative protein abundance. Then, the data matrices were

automatically scaled as z-score values for subsequent statistical

analysis. The pairwise DEPs between TBM, PM, VM, CCM, or

BD, and Ctrl were defined by adjusting age and sex as confounding

factors by performing a linear modeling limma analysis.

Differential expressed proteins (DEPs) were defined as fold

change ≥2 or ≤0.5, and along with a Benjamini-Hochberg

adjusted p-value <0.05 (Benjamini and Hochberg, 1995). DEPs

between TBM and VM were corrected using the Benjamini–

Hochberg method. DEPs between TBM and PM, and TBM and

CCM, were not corrected. GraphPad Prism (version 9) was used to

create scatter plots, box plots, violin plots, and columns for

data visualization.
2.7 Proposed workflow for biomarker
panel selection and evaluation

To generate CSF protein biomarker panels that distinguish

TBM patients from other CNS infections (discriminative model,

including PM, VM, and CCM) as well as from non-CNS infection

patients (diagnostic model), we employed a multilevel screening

methodology described in a previous study (Sun et al., 2022) with

minor modifications. Firstly, Spearman’s rank correlation was used

to assess the intercorrelation among proteins, excluding proteins

with a moderately high correlation with more than four or five other
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proteins (rho ≥ 0.6). Secondly, we utilized proteins with low

expression similarity to determine their importance in

distinguishing between the two classes in the diagnostic and

discriminative models, employing the random Forest R package.

To minimize variability, we computed 100 random forests, each

consisting of 150,000 trees, to generate averaged mean decrease

accuracy values for each protein. The mean decrease accuracy

values were averaged across the 100 random forest replicates for

each protein. Thirdly, ROC analysis was performed to evaluate the

diagnostic performance of the candidate biomarkers. Then, the

permutation test was conducted with 1,000 iterations as the

performance measure for ROC analysis to select the robust DEPs.

Finally, the completeness of each protein in either of the two

classification groups was evaluated; only proteins identified in

every TBM patient without any imputation and with a

completeness of more than 90% completeness in the other groups

were retained (Supplementary Figure S1).

The biomarker panel evaluation methodology includes internal

cross-validation and PCA analysis to evaluate the classification

capability of panel proteins. Additionally, post-hoc power analyses

for Statistical power were calculated for every biomarker in

classification models to assess the differentiation capability at the

current sample sizes. The receiver operating characteristic (ROC)

analysis was performed using the “Biomarker Discovery”module of

the MetaboAnalyst 6.0 platform.
2.8 Bioinformatic analysis

The Ingenuine Pathway Analysis (IPA) (Krämer et al., 2014)

software was used to enrich DEPs to signaling pathways. Log2(FC) of

DEPs was used as the observation value for IPA analysis. The p-value of

IPA analysis was calculated with the right-tailed Fisher’s exact test and

was considered significant if less than 0.05. Protein-protein interaction

(PPI) network analysis was conducted utilizing the STRING database

(https://string-db.org/) and was visualized through Cytoscape

(V.3.8.2) (Franz et al., 2016). The heatmap was rendered using

TBtools. Pattern recognition analysis (PCA and OPLS-DA) was

administered using SIMCA 14.1 (Umetrics, Sweden) software.

Visualization of the hypothetical model was executed utilizing the

BioRender platform (https://www.biorender.com).
2.9 Cytokine analysis

We classified the 310 cytokines into six types based on the

IMMPORT database (Updated : Ju ly 2020) (h t tps : / /

www.immport.org/shared/home). The statistical significance of

cytokines was determined as they were DEPs in CSF proteomic

data. According to a previously published research article (Mo et al.,

2024), we matched the association between the 310 cytokines and

immune cells. Fifty-three cytokines from our data were involved in

the function of multiple immune cells and are highlighted. The

shinyCircos (Yu et al., 2018) was used to visualize the

proteomic data.
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3 Results

3.1 Study design and clinical characteristics

to systematically identify the characteristic proteomic patterns

associated with TBM, we carried out a retrospective DIA-MS-based

proteomics workflow (Figure 1A). We recruited a total of 104

individuals, who were classified into six groups for DIA-MS

quantitative proteomic analysis: TBM (n=7), purulent meningitis

(PM, n=28), viral meningitis (VM, n=20), cryptococcus neoformans

meningitis (CCM, n=9), non-infectious brain diseases (BD, n=10), and

non-CNS infection controls (Ctrl, n=30). The detailed clinical

information for these six groups is shown in Supplementary Table

S2. There were no statistically significant differences in gender (P =

0.44) between these groups. The age distributions were balanced among

the TBM, PM, VM, and CM groups, but the Ctrl group samples were

younger. The clinical indicators, such as the protein concentration, were

higher in TBM than in VM, while the concentrations of glucose and

chloride were lower than those in VM, which may reflect the severity

differences between TBM and VM (Table 1; Supplementary Figure S2).

Proteins differentially expressed in TBM, PM, VM, and CCM

were identified by comparing them to Ctrl and excluding proteins

that changed compared to BD. We then used the IPA database for

functional annotation to identify key functional terms altered in

TBM. Cytokine analysis revealed changes in cytokines and receptors

in TBM. Ultimately, we developed diagnostic biomarker panels and

evaluated them using receiver operating characteristic (ROC) curves

to distinguish TBM from PM, VM, CCM, and Ctrl (Figure 1A).
3.2 Proteome characterization of CSF
samples

We conducted proteome profiling of CSF samples using a high-

throughput DIA-MS-based proteomics strategy. By applying this

workflow, a total of 2,781 proteins were identified (Supplementary

Table S3). The average number of protein groups detected for Ctrl,

BD, TBM, PM, VM, and CCM groups was 1284, 1405, 1291, 1548,

1503, and 1293, respectively (Figure 1B). In all the samples, the

quantitative protein intensities across the six groups spanned over six

orders of magnitude, and the top ten most abundant proteins

accounted for 45.3% of all CSF protein abundance in our datasets

(Figure 1C). Among the data acquired by DIA, there were 325

proteins with 100% completeness, 970 proteins with 75%

completeness, and 1,343 proteins with 50% completeness (Figure 1D).

To estimate system stability throughout the entire analysis

process, the pooled peptides from all samples were used as a QC

to observe the stability of the instrument signal. During the analysis,

the QC was analyzed before and after all samples and between every

8–10 samples, resulting in 10 QC samples in our research. To avoid

system errors, samples were analyzed in random order, and

different groups of samples were interleaved in analysis. The

median coefficients of variation (CVs) and correlation coefficients

of the QC samples were 0.18 and 0.99 (Supplementary Figure S3A,

B), demonstrating the consistent stability of the mass spectrometry
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platform. The PCA analysis of the 10 batches indicated that there

was no batch effect in this study (Supplementary Figure S3C).

A total of 1429 CSF proteins were retained for further analysis

after imputation. Unsupervised principal component analysis

(PCA) was conducted among the three groups to visualize the

differences in CSF protein profiling among the Ctrl, BD, and

meningitis patients. The results indicated a clear separation

tendency between the Ctrl and meningitis groups through PCA

analysis (Figure 1E; Supplementary Figure S4A). Despite the

unclear separation between the four types of meningitis
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(Figure 1F), the orthogonal partial least squares discriminant

analysis (OPLS-DA) mode revealed apparent differences between

the four groups (Supplementary Figure S3C). One hundred

permutation tests confirmed no overfitting of the models

(Supplementary Figures S4B, S4D). Additionally, we assessed the

heterogeneity of patients across six groups. The coefficient of

variation (CV) values for PM and VM were higher than those of

the other groups (Supplementary Figure S4E), aligning with the

correlation of identified proteins among the six groups and

indicating high variability within patients, especially in the PM
FIGURE 1

Overview of the CSF proteomics data. (A) Overview of the study populations and schematic proteomic workflow. DIA-LC-MS/MS analyzed the CSF
of six cohorts. The total number of subjects in each cohort group is depicted. (B) Number of proteins identified and quantified with a 1% FDR in six
groups. Values are expressed as mean ± standard deviation (SD). (C) Proteins in the CSF samples were ranked by median intensity. The top ten
abundant proteins are labeled, showing their contribution to the total. (D) Data completeness curve. The number of proteins in the dataset (Y-axis) is
plotted against the minimum number of samples in which the proteins were quantified (X-axis). Arrows indicate data completeness values of 50%,
75%, and 100%. (E) Principal component analysis (PCA) of Ctrl, BD, and Meningitis patients based on their CSF proteome profiles. (F) PCA of TBM,
PM, VM, and CCM patients based on their CSF proteome profiles.
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FIGURE 2

Differential CSF protein selection and comparison. (A–E) The volcano plot shows the differentially expressed proteins between TBM (A), PM (B), VM
(C), CCM (D), BD (E) to Ctrl. The x-axis represents the log2-transformed fold changes of meningitis compared to Ctrl. The y-axis shows the negative
log10 of the p-value adjusted by the Benjamini and Hochberg (BH) correction. (F–H). Proteins that were significantly regulated (Benjamini-
Hochberg-corrected p-value < 0.05 and log2 fold change of ≧ 2 and ≦ -2) for all three groups were selected. Their fold changes for the two disease
groups were plotted against each other: TBM versus PM (F), TBM versus VM (G), and TBM versus CCM (H). The points are colored based on their
significance in either one group only (red: TBM; yellow: PM; green: VM; orange: CCM) or in both (grey). Proteins that are absent in one group were
plotted at the null line for that group for visualization purposes.
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https://doi.org/10.3389/fcimb.2025.1662783
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wei et al. 10.3389/fcimb.2025.1662783
and VM groups (Supplementary Figure S4F). Notably, the TBM

and CCM heterogeneity was lower than that of the other two

meningitides. The above results demonstrate the potential for

discrimination against TBM across different groups.
3.3 Cross-comparison of changed CSF
proteins between TBM and other CNS
infections

We used linear modeling with limma analysis, adjusting for age

and sex as confounding factors, to identify DEPs between TBM vs.

Ctrl, PM vs. Ctrl, VM vs. Ctrl, CCM vs. Ctrl, and BD vs. Ctrl. DEPs

were defined as fold change ≥2 or ≤0.5, and along with a Benjamini-

Hochberg adjusted p-value <0.05. Consequently, a total of 712, 757,

189, 538, and 206 proteins were identified (Figures 2A–E),

respectively. The changed CSF proteins between BD vs. Ctrl were

further excluded to avoid bias. Finally, we selected 512, 558, 84, and

333 DEPs in TBM, PM, VM, and CCM, respectively, for the

subsequent cross-comparison analysis (Supplementary Table S4).

To evaluate differences in the host response between the sample

groups, we plotted the differential proteins in scatter plots, with the

corresponding log2 fold change for TBM/CTRL on the x-axis and

the log2 fold change for PM/CTRL, VM/CTRL, and CCM/CTRL on

the y-axis. The linear regression analysis yielded correlation

coefficients of r = 0.76, r = 0.60, and r = 0.68 for the comparisons

of TBM and PM, TBM and VM, and TBM and CCM, respectively

(Figures 2F–H). This cross-comparison reveals that TBM and PM

or CCM evoke a more similar response compared to VM.
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3.4 Distinctive changes of CSF proteome
patterns in TBM

We then annotated the canonical pathway of the 512, 558, 84,

and 333 proteins in TBM, PM, VM, and CCM patients using the

IPA software to compare the altered functional terms in these four

CNS infections and identify the characteristic functional terms

associated with TBM. As a result, we identified that the

complement cascade, coagulation system, complement system,

leukocyte extravasation signaling, and acute phase response

signaling were prominent due to their strong association and

activation levels in TBM patients. In addition, we observed that

pathways such as natural killer cell signaling were enriched

exclusively in TBM patients (Supplementary Figure S4A).

We annotated 16 representative pathways enriched in TBM as

they stood out for their association or activation levels, ranking the top

23 regulated proteins by their frequency of enrollment (Figure 3A).

Notably, collagen proteins COL1A2, COL1A1, and COL6A1 emerged

as the most significantly dysregulated proteins. The collagens compose

the organized scaffold of the extracellular matrix (ECM) and play

crucial roles in the proliferation and differentiation of neuronal

progenitors, as well as in dendritic and axonal growth and guidance

(Jovanov Milosěvić et al., 2014; Long and Huttner, 2019). We then

conducted a PPI analysis among the regulated proteins involved in the

16 pathways to identify proteins that interact with collagen. We

noticed that the COL6A1 interacted with the 72 kDa type IV

collagenase (MMP2) and COL1A1. The COL1A1 can interact with

vascular cell adhesion protein 1 (VCAM-1) and fibrinogen beta chain

(FGB) (Figure 3B; Supplementary Figure S4B).
TABLE 1 Baseline demographic and routine laboratory characteristics of CSF among six groups.

Characteristic
Ctrl

(n = 30)
BD

(n = 10)
TBM
(n = 7)

PM
(n = 28)

VM
(n = 20)

CCM
(n = 9)

P1 P2 P3 P4 P5

Gender 0.855 0.1161 0.7976 0.1476 0.7042

Male 16 5 6 16 15 6

Female 14 5 1 12 5 3

Age (month) 0.0008 0.0442 0.0547 0.0003 <0.0001

Median (min-max)
38.24

(13.43-92.10)
96.9

(32.77-163.70)
89.1

(12.37-178.63)
61.35

(12.97-181.63)
89.43

(13.13-161.33)
121.32

(68.80-186.93)

CSF Parameters

WBC count (cells/
ml)

1.53
(0–8)

58.7
(16-130)

159
(44-340)

676.4
(20-4970)

101.55
(16-342)

200.8
(16-827)

0.0005 <0.0001 <0.0001 <0.0001 <0.0001

Protein (mg/dL)
203.5

(122-488)
369.7

(194-611)
1269.2

(827-1721)
1125.43

(194-7502)
691.79

(239-4894)
857.8

(310-1511)
0.0201 <0.0001 <0.0001 <0.0001 <0.0001

Glucose (mg/dL)
3.65

(2.69-5.42)
3.43

(2.76-4.51)
1.9

(1.07-2.83)
2.51

(0.01-7.08)
3.07

(2.42-4.73)
1.7

(0.29-3.77)
0.6077 <0.0001 <0.0001 0.0097 <0.0001

Chloride
(mg/dL)

124.76
(121.5-135)

124.89
(120.2-127.9)

120.2
(115.5-125.7)

122.46
(111.1-129)

125.23
(110-133.4)

121.4
(116.7-126.7)

0.6045 0.0135 0.063 0.3045 0.0402

Monocyte count
(cells/ml)

0
41.5

(14-72)
133.2

(35-272)
180.11
(12-785)

76.79
(12-325)

78.8
(13-202.5)

0.0005 <0.0001 <0.0001 <0.0001 <0.0001

polymorphonuclear
leukocytes (cells/ml)

0
17.2

(2-104)
25.8
(9-68)

496.57
(2-4771)

14.23
(1-65)

122.1
(3-662)

0.0002 <0.0001 <0.0001 <0.0001 <0.0001
fronti
TBM, Tuberculous meningitis; PM, purulent meningitis; VM, viral meningitis; CCM, cryptococcus neoformansmeningitis; BD, Brain disease; Ctrl, control group.P1 symbol of BD versus Ctrl, P2
symbol of TBM versus Ctrl, P3 symbol of PM versus Ctrl, P4 symbol of VM versus Ctrl, P5 symbol of CCM versus Ctrl; CSF, Cerebrospinal fluid; WBC, white blood cell. Bold P represent P < 0.05.
ersin.org

https://doi.org/10.3389/fcimb.2025.1662783
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wei et al. 10.3389/fcimb.2025.1662783
The M. tb may bypass barriers via infected macrophages and

neutrophils (Davis et al., 2019). Protein VCAM-1 and intercellular

adhesion molecule 1 (ICAM-1) are reported to be associated with the

inflammation leukocyte extravasation process (Mo et al., 2024), and

are upregulated in our proteomic data in TBM patients (Figure 3C). In

addition, it has been reported that inflammation may initiate

coagulation (Esmon, 2005), while in our proteomic data, we

identified the upregulated FGB and F2 were enriched in the

formation of fibrin clots (clotting cascade). The coagulation factors

were reported to interact with the ECM and function as ECM

components (Fu et al., 2024). Our proteomic data indicated that the

upregulation of coagulation factors, along with the significant

downregulation of collagens, may reflect an imbalanced ECM

organization. Because the NCAM signaling for neurite outgrowth

showed an inhibitory trend (z score = -0.63), and the ECM was
Frontiers in Cellular and Infection Microbiology 08
reported to play an essential role in neurite outgrowth (Sun et al.,

2022), we hypothesized that COL6A1, which is enriched in the

NCAM signaling for neurite outgrowth, warrants further

functional validation.

We further clustered 22 differential proteins involved in the

complement cascade and complement system, as they emerged as

the most dominant pathways when compared to PM and CCM

(Supplementary Figure S4C). The top 10 key hub interactive proteins

were analyzed. Notably, CFI, CFH, C8B, and C8A stood out due to

their higher fold changes compared to PM and CCM (Figure 3D).

Overall, the proteomic data indicate widespread association of

the complement cascade, the formation of fibrin clot, the leukocyte

extravasation signaling, and the collagen degradation process. The

altered proteins in these processes may contribute to the

TBM pathogenesis.
FIGURE 3

Dysregulated proteins in the CSF of TBM patients. (A) The top 23 regulated proteins are ranked by the frequency with which they are found in the 16
representative pathways in TBM, analyzed using Ingenuity Pathway Analysis (IPA). (B) The proteins that interacted with COL1A1, COL6A1, COL12A1 and
the pathways they participated in. (C) Key proteins and pathways characterized in TBM patients in a working model. Proteins involved in leukocyte
extravasation, formation of fibrin clot (clotting cascade), collagen degradation, and the NCAM signaling for neurite outgrowth were indicated with their
corresponding expression levels in TBM and Ctrl. Created in BioRender. Wei, J. (2025) https://BioRender.com/qc9vxue. (D) The top 10 key hub protein
interaction networks, along with the relative abundance of regulated proteins in the complement cascade and complement system.
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FIGURE 4

Generation of biomarker combinations to differentiate TBM from other CNS infections and non-CNS infections. (A) ROC for the biomarker panel to
classify TBM versus PM using 10-fold cross-validation. (B) PCA analysis of the two proteins between TBM and PMs. (C) Expression pattern of the two
proteins between TBM and PM. (D) ROC of the biomarker panel for classifying TBM versus VM using 10-fold cross-validation. (E) PCA analysis of the
two proteins between TBM and VM. (F) Expression patterns of two proteins between TBM and VM. (G) ROC analysis of the biomarker panel to
classify TBM versus CCM using the SVM algorithm. (H) PCA analysis of the three proteins between TBM and CCM. (I) Protein expression patterns
between TBM and CCM. (J) ROC for the biomarker panel to classify TBM versus Ctrl using 10-fold cross-validation. (K) PCA analysis of the two
proteins between TBM and Ctrl. (L) Expression patterns of two proteins between TBM and Ctrl.
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3.5 Construction of biomarker panels to
differentiate TBM from other CNS
infections

Based on the selection criteria in the Methods, we conducted a

multilevel analysis to define CSF protein signatures to distinguish

TBM from PM, VM, CCM, and the non-CNS-infection cohort

(Ctrl). First, we selected 15, 17, 11, and 74 DEPs as candidates for
Frontiers in Cellular and Infection Microbiology 10
feature selection to differentiate TBM vs. PM, TBM vs. VM, TBM

vs. CCM, and with the Ctrl group (Supplementary Figure S1). To

obtain complementary biomarker combinations, we evaluated these

proteins using Spearman’s rank correlation. For the differentiation

with PM, we excluded 1 protein that had a moderately high

correlation with more than four other proteins (rho ≥ 0.6), and

the 14 remaining proteins with less interdependency (median

correlation coefficient of 0.09) were chosen for subsequent
FIGURE 5

(A) Circos plot integrating the relative expression and cytokine-immune cell relationship of 310 cytokines and their receptors. Track 1, the outermost
layer, represents 310 cytokines and their receptors, which are organized into six classes. Tracks 2, 4, 6, and 8 identify cytokines from the TBM, PM,
VM, and CCM with a cutoff of adjusted p < 0.05 when compared to Ctrl, which were considered statistically significant. Tracks 3, 5, 7, and 9 show
the distribution of cytokine abundance in TBM, PM, VM, CCM, and Ctrl. Track 10, the inner circle, illustrates the immune cells associated with each
cytokine as reported by previous research. (B–D) Expression patterns of A2M, ADA2, and PDGFB in the CSF.
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analyses. Similarly, we retained 13 proteins for differentiation with

VM, 11 proteins for differentiation with CCM, and 30 proteins for

differentiation with Ctrl (Supplementary Figure S6).

Next, we evaluated these proteins as input variables and

identified the most important features in the discriminative and

diagnostic models using the random forest algorithm

(Supplementary Figure S7). Meanwhile, we measured the

classification performance of each protein in the discriminative

and diagnostic stratification using ROC analysis (Supplementary

Figure S8A). The permutation test was conducted with 1,000

iterations as the performance measure for ROC analysis to select

the robust DEPs. The ratio that was larger than the original AUC

values was calculated as a P-value. Only Proteins with a P-value <

0.05 were retained as candidates for panel construction

(Supplementary Figure S8B). Furthermore, the completeness of

each protein in its corresponding group was also evaluated

(Supplementary Figure S9). Finally, a CSF protein signature for

discrimination with PM consisted of F2 and TRMP; for VM, it

included ENPP2 and WARS1; for CCM, it comprised F12, APOM

and CD163; and a classifier for TBM diagnosis consisted of HLA-B

and MGAT1 was generated, respectively.

The panel for classifying TBM and PM achieved an AUC of

0.874 (95% CI, 0.748-0.999) with a specificity of 0.882(95% CI,

0.729-1.0) and a sensitivity of 0.929(95% CI, 0.929-1), as

determined by 10-fold cross-validation (Figure 4A). Similarly, the

panel for classifying TBM and VM achieved an AUC of 0.928 (95%

CI, 0.827-1) with a specificity of 0.882(95% CI, 0.729-1.0) and a

sensitivity of 0.950(95% CI, 0.950-1), as determined by 10-fold

cross-validation (Figure 4D). We used the linear SVM algorithm to

evaluate the panel classifying TBM and CCM, which achieved an

AUC of 0.993 (95% CI, 0.869-1) with a specificity of 1(95% CI, 0.59-

1.0) and a sensitivity of 1(95% CI, 0.66-1) (Figure 4G). Finally, the

TBM diagnostic panel achieved an AUC of 0.934 (95% CI, 0.825-1)

with a specificity of 0.941(95% CI, 0.829-1.0) and a sensitivity of

0.933(95% CI, 0.933-1) (Figure 4J).

The results of PCA of these biomarker combinations showed

clustering of different groups (Figures 4B, E, H, K). The normalized

expression of each biomarker in different groups is shown in

Figures 4C, F, I, L. Biomarkers distinguishing TBM from PM

showed statistical powers ranging from 0.74 (CBR1) to 0.97 (F2),

with values of 0.99 (WARS1) and 0.9 (ENPP2) in differentiating

TBM from VM, values of 0.97 (APOM), 0.92 (F12), and 0.76

(CD163) in distinguishing TBM from CCM, and values of 0.99

(HLA-B) and 0.97 (MGAT1) in differentiating TBM from Ctrl. This

result indicates that most proteins effectively differentiate patient

groups at current sample sizes (Supplementary Table S5).
3.6 Cytokines and their receptors
enrichment analysis in CSF

The activated microglia that secrete cytokines may have caused

excessive inflammation, contributing to poor outcomes of TBM
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(Barnacle et al., 2023). In this study, we identified 310 cytokines and

their receptors in the CSF. They were categorized into six types:

chemokines, interferons, interleukins, transforming growth factor-b
(TGF-b) family, tumor necrosis factor (TNF) family, and other

cytokines (Figure 5A, track 1).

We identified 120, 115, 12, and 68 significantly dysregulated

cytokines and receptors from TBM, PM, VM, and CCM, respectively,

when compared with the Ctrl group (Figure 5A, track 2, 4, 6, 8),

totaling 155 significantly dysregulated cytokines and receptors. These

modulated cytokines and receptors were enriched for the

Complement and coagulation cascades and MAPK signaling

pathway (Supplementary Figure S10). Most cytokines and receptors

in CSF were upregulated (i.e., 91 of 120, 75.8% in TBM; 81 of 115,

70.4% in PM; 7 of 12, 58.3% in VM; 44 of 68, 64.7% in CCM) in

meningitis patients compared to Ctrls (Figure 5A, track 3, 5, 7, 9).

Cytokines produced by immune cells mediate diverse immune

processes. In our data, 53 significantly dysregulated cytokines were

involved in the functions of multiple immune cell types (Figure 1A,

track 10), including 41 in TBM patients, as described in the

Materials and Methods. We then focused on the distinct

dysregulated cytokines and receptors in TBM. Notably, we

identified that A2M and ADA2 exhibited higher levels in TBM

than in PM, VM, and CCM when compared to Ctrl, whereas

PDGFB displayed the lowest levels in TBM; all were involved in

macrophage function (Figures 5B–D).
4 Discussion

TBM often presents with non-specific symptoms in its early

stages and is diagnosed later in the course of the illness when brain

damage has already occurred. Early diagnosis and management of

TBM are essential, as delays in diagnosis can lead to poor outcomes

including death, neurological sequelae, and neurocognitive

disorders. In this study, we systematically analyzed the CSF

proteome of TBM, PM, VM, and CCM patients, with the aim of

identifying distinct changes in the proteome of pediatric TBM. We

also included two different control groups: the brain disease control

and the non-CNS infected controls, to enhance the accuracy of our

results. To date, this is the most comprehensive study to determine

the CSF proteome changes and biomarkers in pediatric TBM.

We observed that various distinctive pathways were enriched in

pediatric TBM. For instance, the activation of pathways such as the

complement cascade (Z score = 5.90) and the formation of fibrin clot

(Z score = 3) were most significant compared to PM, VM, and CCM.

The complement system is a tightly regulated innate immune

mechanism that plays a crucial role in normal central nervous

system (CNS) development and function (Fatoba et al., 2022).

Previous research indicated that complement-activated microglial

Macro_C01 cells are linked to a neuroinflammatory response that

results in persistent pediatric TBM meningitis (Mo et al., 2024),

highlighting the important roles of complement activation in TBM

pathogenesis. Notably, we found that CFI, CFH, C8B, and C8A not
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only acted as key interacting proteins in the complement system but

also exhibited higher levels than PM and CCM, indicating their

significant contribution to TBM. CFB participates in the complement

alternative pathway, while CFI helps to sequentially cleave C3b into

inactivated C3b (iC3b) and C3d, leading to the complete inactivation

of C3 and C5 convertases, evading homologous attacks via the

alternative pathway (Dalakas et al., 2020). C8A and C8B are

components of the membrane attack complex (MAC). These

results suggest that anti-complement therapeutic strategies targeting

molecules in complement activation may serve as a potential

approach for future pediatric TBM treatment. Fibrin clot formation

represents the final step in the coagulation pathway (Gerstman et al.,

2023), and the hypercoagulable state observed in childhood TBM is

comparable to that described in adults with pulmonary tuberculosis,

possibly increasing the risk of infarction (Schoeman et al., 2007).

Therefore, therapeutic measures that reduce the risk of thrombosis

could be potentially beneficial in childhood TBM.

Notably, we observed that collagen proteins, including

COL1A2, COL1A1 and COL6A1 were downregulated and

emerged as key participants in the most distinctive pathways in

TBM. Ablation of COL6A1 has been reported as a direct link with

defective dopaminergic activity, through a mechanism involving the

inability of meningeal cells to sustain dopaminergic differentiation,

indicating its related neurobehavioral features in both mice and

humans (Gregorio et al., 2022). Since the COL6A1 also enriched in

the NCAM signaling for neurite outgrowth pathway, its biological

mechanism in TBM pathogenesis worth future casual validation.

A total of 9 CSF proteins in TBM were selected to differentiate

between PM, VM, CCM, and Ctrl, respectively. Some of these

proteins have been reported to be associated with the pathogenesis

of brain diseases. For example, F2 and TYMP were generated to

distinguish among PM. F2 is involved in fibrin clot formation,

which may increase the risk of infarction, as we discussed

previously. ENPP2 was selected to differentiate from VM and is

reported to be strongly up-regulated in reactive astrocytes adjacent

to the lesion following neurotrauma (Savaskan et al., 2007). APOM

was in the TBM and CCM classification panel and was reported as

potential diagnostic biomarkers of pediatric bacterial meningitis

(Luo et al., 2022). MGAT1 has been reported to be highly expressed

in glioblastoma and promotes glioma cells partly through the

upregulation of Glut1 protein (Li et al., 2020). These results

demonstrate that the biomarker panels selected in our research

are associated with the pathogenesis of TBM to some degree.

The host inflammatory response significantly influences TBM

pathology (Rohlwink et al., 2019), with many sequelae linked to a

dysregulated immune response. Thus, effective host-directed

therapies (HDT) are critical for improving TBM survival and

outcomes. From the IMMPORT database, we identified 120

dysregulated cytokines and receptors in TBM, with 41 affecting

multiple immune cell types. Notably, 35 were upregulated

compared to controls, particularly A2M and ADA2, which were

more upregulated than in other meningitis types. A2M, a key
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glycoprotein, regulates proteolysis and supports cell migration

while binding cytokines and damaged proteins (Vandooren and

Itoh, 2021). Plasma levels of A2M-containing microparticles are

higher in sepsis survivors than nonsurvivors or healthy volunteers

(Dalli et al., 2014). A2M abundance also correlates with

inflammation in rheumatic diseases (Flory and Vischer, 1981;

Ekerot and Ohlsson, 1982) and may serve as a diagnostic

biomarker for pediatric BM (Luo et al., 2022). Although A2M is

associated with sepsis outcomes and has diagnostic potential in

pediatric BM, we found that A2M levels in TBMwere higher than in

PM, VM, and CCM. A2M binds several cytokines, including PDGF

(Rehman et al., 2013), aligning with the downregulation of PDGFB

in our findings. CSF ADA levels help differentiate TBM from other

meningitis types in adults (Cho et al., 2013; Song et al., 2022;

Chaurasia et al., 2023; Pannu et al., 2023). Our data show ADA2

levels are elevated in pediatric TBM compared to PM, VM, and

CCM. We propose that targeting A2M and ADA2 may be a viable

HDT adjunct therapy for pediatric TBM, pending validation in

animal models or clinical studies.

This study used an unbiased DIA-MS-based proteomics

workflow to identify biomarker panels and validate them through

internal cross-validation; further external or temporally separated

validation is necessary to assess its generalizability. The targeted

parallel reaction monitoring (PRM) assays provide precise

quantitative analysis of specific proteins by selectively monitoring

target peptide ions during MS analysis. PRM is antibody-free,

multiplexable, highly sensitive, and reproducible (Kulyyassov

et al., 2021), which assists in narrowing down candidate DEPs for

biomarker development and identifying the most suitable proteins

for further immunoassay validation in a larger cohort. Although

instrumentation costs are higher, per-sample expenses for multi-

target analysis are comparable. Turnaround time for the PRM

analysis is about one week (including method optimization), with

further improvements expected through next-generation mass

spectrometers and automated sample preparation (Barkovits

et al., 2021). After passing the PRM validation, the turnaround

time for immunoassays on targeted panels is about 1–3 days.

Clinical applications demonstrate the strong concordance with

results between PRM and ELISA (Martinez-Garcia et al., 2017).

The PRM-ELISA-based validation strategy would be appropriate in

future analysis.

Previous research used immunoassays to validate the accuracy

of recently identified host 3-biomarkers (VEGF-A/IFN-g/MPO)

and 4-biomarkers (MPO/IFN-g/ICAM1/IL-8), and constructed a

new combination panel (CC4b/CC4/CCL1/procalcitonin) with an

AUC of 0.98 (95% CI, 0.94–1.00) as the diagnostic candidates for

childhood TBM (Manyelo et al., 2022). Notably, protein ICAM1

was also identified as a DEP in our proteomic data from TBM

patients, indicating the potential for validating our panels using

immunoassays in future analyses.

The post-hoc power analysis was also performed to evaluate the

fold change of the top ten up-regulated DEPs across the four
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comparisons using age- and sex-adjusted DEPs (TBM vs Ctrl, PM

vs Ctrl, VM vs Ctrl, and CCM vs Ctrl). The statistical powers ranged

from 0.48 to 0.99 (TBM vs Ctrl), 0.51 to 0.98 (PM vs Ctrl), 0.23 to

0.99 (VM vs Ctrl), and 0.68 to 0.99 (CCM vs Ctrl) (Supplementary

Table S5). Despite some limited low discriminatory powers (MAP2,

power = 0.23; ROBO1, power = 0.48), the average discriminatory

power was high, reaching 0.84, 0.82, 0.875, and 0.91 in

distinguishing TBM, PM, VM, and CCM from Ctrl.

Key limitations include the small cohort size and single-center

retrospective design. Though we performed a strict biomarker

selection procedure and validated it using internal cross-validation,

external or temporally separated validation is necessary to assess its

generalizability. Additionally, the hypotheses proposed in this

research were solely based on proteomic associations, which need

further causal validation.
5 Conclusion

In summary, we utilized an unbiased proteomic strategy to

reveal distinctive proteome changes in pediatric TBM patients. The

TBM proteome exhibited greater similarity to that of PM patients.

A2M, ADA2, and PDGFB, as cytokine receptors, displayed higher

or lower levels compared to the other three meningitis types. The

altered CSF proteins were more associated with the complement

cascade and fibrin clot formation. A series of combination protein

panels was selected using stringent criteria to differentiate TBM

from PM, VM, CCM, and non-CNS-infected patients. Ultimately,

this research enhances our biological understanding of TBM,

providing insights into valuable differential diagnostic biomarkers

and potential therapeutic targets for pediatric TBM in the future.

Future research should focus on validation through larger, multi-

institutional studies to ensure robustness and generalizability across

various clinical settings.
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