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Background: Tigecycline remains a last-resort antibiotic for treating multidrug-
resistant (MDR) Gram-negative pathogens. The emergence of tet(X4)-mediated
high-level tigecycline resistance in Escherichia coli has raised global concern, yet
its prevalence in healthy human populations remains limited.

Methods: We conducted a community-based surveillance study involving 245
fecal samples from healthy individuals in three urban communities in Shenzhen,
China. Tigecycine-resistant strains were isolated using MacConkey agar
supplemented with 2 mg/L tigecycline and confirmed by PCR detection of tet
(X). Antimicrobial susceptibility testing, whole-genome sequencing (WGS), and
phylogenetic analysis were performed.

Results: Tigecycline-resistant E. coli were detected in 1.6% (4/245) of samples. All
isolates carried tet(X4) and exhibited an MDR phenotype. WGS revealed that tet
(X4) was located on IncY (n=1) and IncFIA8-IncHI1/ST17 plasmids (n=3), which
closely resembled previously described plasmids and co-harbored additional
resistance genes. The core tet(X4)-carrying region in all four plasmids, associated
with ISCR2, was highly similar to that of p47EC—the first tet(X4)-bearing plasmid
identified in porcine E. coli in China. Notably, the three IncFIA-IncHI1/ST17
plasmids shared an identical 12,536-bp region structured as ISI-catD—tet(X4)—
ISCR2—-AISCR2—-floR-AISCR2. Virulence-associated genes involved in adhesion,
iron acquisition, biofilm formation, and secretion systems were also identified in
four tet(X4)-positive isolates. The four isolates belonged to globally distributed
sequence types ST10, ST201, ST877, and ST1308. Phylogenomic analysis
demonstrated close genetic relatedness between these community isolates
and strains from diverse geographical regions and hosts.
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Conclusions: This study reveals silent intestinal colonization by tet(X4)-positive
MDR E. coli among healthy urban residents, highlighting the role of community
reservoirs in the dissemination of last-resort antibiotic resistance. These findings
underscore the urgent need for One Health-oriented antimicrobial resistance
surveillance and intervention strategies that extend beyond clinical settings.
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Introduction

Tigecycline, a 9-t-butylglycylamido derivative of minocycline, is a
glycyleycline antibiotic that inhibits bacterial protein synthesis by
binding to the 30S ribosomal subunit (Yaghoubi et al., 2021). This
mechanism allows tigecycline to evade traditional tetracycline
resistance determinants, making it as a last-resort therapeutic agent
for infections caused by multidrug-resistant (MDR) pathogens
(Yaghoubi et al, 2021). However, the increasing emergence of
tigecycline resistance is compromising its clinical utility.

Of particular concern is the fet(X) family of flavin-dependent
monooxygenase genes, which inactivate tigecycline through
enzymatic degradation (Aminov, 2021). Among them, the plasmid-
mediated fet(X4), first identified in Escherichia coli from swine,
confers high-level tigecycline resistance and facilitates horizontal
gene transfer across diverse bacterial hosts and ecological inches
(He et al,, 2019). The widespread detection of tet(X4) in both clinical
and agricultural settings, particularly among E. coli strains,
underscores its growing public health threat (Li et al., 2023).

Although tet(X4)-positive E. coli has been increasingly reported in
food-producing animals—a trend linked to the historical and
extensive use of tetracyclines in agriculture—as well as in food
products, and human patients (Aminov, 2021; Li et al., 2023), data
on its carriage in healthy human populations, especially in community
settings, remain limited (Ding et al., 2020, 2024; Dong et al.,, 2021).
The human gut microbiota serves as a significant but underexplored
reservoir for antimicrobial resistance genes (ARGs) (Carlet, 2012;
Donskey, 2004). Within this niche, horizontal gene transfer can
facilitate the dissemination of resistance determinants across
environmental, zoonotic, and clinical bacterial populations (McInnes
et al, 2020). While antimicrobial misuse and overuse are known
drivers of resistance emergence (Allcock et al., 2017; Ferrara et al,
2024), it remains unclear whether AGRs, such as tet(X4), can persist or
evolve in community-dwelling individuals without direct antibiotic
exposure. This uncertainty is particularly relevant given that
tetracyclines are poorly metabolized and can persist in the
environment, potentially exerting low-level selective pressure
through dietary or environmental exposure, even in the absence of
clinical antibiotic use (Allcock et al., 2017).

Given the potential role of asymptomatic carriers in the silent
spread of tigecycline resistance, enhanced surveillance of tet(X4) in
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healthy populations is urgently needed. In this study, we investigated
tigecycline-resistant E. coli isolated from fecal samples of 245
asymptomatic adults residing in three urban communities in
Shenzhen, China. Our objectives were to assess the prevalence of
tigecycline resistance, characterize the genetic and plasmid features of
tet(X4)-positive strains, and explore potential epidemiological links to
clinical and agricultural sources. These findings offer important
insight into the community-level dissemination of tigecycline
resistance and highlight the need to broaden antimicrobial
resistance (AMR) surveillance beyond clinical settings.

Materials and methods

Bacterial isolation and detection of the tet
(X) gene

In October 2022, 245 fecal samples were obtained from healthy
individuals aged 16 to 79 years, who had no self-reported symptoms of
acute infection (e.g., diarrhea, fever, respiratory or urinary tract
infections), no history of hospitalization or surgery in the past three
months, and no antibiotic use within the preceding three months,
across three residential communities in Shenzhen to investigate the
prevalence of tigecycline-resistant Enterobacteriaceae (Supplementary
Table S1). Samples were directly inoculated into LB broth and
incubated at 37°C for 12-18 h for enrichment. Enriched cultures
were then streaked onto LB agar plates containing 2 [1g/mL tigecycline
and incubated at 37°C for 12-18 h. Presumptive colonies were purified
by subculturing, and bacterial species were identified using the
VITEK-2 automated microbial identification system (bioMerieux,
Lyon, France). The presence of the tet(X) gene was screened by
PCR and Sanger sequencing using universal primers tet(X)-F (5'-
CCGTTGGACTGACTATGGC-3) and tet(X)-R (5'-
TCAACTTGCGTGTCGGTAA-3'), as previously described (Wang
et al,, 2019).

Antimicrobial susceptibility testing
Antimicrobial susceptibility profiles were determined using the

broth microdilution or the agar dilution method according to the
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guidelines of the Clinical and Laboratory Standards Institute (CLSI).
Minimum inhibitory concentrations (MICs) were assessed for 14
antibiotics: ampicillin, cefotaxime, meropenem, gentamicin,
amikacin, streptomycin, tetracycline, tigecycline, chloramphenicol,
nalidixic acid, ciprofloxacin, colistin, fosfomycin, and
sulfamethoxazole-trimethoprim. MIC breakpoints for streptomycin
and tigecycline were interpreted based on the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) criteria (https://
www.eucast.org/), while those for other agents followed the 33
edition of the CLSI document M100 (CLSI, 2023). E. coli ATCC
25922 was used as the quality control strain.

Conjugation assay

To assess the horizontal transferability of the tef(X4) gene,
conjugation experiments were performed using tet(X)-positive
isolates as donor strains and a high-level streptomycin-resistant
E. coli strain C600 as the recipient. Briefly, donor and recipient
strains were separately cultured in 2 mL LB broth at 37 with shaking
(180 rpm) for 4 h, mixed at a 1:4 (v/v) ratio and incubated statically
for 24 h. The cultures were then centrifuged at 5,000 x g for 5 min,
the supernatant discarded, and the pellet resuspended in sterile PBS.
Appropriate dilutions (100 LL) were plated on selective agar containing
tigecycline (2 mg/mL) and streptomycin (3000 mg/mL) to select for
transconjugants. Colonies were incubated at 37°C for 16-24 h and
confirmed as transconjugants by PCR detection of the fe#(X) gene as
described above. All experiments were performed in triplicate.

Whole-genome sequencing and
bioinformatics analysis

The same DNA extraction protocol was applied to both
Mlumina and Nanopore sequencing to ensure data consistency
and comparability. Genomic DNA was extracted from E. coli
isolates using the PureLink Genomic DNA Mini Kit (Invitrogen,
USA). Short-read sequencing libraries were prepared using the
Mumina NovoSeq PE150 platform (2x150 bp paired-end), while
long-read sequencing was performed using the Oxford Nanopore
MinION platform (Oxford Nanopore Technologies, UK). Hybrid
genome assemblies were generated using Unicycler (v 0.5.0) (Wick
etal, 2017) and subsequently corrected with Pilon (v 1.24) (Walker
et al., 2014). Plasmid replicon types were identified using
PlasmidFinder (Carattoli et al., 2014), and antibiotic resistance
genes, including chromosomal mutations mediating resistance,
were annotated using ResFinder (Bortolaia et al., 2020) and
PointFinder (Zankari et al, 2017). Multilocus sequence typing
(MLST) were assigned via MLST analysis (Larsen et al., 2012).
Virulence factors were identified using ABRicate v0.8 with the
VFDB database (updated October 2020). Comparative analysis of
tet(X)-carrying plasmids and related plasmids was performed and
visualized using BRIG (Alikhan et al., 2011).

A phylogenetic tree based on core genome single nucleotide
polymorphism (cgSNP) was constructed using Parsnp v1.5.4
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(https://github.com/marbl/parsnp) and visualized with iTOL
(https://itol.embl.de/index.shtml). Our tet(X4)-positive E. coli
isolate served as the reference genome for phylogenetic tree
construction. To identify relevant strains, we retrieved E. coli
isolates of the same ST from the NCBI database. cgSNP distances
between the isolates sharing the same ST were calculated using
Snippy v4.6.0 (https://github.com/tseemann/snippy), and only
those with <200 SNPs relative to the reference were included in
the final phylogenetic analysis.

Nucleotide sequence accession number

The whole-genome sequences of the four tet(X4)-positive
isolates have been deposited in GenBank under accession
number: PRINA1288486.

Results

Prevalence of tigecycline-resistant E. coli
isolates in healthy individuals

Tigecycline-resistant Enterobacteriaceae were identified in 4 out
of 245 fecal samples collected from healthy individuals, yielding a
prevalence rate of 1.63%. All isolates were confirmed as E. coli by both
the VITEK2 automated identification system. PCR amplification and
Sanger sequencing verified the presence of the tet(X4) gene in all four
isolates. Notably, three isolates (SZ22HTEIL, SZ22HTE2, and
SZ22HTE3) were recovered from individuals residing in the same
community (Dawang), whereas the fourth isolate (SZ22HTE4)
originated from a separate community (Fenghua).

Phenotypic and genotypic characterization
of antimicrobial resistance

All four E. coli isolates exhibited resistance to tigecycline, with
MICs ranging from 8 to 32 mg/L (Supplementary Table S2). They
also displayed resistance to multiple antibiotics, including
ampicillin, streptomycin, tetracycline, and chloramphenicol
(Table 1). Additionally, three isolates (SZ22HTE1-SZ22HTE3)
were resistant to sulfamethoxazole/trimethoprim, whereas
SZ22HTE4 remained susceptible. In contrast, all isolates were
susceptible to cefotaxime, meropenem, gentamicin, amikacin,
nalidixic acid, ciprofloxacin, colistin, and fosfomycin
(Supplementary Table S2). According to the standard definition—
resistance to at least one agent in three or more antimicrobial classes
—all isolates were classified as multidrug-resistant (MDR).

WGS identified resistance genes that largely correlated with
phenotypic profiles (Table 1). The presence of tet(X4), previously
confirmed by PCR and Sanger sequencing, was further validated by
WGS, explaining the observed tigecycline resistance. Additional
tetracycline resistance genes, including tet(A), tet(B), and tet(M),
were variably present and matched the tetracycline-resistant
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phenotypes. All isolates carried blargy.1p, consistent with
ampicillin resistance, and aminoglycoside resistance genes
(aadAl, aadA2, aadA22, and strA/strB) aligned with streptomycin
resistance. Resistance to chloramphenicol was associated with
cmlA1 and/or floR.

The plasmid-mediated quinolone resistance gene gnrSI1 was
identified in all isolates, but no chromosomal mutations were found
within the quinolone resistance-determining region, consistent with
their susceptibility to fluoroquinolones. Sulfonamide resistance
genes (sul2, sul3) and the trimethoprim resistance gene dfrAI2
were found only in SZ22HTE1-SZ22HTE3, in agreement with their
resistance to sulfamethoxazole/trimethoprim. Additionally, all
isolates harbored macrolide-lincosamide resistance genes Inu(G)
and/or erm(42).

Virulence gene profiles of tet(X4)-positive
E. coli isolates

All four E. coli isolates harbored multiple virulence-associated
genes involved in adhesion, iron acquisition, biofilm formation,
motility, and secretion systems, which are critical for bacterial
colonization and pathogenicity (Table 2). Adhesion genes such as
fimH, ehaB, upaGlehaG, csgG, and cgsF were variably distributed
among the isolates, supporting host cell attachment. Iron
acquisition genes, including entE, fepD, entC, fepG, fepC, and
entB, were also detected in a strain-specific manner, enabling iron
scavenging essential for survival in host environments. The toxin
gene hlyE/clyA, identified only in SZ22HTEI, may contribute to
host cell lysis and tissue damage.

Gene associated with biofilm formation (agn43, cah, and cgsG)
were detected in SZ22HTEI to SZ22HTE3 and may enhance
persistence and immune evasion. Motility-related genes (flhA, flhB,
and fliA) were present in the same three isolates, likely facilitating
bacterial movement and invasion. Secretion system genes (aec27/clpV,
aecl5, tssM, espX4, espXl, and espX5) were identified in various
combinations across all four isolates and may facilitate the delivery
of virulence factors into host cells (Table 2). Although the specific
virulence gene profiles varied among isolates, each strain possessed
multiple functional categories of virulence factors, underscoring their
potential to cause clinically relevant infections.

Characterization of the tet(X4)-carrying
plasmid in E. coli strains

All four isolates carried multiple plasmids with diverse replicon
types and antimicrobial resistance genes (Supplementary Table S3).
In strain SZ22HTE]L, the tet(X4) gene was located on the largest
plasmid, pSZ22HT1-1 (IncY, 106,177 bp), which also harbored 11
additional resistance genes blatgn 1, aadAl, aadA2, tet(A), tet(M),
cmlAl, floR, sul2, sul3, dfrA12, and erm(42). The tet(X4)-carrying
IncY plasmid pSZ22HT1-1 exhibited high sequence similarity
(>99.9%) to plasmid p803Rt_IncX1 (CP080067) isolated from a
human-derived E. coli strain in Shenzhen, China with 94%
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TABLE 1 Characterization of tigecycline-resistant Escherichia coli isolates in this study.

Location of tet(X4)

Resistance genes
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PpSZ22HTE1-1 (IncY, 106,177 bp)

blargy.p, aadAl, aadA2, tet(X4), tet(A), tet(M), cmlAl, floR, qnrS1, sul2, sul3, dfrA12, erm(42)

AMP/STR/TET/TIL/CHL/SXT

201

SZ22HTE1

PpSZ22HTE2-1 (IncFIA8-IncHI1/ST17, 190,711 bp)

blatgm 1p, aadAl, aadA2, aadA22, strA, strB, tet(X4), tet(B), cmlAl, floR, qnrS1, sul3, dfrA12, Inu(G)

AMP/STR/TET/TIL/CHL/SXT

877

SZ22HTE2

PpSZ22HTE3-1 (IncFIA8-IncHI1/ST17, 201,009 bp)

blargm 1, aadA2, aadA22, tet(X4), tet(A), floR, qnrS1, sul3, dfrA12, Inu(G)

AMP/STR/TET/TIL/CHL/SXT

10

SZ22HTE3

pSZ22HTE4-1 (IncFIA8-IncHI1/ST17, 192,057 bp)

blatgm.1p, aadA22, tet(X4), tet(A), tet(M), floR, qnrS1, Inu(G), erm(42)

1308 AMP/STR/TET/TIL/CHL

SZ22HTE4

AMP, Ampicillin; STR, Streptomycin; TET, Tetracycline; TIL, Tigecycline; CHL, Chloramphenicol; SXT, Trimethoprim-sulfamethoxazole.
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TABLE 2 Virulence genes of tigecycline-resistant Escherichia coli isolates in this study.

Toxins

Biofilm Motility

Secretion System

Strain Adhesion Iron Acquisition
SZ22HTE1 SfimH ‘ entE, fepD hlyE/clyA
SZ22HTE2 ¢ehaB, upaG/ehaG ‘ entC, fepG, fepC
SZ22HTE3 upaGlehaG, csgG, cgsF ‘ entB
SZ22HTE4 upaG/ehaG ‘ entE, entC

coverage, and plasmid p13Q15 (ON934549) from an E. coli strain in
Guangdong, China with 53% coverage (Figure 1A).

The remaining three isolates (SZ22HTE2, SZ22HTE3, and
SZ22HTE4) each carried a tet(X4)-positive hybrid IncFIAS-
IncHI1/ST17 plasmid, designated pSZ22HT2-1 (190,711 bp),
pSZ22HT3-1 (201,009 bp), and pSZ22HT4-1 (192,057 bp),
respectively. These plasmids also carried resistance genes blarg.
18> aadA22, qnrS1, and floR. Comparative genomic analysis revealed
that the tet(X4)-bearing IncFIA8-IncHI1/ST17 plasmids from
SZ22HTE2, SZ22HTE3, and SZ22HTE4 were closely related to
multiple plasmids, including tet(X4)-carrying plasmids p812A1-
tetX4-193K (CP116047, E. coli, China), pYUGZP1-tetX (pig, E. coli,
China) from pig source, and pTetX4_FZT33 (CP132725, E. coli,
China) from hospital sewage (Figure 1B).

However, conjugation assays using E. coli C600 as the recipient
strain failed to produce transconjugants under the tested
conditions, indicating that these fet(X4)-bearing plasmids were
either non-conjugative or required specific conditions or helper
plasmids for mobilization.

Variation in the genetic environment of tet
(X4)

As shown in Figure 2, the tet(X4) gene in the three IncFIA-
IncHI1/ST17 plasmids (pSZ22HT2-1, pSZ22HT3-1, and
pSZ22HT4-1) was embedded in an identical 12,536-bp region
organized as ISI-catD-tet(X4)-ISCR2-AISCR2-floR-AISCR2.
While the core tet(X4)-containing structure closely resembled that
of p47EC, the first reported tet(X4)-bearing plasmid isolated from
E. coli of porcine origin in China (He et al., 2019), several notable
differences were observed. Most prominently, ISCR2 replaced the
upstream IS1 element in p47EC. Furthermore, the chloramphenicol
resistance gene floR, associated with an incomplete ISCR2, was
located downstream of the tet(X4) structure in our plasmids, in
contrast to its upstream position in p47EC.

Plasmid pSZ22HTE1-1 exhibited a different but related
arrangement. It retained the conserved ISCR2-catD-tet(X4)-
ISCR2 structure found in p47EC, but its upstream region
contained an additional resistance module carrying both floR and
erm(42). In comparison, p47EC carried the AISCR2-erm(42)-
ISPa99 segment upstream of the tet(X4) conserved segment, but
in the opposite orientation. These structural variations underscore
the genetic plasticity of tet(X4)-associated regions and their
potential for mobilization and dissemination across diverse
plasmid backgrounds driven by mobile genetic elements.
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agn43, cah ‘ fIhA, ta aec27/clpV, aecl5, tssM
- cgsG ‘ flhB clpV, espX4
- cgsG ‘ fliA clpV, espX1

aec27/clpV, tssM, espX5

Phylogenomic analysis of tet(X4)-positive
E. coli strains

Four tet(X4)-positive E. coli isolates in this study were assigned
to four sequence types (STs): ST10, ST201, ST877, and ST1308. To
investigate the genetic relatedness between these E. coli isolates and
publicly available E. coli strains of the same ST, we conducted a
phylogenomic analysis based on cgSNPs. The resulting phylogeny
revealed that our community-derived isolates were closely related
to E. coli strains from diverse geographical regions and
hosts (Figure 3).

Our tet(X4)-positive ST201 isolate (SZ22HTEI) exhibited high
genetic similarity to three human clinical ST201 isolates from China
(GCA_023516055.1, GCA_019880025.1, and GCA_030325125.1),
differing by only 14-25 SNPs and carrying identical or similar
antimicrobial resistance genes, suggesting a potential epidemiological
link (Figure 3A). SZ22HTEI also showed relatively limited divergence
(105 and 136 SNPs) from E. coli strains of porcine (GCA_037105215.1,
Spain), food (GCA_037106035.1, Thailand), and clinical
(GCA_028636665.1, China) origin (Figure 3A), further indicating
potential inter-host and inter-regional transmission.

Our ST10 tet(X4)-positive isolate, SZ22HTE3, clustered with nine
ST10 E. coli isolates from diverse countries and sources. It was most
closely related (41 SNPs) to an environmental isolate from South Africa.
In contrast, it differed from the remaining eight isolates by 142-199
SNPs, suggesting a certain level of genomic divergence among ST10
isolates (Figure 3B). For ST1308, five isolates, including our
community-derived strain SZ22HTE4, formed a tight phylogenetic
cluster with minimal genetic SNP differences of only 58 or 63,
suggesting recent common ancestry or possible transmission events.
Among the four closely related isolates, three were isolated from swine
in China (GCA_022538875.1, GCA_022538895.1, GCA_022538855.1),
and one had an unreported source (GCA_023272775.1) (Figure 3C). By
comparison, the ST877 lineage exhibited greater genetic heterogeneity.
Compared with our tet(X4)-positive ST877 isolate (SZ22HTE2), the
other 16 ST877 E. coli isolates displayed broader genomic divergence,
with SNP differences ranging from 100 to 200, highlighting higher
diversity within this ST (Figure 3D).

Discussion

Since its approval by the U.S. Food and Drug Administration in
2005, tigecycline has served a last-resort antibiotic for the treatment
of severe infections caused by MDR bacteria, particularly
carbapenem-resistant Enterobacteriaceae (Yaghoubi et al, 2021).
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FIGURE 1

Sequence comparison of tet(X4)-bearing plasmids in this study with other similar plasmids using BRIG. (A) IncY plasmid pSZ22HTE1-1; (B) IncFIA8-
IncHI1/ST17 plasmids pSZ22HTE2-1, pSZ22HTE3-1, and pSZ22HTE4-1. The outer circles in red with annotation are the reference plasmids

pSZ22HTE1-1 and pSZ22HTE2-1, respectively.

However, the growing prevalence of tigecycline resistance has
become a significant clinical and public health concern. Among
the known resistance mechanisms, the plasmid-mediated tet(X4)
gene has gained particular attention due to its ability to confer high-
level tigecycline resistance and its rapid dissemination across
bacterial species and ecological niches through horizontal gene
transfer (Dong et al., 2021; He et al., 2019; Li et al., 2023).
Globally, tet(X4)-carrying E. coli strains have been detected in
clinical, animal, food, and environmental settings (Li et al, 2023).
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However, their presence in healthy human populations, particularly in
urban communities, remains insufficiently characterized. Our study
identified a tet(X4)-positive E. coli colonization rate of 1.6% (4/245) in
fecal samples from healthy individuals in Shenzhen, a densely
populated metropolitan area. Although this prevalence is
considerably lower than that observed in animal-derived (18.24%)
and food-derived (20.6%) E. coli isolates, it exceeds the rates reported
in clinical patients (0.07-0.1%) (Bai et al., 2019; He et al,, 2019; Li et al,,
2021), suggesting that the human gut may serve as a previously
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FIGURE 2

Genetic structures of the tet(X4) gene in this study and comparison with p47EC (MK134376). The extent and directions of genes are indicated by
arrows. Antibiotic resistance genes are shown in red. Truncated mobile elements are marked with a "A” symbol. Insertion sequences (ISs) are
represented as boxes labeled with their names. Regions with >99% identity are shaded in gray.

underappreciated reservoir for plasmid-mediated tigecycline
resistance. These findings highlight the necessity of enhanced AMR
surveillance in non-clinical community populations to detect early
signs of resistance dissemination.

AMR is an escalating global health crisis, contributing to an
estimated 30,000 deaths annually in the EU and nearly 5 million
worldwide in 2019 (Cassini et al., 2019; Ho et al., 2025). The human
gastrointestinal tract, comprising a dense and diverse microbial
community (~10'* cells across approximately 1, 000 bacterial
species), is a hotspot for the acquisition, persistence, and
horizontal transfer of ARGs (Despotovic et al., 2023; Lynch and
Pedersen, 2016). The gut microbiome not only reflects the local
AMR burden but also influences patient outcomes, particularly in
critically ill individuals with gut barrier dysfunction or acute
gastrointestinal injury, where microbiome disruption and elevated
ARG levels are associated with worse clinical outcomes (Bai et al.,
2025). Notably, E. coli, a core member of the intestinal microbiota
and a widely used sentinel organism in AMR surveillance, readily
acquires ARGs from food, animal, and environmental sources, and
can transfer them to pathogenic bacteria such as Shigella and
Klebsiella through plasmids or other mobile genetic elements
(Thanh Duy et al,, 2020). In our study, three isolates (SZ22HTE2,
SZ22HTE3, and SZ22HTE4) harbored the epidemic IncFIAS8-
IncHI1/ST17 plasmid carrying tet(X4), suggesting early-stage
horizontal dissemination of tigecycline resistance within the
community gut microbiota of an urban community. These
plasmids co-harbored additional resistance genes, resulting in
MDR phenotypes and enabling co-selection and persistence in
diverse hosts (Lu et al, 2018; Yan et al, 2024). Notably, the
epidemic IncFIA8-IncHI1/ST17 plasmid identified in this study
shows high homology to pRDZ41 (CP139495.1) from Klebsiella
pneumoniae, providing direct evidence for its potential to
disseminate tet(X4) into this high-risk pathogen.

Importantly, these E. coli isolates possessed a range of virulence-
associated genes related to adhesion (e.g., fimH, ehaB, upaG/ehaG),
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iron acquisition (e.g., entE, fepD), biofilm formation (e.g., agn43,
cah), motility (e.g., flhA, fliA), and secretion systems (e.g., aec27/
clpV, tssM). The coexistence of virulence factors and resistance
determinants in community-derived E. coli is particularly alarming,
as it increases the risk of difficult-to-treat infections and facilitates
ARG dissemination into high-risk clinical pathogens.

Although the healthy human gut microbiota may provide
colonization resistance against invasive AMR bacteria—
potentially via mechanisms such as microbiome-mediated
nutrient depletion (Isaac et al., 2022; Le Guern et al,, 2021)—our
findings underscore the vulnerability of even healthy individuals to
colonization by plasmid-mediated tigecycline-resistant E. coli
strains. This silent carriage may act as a hidden conduit for ARG
dissemination between community and healthcare environments,
presenting significant challenges for infection prevention
and control.

WGS further revealed that our tet(X4)-positive isolates
belonged to globally prevalent E. coli STs, e.g., ST10, ST877, and
ST1308, frequently associated with MDR phenotypes and detected
in both human and animal hosts (Elias et al., 2019; Garcia et al,,
2018; Liu et al, 2024). The detection of these epidemic STs in
healthy individuals, along with their close genetic relatedness to
isolates from clinical, food, animal, and the environmental sources,
reinforces a One Health perspective. Phylogenomic analysis
demonstrated close genetic relatedness between our community
isolates and strains from diverse geographic regions and hosts (e.g.,
swine, food, environment), reinforcing the role of cross-sectoral
transmission in the spread of tet(X4). This underscores the
interconnectedness of AMR reservoirs across ecosystems and
highlights the urgent need for integrated, cross-sectoral
genomic surveillance.

Despite the valuable insights provided, this study has several
limitations. Only three urban communities were sampled, and the
number of tet(X4)-positive isolates was relatively small, limiting the
generalizability of our findings. Additionally, although the plasmid
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structures were well-characterized, functional studies such as  experimental settings. Importantly, future investigations should

assessing plasmid transfer under different conditions or  include larger-scale, longitudinal surveillance, and mechanistic
colonization capacity in vivo were not performed. The observed  assessments to better understand the dynamics and risks of tet
lack of successful conjugation in vitro highlights the need for further ~ (X4)-positive E. coli colonization in healthy populations.
investigation into the mobility mechanisms of fet(X4)-bearing
plasmids. Further studies should explore whether these plasmids
can successfully conjugate by employing diverse recipient strains, Conclusion
co-introducing helper plasmids, or optimizing mating conditions
(e.g., modifying incubation temperature, adjusting donor-to- In summary, our findings highlight the emergence of tef(X4)-

recipient ratios, or using filter mating assays) under alternative  positive MDR E. coli in the intestinal microbiota of healthy
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individuals from urban communities. These isolates co-harbored
multiple ARGs and virulence determinants, highlighting their
potential to cause difficult-to-treat infections and to act as
reservoirs for further resistance dissemination. The detection of
globally circulating high-risk clones such as ST10 and ST201 in
asymptomatic carriers underscores the silent spread of tigecycline
resistance in non-clinical settings. These findings call for urgent and
coordinated surveillance strategies beyond hospital environments,
in alignment with One Health principles, to contain the spread of
last-resort antibiotic resistance and safeguard public health.
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