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Porcine circovirus (PCV), particularly PCV type 2 (PCV2), is a major pathogen
driving porcine circovirus-associated diseases (PCVAD), causing significant
economic losses in the swine industry. Accumulating evidence highlights
autophagy as a critical host-pathogen interface during PCV infection. PCV2
activates autophagy through reactive oxygen species (ROS)-mediated signaling
and metabolic regulators like the AMP-activated protein kinase (AMPK)/
mechanistic target of rapamycin (mTOR) axis, creating a conducive
environment for viral persistence. Concurrently, this virus exploits ubiquitin
ligases to induce ubiquitination of cellular immune factors, promoting selective
autophagy for immune evasion. Host factors, such as retinol-binding protein 4
(RBP4), act as restriction factors by counteracting viral strategies through
autophagy modulation. Environmental stressors could exacerbate PCV2
pathogenesis by amplifying ROS-dependent autophagy, while interventions like
taurine mitigate viral replication via ROS/AMPK/mTOR pathway inhibition. This
mini-review synthesizes current understandings of PCV-autophagy crosstalk,
emphasizing its critical role as a host vulnerability and therapeutic target.
Understanding the intricate interplay between autophagy and PCV infection
may unveil novel therapeutic targets, such as autophagy modulators, to
mitigate viral replication and immune pathology.

KEYWORDS
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Introduction

Porcine circovirus (PCV), a member of the family Circoviridae, is a globally prevalent
pathogen with significant economic impact on the swine industry (Opriessnig et al., 2020).
First identified in 1974 as a non-pathogenic contaminant in porcine kidney cell cultures, its
pathogenic potential emerged later with the recognition of postweaning multisystemic
wasting syndrome (PMWS) in the 1990s, linked to PCV type 2 (PCV2) (Segales et al,
2013). PCV is classified into four genotypes: PCV1 (non-pathogenic), PCV2 (pathogenic,
associated with PMWS, respiratory disease, and reproductive failure), PCV3 (emerging,
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linked to reproductive disorders and multisystemic inflammation),
and PCV4 (Opriessnig et al., 2020). Furthermore, PCV2 could be
classified into six genotypes, including PCV2a-f (Franzo and
Segales, 2018; Mone et al., 2020). Structurally, PCV2 is a non-
enveloped, icosahedral virus with a circular, single-stranded DNA
genome (~1.7 nt), encoding two major proteins: the capsid (Cap)
protein and the replicase protein (Rep) (Figure 1) (Rakibuzzaman
and Ramamoorthy, 2021). The Cap protein forms the viral capsid,
mediating host cell attachment and inducing neutralizing
antibodies, while the Rep protein orchestrates viral DNA
replication via rolling-circle amplification (Yan and Sun, 2024).
Notably, PCV2 exhibits genetic diversity, with distinct genotypes
differing in virulence and antigenicity. With a diameter of 17-20
nm, PCV is among the smallest autonomous animal viruses. Its
small genome and minimalistic structure enable efficient replication
in host cell nuclei, particularly in lymphoid tissues, where it disrupts
immune homeostasis by targeting macrophages, dendritic cells, and
lymphocytes (Feher et al., 2023). The viral ability to modulate
autophagy, apoptosis, and cytokine signaling underscores its
intricate interplay with host defenses. Building upon the
characterization of PCV2 pathogenesis and clinical
manifestations, understanding PCV2 molecular architecture and
evolutionary adaptations remains critical for developing vaccines
and antiviral strategies against porcine circovirus-associated
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diseases (PCVAD). This knowledge not only elucidates viral
persistence mechanisms but also informs rational design of
therapeutic interventions targeting conserved viral epitopes or
host-pathogen interaction nodes.

PCV infections, particularly those caused by PCV2 and PCV3,
impose substantial economic and veterinary challenges globally.
Clinically, PCV2 is strongly associated with PMWS, characterized
by progressive weight loss, lymphoid depletion, and immune
suppression, which predisposes pigs to secondary bacterial
infections, exacerbating morbidity and mortality (Li et al., 2022).
PCV3, an emerging pathogen, is linked to reproductive failure,
including stillbirths, mummified fetuses, and neonatal mortality, as
well as multisystemic inflammatory syndromes (Cobos et al., 2025).
Affected pigs may exhibit nonspecific signs such as fever, lethargy,
and diarrhea, complicating clinical diagnosis. Subclinical infections
are also prevalent, leading to reduced growth rates and feed
efficiency, which collectively diminish farm productivity.
Pathologically, PCV2 induces granulomatous inflammation in
lymphoid tissues, thymic atrophy, and interstitial pneumonia,
while PCV3 is associated with vascular lesions and myocarditis
(Li et al, 2025). Diagnosis relies on polymerase chain reaction
(PCR), immunohistochemistry, or serological assays, though
differential diagnosis is critical due to overlapping symptoms with
other porcine diseases (Segales, 2012; Goto et al.,, 2023). Prevention
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FIGURE 1

The structure of PCV2. (A) The genome of PCV2 is appropriately 1.7k nt. ORF1 is situated on the positive strand and predominantly encodes the Rep
protein. In contrast, ORF2 resides on the complementary strand and is responsible for encoding the Cap protein. The intergenic region separating
ORF1 and ORF2 contains the origin of replication (Ori), which is positioned between the initial codons of both ORFs. (B) The Depicts expanded open
reading frames: ORF1 includes ORF9, ORF3, ORF4, ORF8, ORF11; ORF2 includes ORF5, ORF10, ORF6, ORF7, and ORF9.
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and control strategies include vaccination, which reduces viral
shedding and clinical severity. Biosecurity measures, such as all-
in/all-out systems, strict disinfection protocols, and minimizing
stressors, are pivotal to limit viral transmission (Maity et al., 2023).
Antimicrobial therapy may mitigate secondary infections, though
antibiotic resistance concerns necessitate prudent use (Raith et al,,
2016). Selective breeding for genetic resistance and nutritional
optimization further support disease management (Chen et al,
2025). Emerging research on modulators, such as immune and
autophagic factors, and antiviral peptides offers potential
therapeutic avenues, underscoring the need for integrated,
multidisciplinary approaches to combat PCV-associated losses.
Autophagy, a conserved cellular process involving the
sequestration and lysosomal degradation of cytoplasmic
components, plays an important role during viral infections,
either inhibiting viral replication by eliminating viral particles or
enhancing viral replication by evading immunity (He et al., 2024).
For example, porcine epidemic diarrhea virus (PEDV) replication
could be suppressed by a multitude of host factors via the
autophagic degradation of nucleocapsid protein (Kong et al,
2020; Jiao et al,, 2021). Conversely, porcine reproductive and
respiratory syndrome virus (PRRSV) manipulates autophagy to
establish persistent infections. The viral nonstructural protein 2
(nsp2) hijacks the autophagy machinery to degrade TANK-binding
kinase 1 (TBK), suppressing activation of type I interferon (IFN)
regulatory factor 3 (IRF3) and IFN-I production and enabling viral
immune evasion (Zhao et al., 2024b). Additionally, classical swine
fever virus (CSFV) exploits autophagy to inhibit apoptosis, ensuring
viral persistence in host cells (Fan et al., 2021). Autophagy’s role in
antigen presentation and cross-priming of T cells further
complicates its relationship with viruses. While autophagy-
derived viral peptides can enhance CD8+ T cell responses, some
porcine viruses downregulate autophagy to avoid immune
recognition (Wang et al., 2021a; Sun et al., 2022). Therapeutically,
modulating autophagy—using agonists like rapamycin or inhibitors
such as 3-methyladenine, shows promise in mitigating viral
replication and immune pathology. However, tissue-specific and
virus-specific context must be considered, as autophagic effects vary
between viral species and infection stages. Thus, dissecting the
intricate interplay between virus and autophagic processes is
essential for designing precision therapies, as viral manipulation
of autophagic pathways not only subverts host antiviral defenses but
also creates actionable targets for pharmacological intervention.
The intricate relationship between autophagy and PCV
underscores its significance as a research priority in virology and
veterinary medicine. PCV2, the primary pathogenic type, induces
autophagosome formation through interactions between its capsid
protein and host autophagy-related proteins, facilitating viral
genome release and capsid assembly in the nucleus. Studying this
interplay is critical because autophagy modulation dictates infection
outcomes: while excessive autophagy may promote viral
persistence, its impairment exacerbates PCV-induced
inflammation by accumulating damaged mitochondria and
activating pro-inflammatory cytokines. Investigating autophagy
not only elucidates PCV pathogenesis but also identifies
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therapeutic targets. Pharmacological agents that modulate
autophagy could mitigate viral replication or hyperinflammation,
offering innovative strategies to control PCVAD. Understanding
this dynamic of PCV2 infection is thus pivotal for advancing swine
health and reducing economic losses in the pork industry.

PCV2 infection triggers autophagy via
various pathways

PCV2 triggers autophagy through multiple interconnected
pathways, forming a sophisticated network that regulates viral
replication and pathogenesis (Figure 2). First, PCV2 induces
endoplasmic reticulum stress (ERS), activating the PKR-like
endoplasmic reticulum kinase (PERK)- eukaryotic initiation
factor 2-alpha (eIF20.) arm of the unfolded protein response
(UPR) (Lv et al, 2020). This leads to activating transcription
factor 4 (ATF4)-mediated upregulation of pro-apoptotic proteins
like Bcl-2, while simultaneously initiating autophagy via calcium
(Ca®") signaling. Elevated intracellular Ca®*, released through
inositol trisphosphate receptor (IP3R) channels, activates
calmodulin-dependent protein kinase kinase 3 (CaMKKJ), which
bifurcates into two autophagy-inducing pathways: (1) CaMKK-
AMP-activated protein kinase (AMPK) axis, where AMPK
phosphorylates and inhibits mechanistic target of rapamycin
complex 1 (mTORC1); and (2) CaMKKP/CaM-kinase I
(CaMKI)-dependent WD repeat domain, phosphoinositide-
interacting 1 (WIPI1) recruitment, directly promoting
autophagosome formation (Gu et al, 2016). Second, PCV2-
induced mitochondrial dysfunction activates PINK1/Parkin-
mediated mitophagy, clearing damaged mitochondria and
reducing reactive oxygen species (ROS) accumulation (Zhang
et al, 2020). Third, PCV2 induces autophagy via the AMPK/
extracellular signal-regulated kinases 1 and 2 (ERK1/2)- tuberous
sclerosis protein 2 (TSC2)-mTOR signaling axis. AMPK and ERK1/
2 activate autophagy by inhibiting mTOR through TSC2
phosphorylation in infected cells (Zhu et al., 2012). Lastly, PCV2
could induce p38 phosphorylation and autophagy to exacerbate
ochratoxin A-induced nephrotoxicity (Gan et al., 2018).
Intriguingly, PCV3 was also reported to induce autophagy by its
capsid protein in HEK293T cells, as shown by formation of
autophagosomes and autophagosome-like vesicles via suppressing
phosphorylation of the mTOR (Geng et al., 2020). Collectively,
these pathways synergize to create a pro-autophagic environment
that supports PCV persistence and pathogenesis.

Autophagy promotes PCV2 replication

Increasing evidence showed that autophagy has a pro-viral role
in enhancing PCV replication through multifaceted interactions
between viral components and host autophagic machinery. For
example, ochratoxin A (OTA), a mycotoxin produced by
Aspergillus and Penicillium, enhances PCV2 replication by
inducing autophagy in porcine kidney PK-15 cells. Autophagy
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FIGURE 2

PCV2 induces autophagy via various pathways. PCV2 ORF5 causes ER stress, leading to autophagy via PERK-elF20.-ATF4 axis. PCV2 Cap protein
elevates the production of ROS from the mitochondrial and induces the mitophagy by the ROS-mediated activation of Drpl. In addition, PCV2
activates the AMPK and ERK1/2, suppressing the activation of mTOR and contributing to autophagy. Moreover, PCV2 activates the IP3R and elevates
the cytosolic Ca®* from ER, which upregulates CaMKKB and activates CaMKI, finally generating WIPI1 and inducing autophagy.

inhibitors reduce OTA-driven PCV2 amplification. ROS scavengers
block OTA-induced autophagy, suggesting ROS involvement. In
pigs, OTA elevates PCV2 replication and autophagy in key tissues
(Qian et al.,, 2017). Similarly, Zhai et al. found that oxidative stress
could promote PCV?2 replication via induction of autophagy (Zhai
etal., 2019). Notably, interventions targeting autophagy, such as the
use of autophagy inducers, have been shown to amplify PCV
replication in vitro, underscoring the critical dependency of viral
propagation on host autophagic flux. For instance, microRNA-30a-
5p and miR-214-5p exert positive effects on PCV2 replication via
various mechanisms. The former targets a 14-3-3 gene, which was a
modulator of autophagy (Wang et al., 2017). The latter disrupts
protein kinase B (PKB, also known as AKT)/mTOR signaling,
thereby inducing autophagy and boosting viral replication (Cao
etal, 2023). Additionally, a heat shock protein named DNAJB6 also
serves to positively regulate PCV2 replication by interacting with
Cap protein and promoting the production of autophagosome (Han
et al, 2020). Interestingly, Liu et al. discovered that glutamine
deficiency in host cells contributes to upregulated ROS-medicated
Janus kinase 2 (JAK2)/signal transducer and activator of
transcription 3 (STAT3) signaling and caused autophagy, thereby
facilitating PCV2 replication (Liu et al., 2018a). Recently, porcine
cGAS was found to become a target by PCV2 and degraded via
autophagy in PCV2-infected cells, impairing cGAS-STING
signaling and aiding in viral replication (Wang et al., 2021b).
These findings position autophagy as a central node in PCV
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pathogenesis, with therapeutic implications for developing
antiviral strategies by modulating autophagic processes.

Targeting autophagy impedes PCV2
infection

A multitude of studies indicate the positive role of autophagy in
PCV2 replication. Based on this, pharmacological inhibitors and
additions could be used to effectively suppress PCV2 proliferation
by disrupting autophagic flux, as exhibited by reduced viral
titers, impaired capsid protein expression, and decreased DNA
copy numbers.

Antioxidants and metabolic regulators

Antioxidants and metabolic regulators play important roles in
modulating autophagy. For example, ROS could act as signaling
molecules that induce autophagy under oxidative stress, while
antioxidants like N-acetylcysteine (NAC) may attenuate excessive
autophagy by reducing ROS levels (Qi et al., 2024). Metabolic
regulators, such as AMPK and mTOR form a regulatory axis, where
AMPK activates autophagy during energy deprivation, and mTOR
inhibits it under nutrient-rich conditions (Kim et al., 2011). Studies
have shown that compounds like metformin (AMPK activator) or
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rapamycin (mTOR inhibitor) demonstrate how metabolic
interventions can fine-tune autophagic flux (Bharath et al., 2020).
Taurine, known as a sulfur amino acid regulated by the kidney,
could attenuate ROS level and block OTA-mediated autophagy,
thus impairing PCV2 replication. Mechanistically, taurine
modulates the ROS/AMPK/mTOR signaling axis by inhibiting
AMPK and activating mTOR, while chemical AMPK activation
via acadesine (AICAR) abrogated taurine’s antiviral activity (Zhai
et al, 2018). Similarly, SeMet, the major component of organic
selenium, significantly inhibits OTA-induced enhancement of
PCV2 replication. Furthermore, SeMet attenuated OTA-triggered
autophagy and reverses the OTA-mediated suppression of p-AKT
and p-mTOR expression (Qian et al., 2018). Rapamycin, an AKT/
mTOR inhibitor, abrogates SeMet’s suppressive effects on both
OTA-induced autophagy and PCV2 replication enhancement.
Above studies indicate these regulators hold therapeutic potential
to dysregulated autophagy during PCV infections, offering targets
for pharmacological intervention through antioxidant
supplementation or metabolic pathway modulation.

Natural product-based autophagy
modulators

Natural product-derived autophagy modulators represent a
promising class of bioactive compounds that finely tune
autophagic processes through diverse molecular mechanisms. For
instance, resveratrol activates autophagy by inhibiting the mTOR
pathway or enhancing AMPK signaling, while flavonoids such as
quercetin may suppress excessive autophagy under oxidative stress
via ROS scavenging (Tang et al., 2020; Xia et al., 2024). Marine-
derived metabolites, including terpenoids and alkaloids, often target
Beclin-1 or ATG proteins to regulate autophagosome formation
(Jiang et al., 2019; El-Baba et al., 2021). Notably, these modulators
exhibit context-dependent dual roles, either promoting protective
autophagy in diseases or inhibiting pathological autophagy.
Paeonifforin was demonstrated to disrupt AKT/mTOR signaling,
thus suppressing autophagy, which in turn impeded PCV2
replication (Wu et al., 2025). Another study found that astragalus
polysaccharide (APS) and selenizing APS (sAPS) could provide
protection against PCV2 infection (Liu et al., 2018b). In detail, they
activated phosphatidylinositol-3-kinase (PI3K)/AKT signaling and
downregulated autophagy, contributing to decreased PCV2
replication. These findings suggest that targeting autophagy using
natural products may offer a novel antiviral strategy against PCV-
associated diseases.

Conclusion and perspectives

The intricate interplay between autophagy and PCV infection
has emerged as a pivotal axis in understanding viral pathogenesis
and host immune modulation. Autophagy plays a role by degrading
viral components and modulating immune responses during PCV2
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infection. While PCV2 has evolved sophisticated strategies to
manipulate autophagy for their replication, persistence, and
immune evasion. However, evidence of autophagy regulating
PCV3 and PCV4 infections is lacking and needs further
investigations in the future. PCV2 infection elevates intracellular
ROS levels, which in turn induces autophagosome formation
(Zhang et al,, 2020). Simultaneously, viral proteins such as ORF1
interact with host ubiquitin ligases like TRAF6, promoting K63-
linked ubiquitination of viral components to facilitate their
recognition by autophagy receptors like SQSTM1/p62 (Han et al.,
2024). This selective autophagy ensures viral protein degradation is
suppressed until replication peaks, after which autophagic flux is
redirected to degrade antiviral host factors. Notably, PCV2
upregulates adipokine RBP4, which amplifies TRAF6-dependent
ubiquitination of viral proteins, creating a feedforward loop that
sustains autophagy activation. Paradoxically, excessive autophagy
induced by viral manipulation triggers lysosomal dysfunction,
enabling viral particles to escape degradation (Zhao et al., 2024a).
This modulation of autophagy—promoting its initiation while
inhibiting late-stage maturation—creates a niche for persistent
infection. Furthermore, environmental factors like ochratoxin A
(OTA) synergize with viral strategies by enhancing ROS-dependent
autophagy, whereas dietary antioxidants such as taurine counteract
this process through AMPK/mTOR pathway modulation (Qian
et al, 2017). These findings underscore PCV2’s evolutionary
adaptation to co-opt autophagy, highlighting the intricate balance
between viral pathogenesis and host defense mechanisms.

Pharmacological interventions targeting autophagy pathways
hold promise for controlling PCV infection. Autophagy inhibitors,
such as 3-methyladenine (3-MA) and chloroquine (CQ), could
theoretically limit viral replication by blocking autophagosome
formation or lysosomal degradation. CQ disrupts lysosomal
acidification, thereby preventing viral capsid disassembly and
genome release. Conversely, autophagy inducers like rapamycin
may enhance antiviral immunity by promoting autophagic
clearance of viral particles and dampening excessive
inflammation. For example, retinol-binding protein 4 (RBP4), an
adipokine and retinol carrier, triggers autophagic degradation of the
viral ORF1 protein through K63-linked ubiquitination, which
recruits SQSTM1/p62 for delivery and degradation, thus reducing
viral replication and impairing its pathogenicity (Han et al., 2024).
Moreover, Matrine, a quinolizidine alkaloid, suppresses PCV2
infection, protects the intestinal barrier function, and promotes
intestinal clearance of virus in murine models by activating cellular
autophagy (Wang et al., 2024). These studies indicate that
autophagy could be a promising therapeutic target to regulate
PCV infection.

Emerging research highlights specific viral proteins as
therapeutic targets. The PCV2 Cap protein interacts with host
ATG proteins to hijack autophagy. Disrupting this interaction
using peptide inhibitors or monoclonal antibodies could
selectively impair viral replication without compromising global
autophagy. Similarly, targeting PCV-induced autophagy-related
membrane trafficking may offer genotype-specific interventions.
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Traditional Chinese medicine (TCM) compounds with
immunomodulatory and antiviral properties may provide novel
autophagy-based therapies. For example, berberine, isolated from
Coptis chinensis, induces autophagy-dependent clearance of
intracellular pathogens by activating various signalings
(Mohammadinejad et al., 2019). Paeonifforin inhibits PCV2
replication by blocking autophagy via disturbing AKT/mTOR
signaling (Wu et al., 2025). Glycyrrhizin from Glycyrrhiza
uralensis alleviates anti-inflammatory effects by modulating
autophagy via the PI3K/AKT/mTOR pathway (Qu et al,, 2019).
High-throughput screening of TCM libraries may identify
additional candidates that restore autophagic flux or counteract
viral subversion.

Autophagy represents a critical nexus in PCV pathogenesis,
offering both a vulnerability to exploit for therapeutic intervention
and a mechanism of viral resilience. Advances in understanding the
spatiotemporal dynamics of autophagy during infection, coupled
with innovations in drug delivery and TCM-derived compounds,
position autophagy modulation as a cornerstone of future antiviral
strategies. Integrating omics technologies, clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein
9 (CRISPR-Cas9) screens, and artificial intelligence (AI)-driven
drug repurposing will accelerate the translation of these insights
into clinical solutions, ultimately reducing the global burden of
PCV-associated diseases in swine and safeguarding food security.
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