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Porcine circovirus (PCV), particularly PCV type 2 (PCV2), is a major pathogen

driving porcine circovirus-associated diseases (PCVAD), causing significant

economic losses in the swine industry. Accumulating evidence highlights

autophagy as a critical host-pathogen interface during PCV infection. PCV2

activates autophagy through reactive oxygen species (ROS)-mediated signaling

and metabolic regulators like the AMP-activated protein kinase (AMPK)/

mechanistic target of rapamycin (mTOR) axis, creating a conducive

environment for viral persistence. Concurrently, this virus exploits ubiquitin

ligases to induce ubiquitination of cellular immune factors, promoting selective

autophagy for immune evasion. Host factors, such as retinol-binding protein 4

(RBP4), act as restriction factors by counteracting viral strategies through

autophagy modulation. Environmental stressors could exacerbate PCV2

pathogenesis by amplifying ROS-dependent autophagy, while interventions like

taurine mitigate viral replication via ROS/AMPK/mTOR pathway inhibition. This

mini-review synthesizes current understandings of PCV-autophagy crosstalk,

emphasizing its critical role as a host vulnerability and therapeutic target.

Understanding the intricate interplay between autophagy and PCV infection

may unveil novel therapeutic targets, such as autophagy modulators, to

mitigate viral replication and immune pathology.
KEYWORDS

autophagy, porcine circovirus, virus-host interaction, viral replication, viral
pathogenesis
Introduction

Porcine circovirus (PCV), a member of the family Circoviridae, is a globally prevalent

pathogen with significant economic impact on the swine industry (Opriessnig et al., 2020).

First identified in 1974 as a non-pathogenic contaminant in porcine kidney cell cultures, its

pathogenic potential emerged later with the recognition of postweaning multisystemic

wasting syndrome (PMWS) in the 1990s, linked to PCV type 2 (PCV2) (Segalés et al.,

2013). PCV is classified into four genotypes: PCV1 (non-pathogenic), PCV2 (pathogenic,

associated with PMWS, respiratory disease, and reproductive failure), PCV3 (emerging,
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linked to reproductive disorders and multisystemic inflammation),

and PCV4 (Opriessnig et al., 2020). Furthermore, PCV2 could be

classified into six genotypes, including PCV2a-f (Franzo and

Segalés, 2018; Mone et al., 2020). Structurally, PCV2 is a non-

enveloped, icosahedral virus with a circular, single-stranded DNA

genome (~1.7 nt), encoding two major proteins: the capsid (Cap)

protein and the replicase protein (Rep) (Figure 1) (Rakibuzzaman

and Ramamoorthy, 2021). The Cap protein forms the viral capsid,

mediating host cell attachment and inducing neutralizing

antibodies, while the Rep protein orchestrates viral DNA

replication via rolling-circle amplification (Yan and Sun, 2024).

Notably, PCV2 exhibits genetic diversity, with distinct genotypes

differing in virulence and antigenicity. With a diameter of 17–20

nm, PCV is among the smallest autonomous animal viruses. Its

small genome and minimalistic structure enable efficient replication

in host cell nuclei, particularly in lymphoid tissues, where it disrupts

immune homeostasis by targeting macrophages, dendritic cells, and

lymphocytes (Fehér et al., 2023). The viral ability to modulate

autophagy, apoptosis, and cytokine signaling underscores its

intricate interplay with host defenses. Building upon the

character iza t ion of PCV2 pathogenes i s and c l in ica l

manifestations, understanding PCV2 molecular architecture and

evolutionary adaptations remains critical for developing vaccines

and antiviral strategies against porcine circovirus-associated
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diseases (PCVAD). This knowledge not only elucidates viral

persistence mechanisms but also informs rational design of

therapeutic interventions targeting conserved viral epitopes or

host-pathogen interaction nodes.

PCV infections, particularly those caused by PCV2 and PCV3,

impose substantial economic and veterinary challenges globally.

Clinically, PCV2 is strongly associated with PMWS, characterized

by progressive weight loss, lymphoid depletion, and immune

suppression, which predisposes pigs to secondary bacterial

infections, exacerbating morbidity and mortality (Li et al., 2022).

PCV3, an emerging pathogen, is linked to reproductive failure,

including stillbirths, mummified fetuses, and neonatal mortality, as

well as multisystemic inflammatory syndromes (Cobos et al., 2025).

Affected pigs may exhibit nonspecific signs such as fever, lethargy,

and diarrhea, complicating clinical diagnosis. Subclinical infections

are also prevalent, leading to reduced growth rates and feed

efficiency, which collectively diminish farm productivity.

Pathologically, PCV2 induces granulomatous inflammation in

lymphoid tissues, thymic atrophy, and interstitial pneumonia,

while PCV3 is associated with vascular lesions and myocarditis

(Li et al., 2025). Diagnosis relies on polymerase chain reaction

(PCR), immunohistochemistry, or serological assays, though

differential diagnosis is critical due to overlapping symptoms with

other porcine diseases (Segalés, 2012; Goto et al., 2023). Prevention
FIGURE 1

The structure of PCV2. (A) The genome of PCV2 is appropriately 1.7k nt. ORF1 is situated on the positive strand and predominantly encodes the Rep
protein. In contrast, ORF2 resides on the complementary strand and is responsible for encoding the Cap protein. The intergenic region separating
ORF1 and ORF2 contains the origin of replication (Ori), which is positioned between the initial codons of both ORFs. (B) The Depicts expanded open
reading frames: ORF1 includes ORF9, ORF3, ORF4, ORF8, ORF11; ORF2 includes ORF5, ORF10, ORF6, ORF7, and ORF9.
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and control strategies include vaccination, which reduces viral

shedding and clinical severity. Biosecurity measures, such as all-

in/all-out systems, strict disinfection protocols, and minimizing

stressors, are pivotal to limit viral transmission (Maity et al., 2023).

Antimicrobial therapy may mitigate secondary infections, though

antibiotic resistance concerns necessitate prudent use (Raith et al.,

2016). Selective breeding for genetic resistance and nutritional

optimization further support disease management (Chen et al.,

2025). Emerging research on modulators, such as immune and

autophagic factors, and antiviral peptides offers potential

therapeutic avenues, underscoring the need for integrated,

multidisciplinary approaches to combat PCV-associated losses.

Autophagy, a conserved cellular process involving the

sequestration and lysosomal degradation of cytoplasmic

components, plays an important role during viral infections,

either inhibiting viral replication by eliminating viral particles or

enhancing viral replication by evading immunity (He et al., 2024).

For example, porcine epidemic diarrhea virus (PEDV) replication

could be suppressed by a multitude of host factors via the

autophagic degradation of nucleocapsid protein (Kong et al.,

2020; Jiao et al., 2021). Conversely, porcine reproductive and

respiratory syndrome virus (PRRSV) manipulates autophagy to

establish persistent infections. The viral nonstructural protein 2

(nsp2) hijacks the autophagy machinery to degrade TANK-binding

kinase 1 (TBK), suppressing activation of type I interferon (IFN)

regulatory factor 3 (IRF3) and IFN-I production and enabling viral

immune evasion (Zhao et al., 2024b). Additionally, classical swine

fever virus (CSFV) exploits autophagy to inhibit apoptosis, ensuring

viral persistence in host cells (Fan et al., 2021). Autophagy’s role in

antigen presentation and cross-priming of T cells further

complicates its relationship with viruses. While autophagy-

derived viral peptides can enhance CD8+ T cell responses, some

porcine viruses downregulate autophagy to avoid immune

recognition (Wang et al., 2021a; Sun et al., 2022). Therapeutically,

modulating autophagy—using agonists like rapamycin or inhibitors

such as 3-methyladenine, shows promise in mitigating viral

replication and immune pathology. However, tissue-specific and

virus-specific context must be considered, as autophagic effects vary

between viral species and infection stages. Thus, dissecting the

intricate interplay between virus and autophagic processes is

essential for designing precision therapies, as viral manipulation

of autophagic pathways not only subverts host antiviral defenses but

also creates actionable targets for pharmacological intervention.

The intricate relationship between autophagy and PCV

underscores its significance as a research priority in virology and

veterinary medicine. PCV2, the primary pathogenic type, induces

autophagosome formation through interactions between its capsid

protein and host autophagy-related proteins, facilitating viral

genome release and capsid assembly in the nucleus. Studying this

interplay is critical because autophagy modulation dictates infection

outcomes: while excessive autophagy may promote viral

persistence, its impairment exacerbates PCV-induced

inflammation by accumulating damaged mitochondria and

activating pro-inflammatory cytokines. Investigating autophagy

not only elucidates PCV pathogenesis but also identifies
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therapeutic targets. Pharmacological agents that modulate

autophagy could mitigate viral replication or hyperinflammation,

offering innovative strategies to control PCVAD. Understanding

this dynamic of PCV2 infection is thus pivotal for advancing swine

health and reducing economic losses in the pork industry.
PCV2 infection triggers autophagy via
various pathways

PCV2 triggers autophagy through multiple interconnected

pathways, forming a sophisticated network that regulates viral

replication and pathogenesis (Figure 2). First, PCV2 induces

endoplasmic reticulum stress (ERS), activating the PKR-like

endoplasmic reticulum kinase (PERK)- eukaryotic initiation

factor 2-alpha (eIF2a) arm of the unfolded protein response

(UPR) (Lv et al., 2020). This leads to activating transcription

factor 4 (ATF4)-mediated upregulation of pro-apoptotic proteins

like Bcl-2, while simultaneously initiating autophagy via calcium

(Ca2+) signaling. Elevated intracellular Ca2+, released through

inositol trisphosphate receptor (IP3R) channels, activates

calmodulin-dependent protein kinase kinase b (CaMKKb), which
bifurcates into two autophagy-inducing pathways: (1) CaMKKb-
AMP-activated protein kinase (AMPK) axis, where AMPK

phosphorylates and inhibits mechanistic target of rapamycin

complex 1 (mTORC1); and (2) CaMKKb/CaM-kinase I

(CaMKI)-dependent WD repeat domain, phosphoinositide-

interacting 1 (WIPI1) recruitment, directly promoting

autophagosome formation (Gu et al., 2016). Second, PCV2-

induced mitochondrial dysfunction activates PINK1/Parkin-

mediated mitophagy, clearing damaged mitochondria and

reducing reactive oxygen species (ROS) accumulation (Zhang

et al., 2020). Third, PCV2 induces autophagy via the AMPK/

extracellular signal-regulated kinases 1 and 2 (ERK1/2)- tuberous

sclerosis protein 2 (TSC2)-mTOR signaling axis. AMPK and ERK1/

2 activate autophagy by inhibiting mTOR through TSC2

phosphorylation in infected cells (Zhu et al., 2012). Lastly, PCV2

could induce p38 phosphorylation and autophagy to exacerbate

ochratoxin A-induced nephrotoxicity (Gan et al., 2018).

Intriguingly, PCV3 was also reported to induce autophagy by its

capsid protein in HEK293T cells, as shown by formation of

autophagosomes and autophagosome-like vesicles via suppressing

phosphorylation of the mTOR (Geng et al., 2020). Collectively,

these pathways synergize to create a pro-autophagic environment

that supports PCV persistence and pathogenesis.
Autophagy promotes PCV2 replication

Increasing evidence showed that autophagy has a pro-viral role

in enhancing PCV replication through multifaceted interactions

between viral components and host autophagic machinery. For

example, ochratoxin A (OTA), a mycotoxin produced by

Aspergillus and Penicillium, enhances PCV2 replication by

inducing autophagy in porcine kidney PK-15 cells. Autophagy
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inhibitors reduce OTA-driven PCV2 amplification. ROS scavengers

block OTA-induced autophagy, suggesting ROS involvement. In

pigs, OTA elevates PCV2 replication and autophagy in key tissues

(Qian et al., 2017). Similarly, Zhai et al. found that oxidative stress

could promote PCV2 replication via induction of autophagy (Zhai

et al., 2019). Notably, interventions targeting autophagy, such as the

use of autophagy inducers, have been shown to amplify PCV

replication in vitro, underscoring the critical dependency of viral

propagation on host autophagic flux. For instance, microRNA-30a-

5p and miR-214–5p exert positive effects on PCV2 replication via

various mechanisms. The former targets a 14-3–3 gene, which was a

modulator of autophagy (Wang et al., 2017). The latter disrupts

protein kinase B (PKB, also known as AKT)/mTOR signaling,

thereby inducing autophagy and boosting viral replication (Cao

et al., 2023). Additionally, a heat shock protein named DNAJB6 also

serves to positively regulate PCV2 replication by interacting with

Cap protein and promoting the production of autophagosome (Han

et al., 2020). Interestingly, Liu et al. discovered that glutamine

deficiency in host cells contributes to upregulated ROS-medicated

Janus kinase 2 (JAK2)/signal transducer and activator of

transcription 3 (STAT3) signaling and caused autophagy, thereby

facilitating PCV2 replication (Liu et al., 2018a). Recently, porcine

cGAS was found to become a target by PCV2 and degraded via

autophagy in PCV2-infected cells, impairing cGAS-STING

signaling and aiding in viral replication (Wang et al., 2021b).

These findings position autophagy as a central node in PCV
Frontiers in Cellular and Infection Microbiology 04
pathogenesis, with therapeutic implications for developing

antiviral strategies by modulating autophagic processes.
Targeting autophagy impedes PCV2
infection

A multitude of studies indicate the positive role of autophagy in

PCV2 replication. Based on this, pharmacological inhibitors and

additions could be used to effectively suppress PCV2 proliferation

by disrupting autophagic flux, as exhibited by reduced viral

titers, impaired capsid protein expression, and decreased DNA

copy numbers.
Antioxidants and metabolic regulators

Antioxidants and metabolic regulators play important roles in

modulating autophagy. For example, ROS could act as signaling

molecules that induce autophagy under oxidative stress, while

antioxidants like N-acetylcysteine (NAC) may attenuate excessive

autophagy by reducing ROS levels (Qi et al., 2024). Metabolic

regulators, such as AMPK and mTOR form a regulatory axis, where

AMPK activates autophagy during energy deprivation, and mTOR

inhibits it under nutrient-rich conditions (Kim et al., 2011). Studies

have shown that compounds like metformin (AMPK activator) or
FIGURE 2

PCV2 induces autophagy via various pathways. PCV2 ORF5 causes ER stress, leading to autophagy via PERK-eIF2a-ATF4 axis. PCV2 Cap protein
elevates the production of ROS from the mitochondrial and induces the mitophagy by the ROS-mediated activation of Drp1. In addition, PCV2
activates the AMPK and ERK1/2, suppressing the activation of mTOR and contributing to autophagy. Moreover, PCV2 activates the IP3R and elevates
the cytosolic Ca2+ from ER, which upregulates CaMKKb and activates CaMKI, finally generating WIPI1 and inducing autophagy.
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rapamycin (mTOR inhibitor) demonstrate how metabolic

interventions can fine-tune autophagic flux (Bharath et al., 2020).

Taurine, known as a sulfur amino acid regulated by the kidney,

could attenuate ROS level and block OTA-mediated autophagy,

thus impairing PCV2 replication. Mechanistically, taurine

modulates the ROS/AMPK/mTOR signaling axis by inhibiting

AMPK and activating mTOR, while chemical AMPK activation

via acadesine (AICAR) abrogated taurine’s antiviral activity (Zhai

et al., 2018). Similarly, SeMet, the major component of organic

selenium, significantly inhibits OTA-induced enhancement of

PCV2 replication. Furthermore, SeMet attenuated OTA-triggered

autophagy and reverses the OTA-mediated suppression of p-AKT

and p-mTOR expression (Qian et al., 2018). Rapamycin, an AKT/

mTOR inhibitor, abrogates SeMet’s suppressive effects on both

OTA-induced autophagy and PCV2 replication enhancement.

Above studies indicate these regulators hold therapeutic potential

to dysregulated autophagy during PCV infections, offering targets

for pharmacological intervention through antioxidant

supplementation or metabolic pathway modulation.
Natural product-based autophagy
modulators

Natural product-derived autophagy modulators represent a

promising class of bioactive compounds that finely tune

autophagic processes through diverse molecular mechanisms. For

instance, resveratrol activates autophagy by inhibiting the mTOR

pathway or enhancing AMPK signaling, while flavonoids such as

quercetin may suppress excessive autophagy under oxidative stress

via ROS scavenging (Tang et al., 2020; Xia et al., 2024). Marine-

derived metabolites, including terpenoids and alkaloids, often target

Beclin-1 or ATG proteins to regulate autophagosome formation

(Jiang et al., 2019; El-Baba et al., 2021). Notably, these modulators

exhibit context-dependent dual roles, either promoting protective

autophagy in diseases or inhibiting pathological autophagy.

Paeonifforin was demonstrated to disrupt AKT/mTOR signaling,

thus suppressing autophagy, which in turn impeded PCV2

replication (Wu et al., 2025). Another study found that astragalus

polysaccharide (APS) and selenizing APS (sAPS) could provide

protection against PCV2 infection (Liu et al., 2018b). In detail, they

activated phosphatidylinositol-3-kinase (PI3K)/AKT signaling and

downregulated autophagy, contributing to decreased PCV2

replication. These findings suggest that targeting autophagy using

natural products may offer a novel antiviral strategy against PCV-

associated diseases.
Conclusion and perspectives

The intricate interplay between autophagy and PCV infection

has emerged as a pivotal axis in understanding viral pathogenesis

and host immune modulation. Autophagy plays a role by degrading

viral components and modulating immune responses during PCV2
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infection. While PCV2 has evolved sophisticated strategies to

manipulate autophagy for their replication, persistence, and

immune evasion. However, evidence of autophagy regulating

PCV3 and PCV4 infections is lacking and needs further

investigations in the future. PCV2 infection elevates intracellular

ROS levels, which in turn induces autophagosome formation

(Zhang et al., 2020). Simultaneously, viral proteins such as ORF1

interact with host ubiquitin ligases like TRAF6, promoting K63-

linked ubiquitination of viral components to facilitate their

recognition by autophagy receptors like SQSTM1/p62 (Han et al.,

2024). This selective autophagy ensures viral protein degradation is

suppressed until replication peaks, after which autophagic flux is

redirected to degrade antiviral host factors. Notably, PCV2

upregulates adipokine RBP4, which amplifies TRAF6-dependent

ubiquitination of viral proteins, creating a feedforward loop that

sustains autophagy activation. Paradoxically, excessive autophagy

induced by viral manipulation triggers lysosomal dysfunction,

enabling viral particles to escape degradation (Zhao et al., 2024a).

This modulation of autophagy—promoting its initiation while

inhibiting late-stage maturation—creates a niche for persistent

infection. Furthermore, environmental factors like ochratoxin A

(OTA) synergize with viral strategies by enhancing ROS-dependent

autophagy, whereas dietary antioxidants such as taurine counteract

this process through AMPK/mTOR pathway modulation (Qian

et al., 2017). These findings underscore PCV2’s evolutionary

adaptation to co-opt autophagy, highlighting the intricate balance

between viral pathogenesis and host defense mechanisms.

Pharmacological interventions targeting autophagy pathways

hold promise for controlling PCV infection. Autophagy inhibitors,

such as 3-methyladenine (3-MA) and chloroquine (CQ), could

theoretically limit viral replication by blocking autophagosome

formation or lysosomal degradation. CQ disrupts lysosomal

acidification, thereby preventing viral capsid disassembly and

genome release. Conversely, autophagy inducers like rapamycin

may enhance antiviral immunity by promoting autophagic

clearance of viral part ic les and dampening excessive

inflammation. For example, retinol-binding protein 4 (RBP4), an

adipokine and retinol carrier, triggers autophagic degradation of the

viral ORF1 protein through K63-linked ubiquitination, which

recruits SQSTM1/p62 for delivery and degradation, thus reducing

viral replication and impairing its pathogenicity (Han et al., 2024).

Moreover, Matrine, a quinolizidine alkaloid, suppresses PCV2

infection, protects the intestinal barrier function, and promotes

intestinal clearance of virus in murine models by activating cellular

autophagy (Wang et al., 2024). These studies indicate that

autophagy could be a promising therapeutic target to regulate

PCV infection.

Emerging research highlights specific viral proteins as

therapeutic targets. The PCV2 Cap protein interacts with host

ATG proteins to hijack autophagy. Disrupting this interaction

using peptide inhibitors or monoclonal antibodies could

selectively impair viral replication without compromising global

autophagy. Similarly, targeting PCV-induced autophagy-related

membrane trafficking may offer genotype-specific interventions.
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Traditional Chinese medicine (TCM) compounds with

immunomodulatory and antiviral properties may provide novel

autophagy-based therapies. For example, berberine, isolated from

Coptis chinensis, induces autophagy-dependent clearance of

intracellular pathogens by activating various signalings

(Mohammadinejad et al., 2019). Paeonifforin inhibits PCV2

replication by blocking autophagy via disturbing AKT/mTOR

signaling (Wu et al., 2025). Glycyrrhizin from Glycyrrhiza

uralensis alleviates anti-inflammatory effects by modulating

autophagy via the PI3K/AKT/mTOR pathway (Qu et al., 2019).

High-throughput screening of TCM libraries may identify

additional candidates that restore autophagic flux or counteract

viral subversion.

Autophagy represents a critical nexus in PCV pathogenesis,

offering both a vulnerability to exploit for therapeutic intervention

and a mechanism of viral resilience. Advances in understanding the

spatiotemporal dynamics of autophagy during infection, coupled

with innovations in drug delivery and TCM-derived compounds,

position autophagy modulation as a cornerstone of future antiviral

strategies. Integrating omics technologies, clustered regularly

interspaced short palindromic repeats/CRISPR-associated protein

9 (CRISPR-Cas9) screens, and artificial intelligence (AI)-driven

drug repurposing will accelerate the translation of these insights

into clinical solutions, ultimately reducing the global burden of

PCV-associated diseases in swine and safeguarding food security.
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