& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Tianshu Sun,

Peking Union Medical College Hospital
(CAMS), China

REVIEWED BY
Ko Sato,

Tohoku University, Japan
XinDi Gao,

Xingiao Hospital, China

*CORRESPONDENCE
Kaijian Zhou
zhoukaijian0921@163.com

RECEIVED 23 July 2025
ACCEPTED 26 August 2025
PUBLISHED 11 September 2025

CITATION

Li F, Yu X, Li M, Ning X and Zhou K (2025)
Cryptococcal infection: host immunity,
immune evasion and emerging
immunotherapeutic strategies.

Front. Cell. Infect. Microbiol. 15:1671873.
doi: 10.3389/fcimb.2025.1671873

COPYRIGHT
© 2025 Li, Yu, Li, Ning and Zhou. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)
are credited and that the original publication

in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cellular and Infection Microbiology

TYPE Review
PUBLISHED 11 September 2025
Dol 10.3389/fcimb.2025.1671873

Cryptococcal infection:

host immunity, immune
evasion and emerging
Immunotherapeutic strategies

Fei Li*?, Xinxin Yu?®, Miao Li? Xiaoyu Ning? and Kaijian Zhou™

‘Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China,
2School of Pharmacy, China Medical University, Shenyang, China, *Center for Cell and Gene Therapy,
The First Hospital of China Medical University, Shenyang, China, “Department of Plastic Surgery, The
First Hospital of China Medical University, Shenyang, China

Cryptococcal infection is a typical opportunistic infection that significantly
endangers human health, particularly to immunocompromised populations. As
the top priority fungal pathogen listed by the World Health Organization,
conventional antifungal drugs for cryptococcal infection are often ineffective
and fail to completely eradicate the pathogen. One of the key factors underlying
the treatment failure is the sophisticated immune escape strategies employed by
Cryptococcus, which constitutes a major clinical challenge. Overcoming
immune escape is key to improving therapeutic efficacy. Therefore, exploring
new therapeutic methods, especially immunotherapy, is of paramount
importance in combating the escape mechanisms and boosting the host's
defense capabilities. In this review, we focus on the host's pattern recognition
receptors, the innate and adaptive immune responses to the Cryptococcus
infection, the immune escape tricks of Cryptococcus, and the prospects for
immunotherapy, providing new insights for developing the anti-Cryptococcus
immunotherapeutic strategies for the immunocompromised populations.
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1 Introduction

Cryptococcus spp. is a kind of pathogenic fungus causing opportunistic infection, in
which Cryptococcus neoformans and Cryptococcus gattii are the main pathogenic species.
The Cryptococcus neoformans species complex includes C. neoformans and C.
deneoformans, while the Cryptococcus gattii species complex comprises C. gattii, C.
bacillisporus, C. deuterogattii, C. teragattii, and C. decagattii (Hagen et al., 2015). The
distribution of Cryptococcus neoformans is widely and mainly within soil and bird guano,
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with 95% of the infected cases occurring in individuals with
immunodeficiency, such as AIDS patients and organ transplant
receptors. In outbreak areas (e.g. Vancouver Island), more than 90%
of the cases with C. gattii infection occur in the immunocompetent
people (Iyer et al, 2021; May et al., 2016). According to the most
recent report, annual global deaths from cryptococcal meningitis
reached approximately 147,000, with HIV-associated deaths
accounting for 112,000 cases (Denning, 2024). Cryptococcus
neoformans is the major etiology of fungal meningitis, posing a
significant threat to the global public health, particularly to the
immunocompromised populations (Casalini et al., 2024;
Rajasingham et al., 2022). It is the first time that the World
Health Organization has issued a checklist of the key pathogenic
fungi in 2022, ranking Cryptococcus at the first position among the
groups with the emergency priority (Casalini et al., 2024).

The polysaccharide capsule is the most distinctive structure
feature of the pathogenic Cryptococcus, mainly composed of two
kinds of polysaccharides, namely glucuronoxylomannan (GXM)
and glucuronoxylomannogalactan (GXMGal) (Reese and Doering,
2003). Melanin is embedded in the matrix of the cell wall and forms
an antioxidant barrier. Glucans, chitins, chitosans, mannoproteins
(MPs), and Glycosylphosphatidylinositol (GPI)-anchored proteins,
which are the important constitutes of the cell walls, are also
pathogen-associated molecular patterns (PAMPs) (Garcia-Rubio
et al, 2019; Gow and Lenardon, 2023). The PAMPs within cell
walls are physically masked by the capsule. The damage of capsules
and the exposure of PAMPs are required for the PAMPs to be
recognized by host pattern recognition receptors (PRRs), which
potentially lead to a harmful immune response, such as a Th2 bias.
The interaction between the immune system of the host and
Cryptococcus is highly intricate. On one hand, the innate and
adaptive immunity of the host collaborate to recognize and
eliminate Cryptococcus. Meanwhile, Cryptococcus employs various
pathways to escape from the immune system of the host to survive
intracellularly and to disseminate systemically, which ultimately
leads to three clinical outcomes, including clearance or latency of
Cryptococcus, chronic cryptococcal infection, and death of the
infected subjects (Francis et al., 2024; Garcia-Rubio et al., 2019; Li
et al., 2019).

Pharmacological therapy remains the sole method for clinical
treatment of cryptococcal infection (Chang et al, 2024). Although
this approach significantly reduced the acute-stage mortality, the drug
toxicity in the kidneys and bone marrow was severe and the drug
resistance was emerging constantly (Robbins et al., 2017). In addition,
individuals with compromised immune function often fail to generate
an effective immune response against Cryptococcus, although
appropriate antimicrobial treatments were administered (Chang et al,,
2024; Davis et al,, 2019). Therefore, exploring new therapeutic strategies,
especially those with protective effects on immunocompromised
individuals, is of critical importance. This review focuses on the PRRs
of host, the innate and adaptive immune responses against Cryptococcus
invasion, and the prospects for immunotherapy, providing new insights
for developing the immunotherapeutic approaches against Cryptococcus
for immunocompromised individuals.
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2 Pattern recognition receptors

The initiation for a host to establish an effective immune response
against Cryptococcus is the binding of the PRRs on the innate
immune cells to the PAMPs of Cryptococcus, serving as the first
line of defense against infection (Campuzano and Wormley, 2018).

2.1 CLRs

The C-type lectin receptors (CLRs) primarily recognize the
polysaccharides of Cryptococcus (Saijo and Iwakura, 2011;
Speakman et al, 2020; Zhao et al, 2014). There are multiple
studies directly implicating the crucial roles of CLRs in
cryptococcal infection. Among them, Dectin-1 is able to recognize
B-1,3-glucan. However, Dectin-1 is not indispensable for the host
defense against C. neoformans infection due to the shielding effect of
the polysaccharide capsule which covers the inner cell wall layer
containing B-glucans(K. Nakamura et al., 2007). Studies have shown
that the exposed 3-1,3-glucan in C. neoformans can be recognized by
Dectin-1. The phagocytic efficiency of Dectin-17~ macrophages is
significantly lower than that of Dectin-1"* macrophages (Giles et al.,
2009; Walsh et al., 2017). Upon binding with (3-1,3-glucan, Dectin-1
recruits Syk kinase through the immunoreceptor tyrosine-based
activation motifs (ITAMs). Syk phosphorylates the Syk-caspase
recruitment domain-containing protein 9 (CARD?9), promoting the
formation of a CBM complex, consisting of CARD9Y, Bcll0 and
MALT1. The CBM complex drives the nuclear entry of NF-xB and
activates the MAPK pathway, thereby driving T cell differentiation
and regulating the function of myeloid cells (Campuzano et al., 2020;
Gross et al,, 2006; Zhao et al, 2014). Additionally, Dectin-2
recognizes o-mannan and functions by activating the CARD9
signaling pathway through FcRy-ITAM (McGreal et al., 2006).
Studies on mice indicate that Dectin-2 may suppress the Th2
response and IL-4-dependent mucin production in the lungs after
infection with C. neoformans (Y. Nakamura et al., 2015). Dectin-27/~
dendritic cells are less effective in the phagocytosis of C. neoformans
than Dectin-2""* dendritic cells (Kitai et al.,, 2021). The recognition
domain of the Mincle receptor contains two hydrophobic pockets
capable of binding long-chain fatty acids in addition to two sugar-
binding pockets. This structural feature enables its efficient
recognition of glycolipid pathogen ligands that interact with
multiple binding sites. During C. neoformans infection, Mincle
primarily recognizes acylated ergosterol B-glucoside (AEGs)
through these hydrophobic pockets. Subsequently, Mincle initiates
the CARD9 adaptor-mediated NF-kB pathway via ITAM signaling,
inducing the secretion of proinflammatory cytokines and
Th22-associated factor IL-22, thereby enhancing the host’s early
immune response. However, its efficacy is limited as C. neoformans
shields AEGs exposure through capsular polysaccharides, while
other pattern recognition receptors (e.g., TLRs) can compensate for
Mincle deficiency, attenuating its immunological effects (Sato et al,,
2020; Watanabe et al, 2025). Dectin-3 can recognize directly the
GXM of C. neoformans and C. gattii, and activate the NF-xB and
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ERK pathways to initiate the host defense response. Dectin—/— mice
are highly sensitive to C. neoformans (serotype AD) and C. gattii
(serotype B) infections, displaying increased fungal load in the lungs
and weakened inflammatory response, which is not observed in other
serotypes (Huang et al, 2018). Studies have demonstrated that
CARD? is a key molecule for inducing protective immunity against
Cryptococcus. CARD9 deficiency leads to an abnormal differentiation
of Th17 cells, a biased immune response towards Th2 type, impaired
macrophage function, and the loss of the ability to clear
C. neoformans infection (Campuzano et al, 2020). The signaling
pathways activated by the recognition of CLRs to the cryptococcal
PAMPs are shown in Figure 1. These findings provide new insights
into the immune mechanism of cryptococcosis and offer potential
targets for immunotherapy strategies against fungal infections.

2.2 TLRs

Toll-like receptors (TLRs) are type I transmembrane PRRs
(Nakamura et al., 2008). TLR2 recognizes sterylglucosides and
MP88 of both C. neoformans and C. gattii and promotes the
secretion of TNF-o and IL-6 via the MyD88/NF-kB/MAPK
pathway, enhancing the phagocytic activity of macrophages and
the activation of ¥8 T cells (Normile et al., 2022; Rella et al., 2015).
Notably, TLR2-deficient ¥ T cells do not produce IL-17A, giving
rise to a total loss of protective effectiveness of the sterylglucosidase
1 (sgll) deletion (sgllA) vaccine (Normile et al., 2022). Recent
studies have shown that the absence of TLR4 signaling in C.
neoformans enhances non-specific phagocytosis by upregulating
macrophage scavenger receptor 1 on macrophages, a process
involving the FcyRII/III and Syk signaling pathways (Onyishi
et al, 2023). Additionally, both C. neoformans and C. gattii are
able to activate bone marrow-derived dendritic cells through the
TLR9-MyD88 signaling pathway and promote Thl type immune
response. The deficiency of TLR9 weakens the host’s ability to clear
the two kinds of Cryptococcus, leading to higher fungal loads and
poorer survival rates (da Silva-Junior et al., 2021; K. Nakamura
et al., 2008; Y. Zhang et al.,, 2010). In C. neoformans infection, the
absence of TLRY mainly affects the recruitment of Thl cells and
IFN-y production (Y. Zhang et al., 2010), while in C. gattii infection,
the lack of TLR9 diminishes the Th1/Thl17 immune response,
leading to a significant increase in titan cells and the spread of
the pathogen (da Silva-Junior et al., 2021; Yang et al, 2022).
Therefore, TLR9 is one of the core receptors of the host and plays
a crucial role in the elimination of the cryptococcal infection.
Overall, the effect of TLR ligands as adjuvants may be more
effective than those as direct vaccine targets.

2.3 NLRs

NOD-like receptors (NLRs) are positioned in cytoplasm.
C. neoformans capsular mutant (such as cap59A) can activate the
NOD-like receptor family pyrin domain containing 3 (NLRP3)
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pathway(C. Guo et al, 2014). The NLRP3 deletion weakens the
IL-1f secretion and the neutrophil recruitment, indicating that
regulating the NLRP3 inflammasome pathway may help defend the
infection of C. neoformans in patients (Franchi et al.,, 2012; Lei et al.,
2013). The alteration of the intracellular ion concentration (such as
potassium ion efflux) and the production of reactive oxygen species
(ROS) caused by cryptococcal infection can activate the NLRP3
inflammasome and enhance the immune response (Dostert et al.,
2008; Petrilli et al., 2007).

2.4 SRs

Scavenger Receptors (SRs) are featured by the capability of
recognizing polysaccharides with negative charges (such as
phosphorylated mannan) on the surface of Cryptococcus, mediating
the non-macrophage-dependent (non-specific) phagocytosis and the
clearance of Cryptococcus (Onyishi et al, 2023; Pathakumari et al,
2020). Members of the scavenger receptor family, Scavenger Receptor
Class F Member 1, recognizes -1,3-glucan and initiate endocytosis of
C. neoformans, resulting in the formation of the phagosomes. CD36, a
Class B Scavenger Receptor, binds to membrane phospholipids (such
as phosphatidylinositol) and inhibits the intracellular replication of C.
neoformans (Means et al, 2009). Mice with double knockout of
Scavenger Receptor Class F Member 1 and CD36 exhibited 100%
mortality after 7 days of C. neoformans infection (Pathakumari et al,,
2020). Macrophage scavenger receptor 1 recognizes the glucuronic acid
group of GXM and co-localizes with TLR4, synergistically activating
the Vav/Racl pathway to mediate phagocytosis (Onyishi et al., 2023).
Macrophages recognize the exposed B-1,3-glucan of C. neoformans
through their collagen structure receptor, macrophage receptor with
collagenous structure (MARCO). In hepatic macrophages, MARCO
maintains the stability of actin by inhibiting ROCKII kinase, thereby
blocking the “vomocytosis” that allows C. neoformans to escape from
macrophages. The absence of MARCO leads to systemic dissemination
of C. neoformans and a 10-fold increase in the level of C. neoformans
within the brain (Onyishi et al, 2024; J. Xu et al, 2017). CD5 is
expressed by lymphocytes and recognizes [3-1,3-glucan, which can
provide co-stimulatory signals and enhance the activation of T and B
cells as well as the production of cytokines (such as IFN-y, TNF-q, IL-6,
and IL-12), promoting the differentiation of Th1/Th17 cells and the
production of anti-C. neoformans antibodies IgG2c. CD5-deficient
mice exhibit defects in Th1/Thl7 differentiation, resulting in
delayed C. neoformans clearance. Soluble human CD5 recognizes 3-
glucan through its SRCR domain, enhancing TNF-0/IFN-y production
by macrophages and thereby driving M1 polarization. Simultaneously,
Soluble human CD5 inhibits the function of regulatory T cells,
reversing the immunosuppressive microenvironment (Velasco-de-
Andres et al, 2021; Velasco-de Andres et al., 2020). Additionally, it
has been reported that Dectin-2 plays a pivotal role in the
phagocytosis of C. neoformans by bone marrow-derived dendritic
cells, potentially facilitating actin polymerization and phagocytic
activity through the CARD9 and Syk-PI3K signaling pathways
(Kitai et al., 2021).
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FIGURE 1

The recognition of CLRs to the PAMPs of Cryptococcus and the signaling pathways The CLRs, including Dectinl, Dectin2, Dectin3, MCL and Mincle,
mainly recognize the polysaccharides of Cryptococcus, namely B-1,3-glucan, a-mannan and GXM. The Syk/CARD9/NF-kB/MAPK axis is the essential
signaling pathway activated by CLRs-PAMPs interaction, in which CARD9 is the core molecule. The deficiency of CARD9 results in the incapability in

the clearance of Cryptococcus infection.

2.5 NKG2D

The latest research has found that natural killer cell group 2D
receptor (NKG2D) is a PRR that directly recognizes the
polysaccharide ligands on the surface of C. neoformans, which
activates the degranulation of natural killer (NK) cells and T cells
to degranulate and the killing of fungi (Charpak-Amikam et al,
2024). Flow cytometry (FCM) detection confirmed that the
NKG2D-IgG-Fc fusion protein can bind to the surfaces of various
fungi, including C. neoformans, although the chemical structure of
its fungal ligands has not yet been deciphered. In NKG2D-deficient
mice infected by C. neoformans, the levels of C. neoformans in the
lungs and brain increased threefold, and the survival rate decreased
by 50%, confirming the protective role of NKG2D. The
immunological intervention strategies targeting NKG2D, such as
agonists or adoptive cell therapy, may become a novel direction for
antifungal treatment (Charpak-Amikam et al.,, 2024).
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3 Innate immune response

The innate immune response is the first line of defense against
Cryptococcus, and its efficacy directly affects the progression and
outcome of the infection (Heung, 2017). However, Cryptococcus has
also evolved immune evasion strategies (Yang et al., 2022; Zaragoza,
2019). A detailed analysis of the interactions between the innate
immune response and the cryptococcal infection not only reveals
the complex mechanisms of host-Cryptococcus interaction, but
also provides a theoretical foundation for the development of
targeted immunotherapies.

3.1 Macrophages

Macrophages are crucial innate immune cells during the course
of cryptococcal infection. Through multiple PRRs, such as Dectin-1,
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TLR2/4 and CD36, macrophages recognize f3-1,3-glucan or GXM,
initiating the engulfment of Cryptococcus (Campuzano and
Wormley, 2018; Tucker and Casadevall, 2002). There are two
polarization forms of macrophages, type M1 and M2 (Conn and
Wozniak, 2023).

M1 macrophages are induced by IFN-yand TNF-a, functioning
as the major fighters against cryptococcal infection by the following
mechanisms. Firstly, M1 macrophages induce inducible nitric oxide
synthase (iNOS) to generate nitric oxide (NO) and ROS, which
damage the ergosterol and chitin synthase within the cellular
membrane of C. neoformans. Secondly, M1 polarization (iNOS"/
arginase 1 (Argl’)) is stimulated through NO-activated signal
transducer and activator of transcription 1 (STATI) signaling.
Thirdly, the blockage of the expression of C. neoformans effector
protein, Cryptococcal Protein Linked to Virulence 1 (Cpll), inhibits
M2 polarization mediated by TLR4/STAT3 (Dang et al., 2022; Y.
Wang et al., 2022). Lastly, TNF-o and IL-12 are released to induce
the Th1 immune response and IFN-y production. IFN-y maintains
the M1 phenotype (iNOS*/Argl’) of macrophages through
activating the STAT1 pathway (Y. Wang et al, 2022). STATI
knockout mice show a significant increase in fungal load and
Argl expression, and a loss of bactericidal capacity (Bryan et al,
2021; Leopold Wager et al., 2018; Marina et al., 2025). IFN-y pre-
stimulation can confer a “memory-like” phenotype to macrophages,
enhancing the rapid killing response during secondary infection
(Leopold Wager et al., 2018). Additionally, C. gattii exhibits strain-
specific strategies to evade clearance: high-phagocytic strains induce
M1 depletion and mitochondrial tubulation, enabling intracellular
dormancy and persistence, while low-phagocytic strains trigger
robust M1 responses (Voelz et al., 2014; Yang et al., 2024b). This
distinct strategy enables the pathogenic C. gattii to establish a
persistent infection within macrophages, which is not observed in
C. neoformans.

M2 macrophages, induced by IL-4 and IL-13, are the
“accomplices” of cryptococcal immune escape of C. neoformans.
The mechanisms include (1) high level of the Argl expression,
consuming arginine which is needed for the production of NO and
inhibiting NO production (Bryan et al., 2021; Hansakon et al., 2023;
Marina et al., 2025), (2) secretion of IL-10 and TGF-f, inhibiting
the inflammatory response and providing an intracellular survival
environment for C. neoformans (Bryan et al., 2021; Hansakon et al.,
2023; Leopold Wager and Wormley, 2014; Marina et al., 2025), and
(3) proliferation of C. neoformans intracellularly, spreading to the
central nervous system by the “Irojan horse” pathway (Bryan et al,,
2021; Hansakon et al., 2023; Leopold Wager and Wormley, 2014;
Marina et al., 2025).

Recent studies have reported that immune metabolic
reprogramming regulates the polarization of macrophages from M1
to M2. Macrophages mainly rely on glycolysis to maintain the M1
phenotype, while depend on fatty acid oxidation to maintain the M2
phenotype (Marina et al., 2025). Upregulation of macrophage Argl
expression and fatty acid oxidation through GXM and Cryptococcal
Protein Linked to Virulence 1 is an important pathway for
C. neoformans escape from the phagocytosis and clearance by M1
macrophages. Notably, targeting mitochondrial vulnerabilities in
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C. gattii presents a promising approach to prevent persistent
dormancy. These findings may establish novel research directions
for developing anti-cryptococcal immunotherapy strategies.

3.2 Dendritic cells

In the cryptococcal infection, dendritic cells (DCs) are the most
pivotal antigen presenting cells and exhibit the greatest potential for
T cell activation (Ramirez-Ortiz and Means, 2012). The interaction
between Cryptococcus and DCs is a dynamic competition between
the host’s protective immunity and the cryptococcal immune
escape. DCs recognize Cryptococcus through PRRs and initiate T
cell immunity, while Cryptococcus inhibits the activities of DCs by
capsules and other virulence factors to survive. DCs recognize the
MPs of Cryptococcus through the MRs, mediating the endocytosis
and lysosomal degradation of the pathogen. Furthermore,
cooperating with the TLR9-MyD88 pathway activated by
cryptococcal DNA, the interaction between MRs and MPs
promotes the migration of DCs to the lymph nodes and the
antigen presentation to T cells, ultimately activating Th1/Th17
cells and secreting protective factors such as TNF-o/IFN-y.
Meanwhile, the capsule GXM/GXMGal blocks the maturation of
DCs, downregulates the expression of MHC-II and CD80/CD86 on
DCs, which inhibits the proliferation of T cells (Conn and Wozniak,
2023; Goughenour et al., 2023; Wozniak, 2018). Additionally, after
the endocytosis into DCs, the Cryptococcus enters lysosomes and is
killed by enzymes such as ROS and cathepsin B, which have the
ability to destroy the cell wall of Cryptococcus by the way of osmotic
lysis (Conn and Wozniak, 2023; Wozniak, 2018). In particular, C.
gattii can suppress DC maturation and the T cell pathways,
overcome the physical barrier of a cage-like structure formed by
the phagosomal filamentous actin as well as break the inhibition of
the TNF-o signaling pathway. The unique evasion strategy of C.
gattii may explain the high pathogenicity of C. gattii in
immunocompetent hosts (Huston et al., 2013; Jamil et al., 2020).

TNE-o. stabilizes the polarization of DCI through epigenetic
mechanisms and promotes protective Thl and Thl7 immune
responses. Reduced TNF-o secretion enhances murine
susceptibility to C. neoformans infection by triggering alternative
activation of DCs (Eastman et al., 2019). The recent studies have
found that basic leucine zipper transcription factor ATF-like 3
(Batf3)-dependent conventional dendritic cells 1 (cDC1) play a key
role in anti-C. neoformans infection by promoting Thl polarization.
cDC1 deficiency significantly decrease the activation of CD4" T cells
in lung and brain and the secretion of Thl cytokines (such as IFN-y
and TNF-), resulting in the increase in fungal load (Coelho, 2024; J.
Xu et al, 2024). The latest research reports that Batf3-dependent
cDCl significantly upregulates genes related to T cell recruitment and
Th1 polarization during infection, such as IL-12b, Stat4, and Ccl22,
and produces high levels of IL-12, thereby enhancing the immune
response and promoting C. neoformans clearance (Coelho, 2024; J.
Xu et al, 2024). In C. gattii infection, there are differences in the
responses of different DC subpopulations. Although monocyte-
derived DCs can effectively phagocytose and kill C. gattii, only the
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¢DC1 subpopulation can produce sufficient IL-12 to drive Thl
polarization (Jamil et al., 2020). The strategy of promoting Thl and
Th17 cell immune responses through DCs provides new ideas for
designing vaccines and immunotherapies against cryptococcal
infection (Hole et al., 2019).

3.3 Neutrophils

Neutrophils play a key role in defending cryptococcal infection
at the early stage. The neutrophils recruited to the lungs exhibit
greater antimicrobial capacity than those of the macrophages
(Diamond et al., 1972). Migration and aggregation to the site of
infection are essential for neutrophils to eliminate Cryptococcus at
the early phase of infection, and the following mechanisms are
involved. First, the paracrine pathway of complements is activated,
producing strong chemokines, such as C3 and Cb5a, which
chemotactically orientate neutrophils to migrate to the infection
sites (Sun et al., 2016). The strain of C. gattii R265 can be recognized
by neutrophils through the complement C3-mediated opsonization.
However, the intensity of the C5a-C5aR signal induced by C. gattii
is significantly weaker than that of the strain of C. neoformans H99,
resulting in insufficient upregulation of CD11b. This is one of the
reasons that C. gattii can be pathogenic in immunocompetent hosts
in clinical settings (Ueno et al., 2019). Second, the C5a/C5aR
signalling upregulates the CD11b expression of neutrophils and
promotes Mac-1 (CD11b/CD18) binding to Intercellular Adhesion
Molecule-1 (ICAM-1) of vascular endothelial cells, which mediates
trans-endothelial migration of neutrophils to the infection loci.
Blockade of CD11b nearly completely inhibits the intravascular
migration and cryptococcal killing ability of neutrophils
(Filippi, 2019). Third, the production of neutrophil extracellular
traps and ROS directly captures and kills C. neoformans and C.
gattii. However, the efficiency of NET's in wrapping and clearing C.
gattii is lower as compared to that of C. neoformans. Moreover, the
strain of C. gattii R265 displays stronger ability in resisting oxidative
stress than that of the strain of C. neoformans H99 (Musubire et al.,
2018; Osterholzer et al., 2009; Ueno et al, 2019). Importantly,
neutrophils display multifaceted activities in the infection of
Cryptococcus. It has been reported that during neutrophil
depletion, ¥d T cells exhibit a compensatory increase in IL-17A
production, thereby reshaping the Th1/Th17 immune balance. This
phenomenon not only suggests that neutrophils are not
indispensable during C. neoformans infection, but also reveals the
complexity of their immunoregulatory functions, warranting
further in-depth investigation in this field (Wozniak et al., 2012).
Furthermore, during the advanced stages of cryptococcal infection,
neutrophils cause pathological damage by the following
mechanisms. The cryptococcal GXM inhibits neutrophil
extracellular traps formation and TNF-o and IFN-y production,
enhancing cryptococcal immune escape (Brinkmann et al., 2004).
Although both C. neoformans and C. gattii can cross the blood-
brain barrier, they exhibit significant differences in their primary
target organs and pathogenic mechanisms within the host.
Neutrophils facilitate the traversal of C. neoformans across
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the blood-brain barrier, thereby promoting cerebral infection,
whereas C. gattii primarily induces pulmonary infection
(Ngamskulrungroj et al., 2012; Osterholzer et al., 2009). Recent
studies have found that LincR-PPP2R5C deficiency attenuates C.
neoformans infection and increases the bactericidal activity of
neutrophils (Yang et al., 2024a). This first discovery greatly
enhances our understanding of the regulation of immunity to
cryptococcal infection by IncRNA and provides a new pathway in
developing cryptococcal immunotherapy.

3.4 Monocytes

At the early stage of cryptococcal infection, the CCL2/CCR2 axis
recruits classical monocytes (CD147"CD16") to lung tissues, where
they differentiate into monocyte-derived DCs (MoDCs) and M1
macrophages, thereby promoting an IFN-y-dominated Th1 immune
response (Heung, 2020; Palframan et al., 2001). Studies have
demonstrated that PAMPs, such as B-glucan, facilitate the epigenetic
reprogramming of monocytes (e.g., H3K4me3 modification), enabling
the development of the long-term memory and enhancing the
phagocytic and bacteriostatic capabilities of the monocytes during
the secondary immune response (Netea et al.,, 2016). Following the
phagocytosis of C. neoformans, non-classical CD14"CD16" monocytes
(Ly6Clow) adhere to the vascular endothelium via VCAM1/VLA4,
subsequently penetrating the blood-brain barrier via a Trojan horse’s
mechanism (Heung and Hohl, 2019; Sun et al,, 2020; J. Xu et al., 2021).
The over-recruitment of monocytes to the central nervous system via
CCR2 exacerbates neurological damage through TNF-o and IL-1
(Heung and Hohl, 2019; J. Xu et al., 2021; Ziegler-Heitbrock
et al, 2010). Notably, a recent study has shown that the reduction of
neuronal damage markers and total CD14" monocytes in
cerebrospinal fluid improves the outcomes in cryptococcal
meningoencephalitis complicated by a postinfectious inflammatory
response syndrome (Hargarten et al, 2025). The application of B-
glucan and trained immunity agonists as vaccine adjuvants to induce
long-lasting anti-cryptococcal memory presents a novel approach for
the immunotherapy of cryptococcal infection.

3.5 NK cells

NK cells are important effector cells for anti-cryptococcal
immunity, controlling Cryptococcus by a dual mechanism of IFN-y
immunomodulation and direct killing by perforin (Schmidt
et al, 2017). Under the combined stimulation of cytokines such as
IL-2,1L-12,1L-15 and IL-18, NK cells are capable of producing IFN-y
and TNF-o, which promote Th1 polarization of CD4" T cells and M1
polarization of macrophages, enhancing systemic immunity against
cryptococcal infection (Abel et al., 2018). Human NK cells express the
NKp30 receptor, which activates the Src kinase (Fyn/Lyn)/PI3K
pathway upon recognizing B-1,3-glucan from C. neoformans,
promoting perforin polarization toward the fungal contact site and
subsequent membrane disruption (Li et al., 2018; Schmidt et al,, 2017;
Wiseman et al., 2007). Erg5 kinesin regulates the transportation of
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perforin within NK cells and suppresses the proliferation of C.
neoformans (Kyei et al., 2016; Ogbomo et al.,, 2018; Schmidt et al.,
2017). Notably, there are differences in the receptor libraries and
functions of NK cells between mice and humans (Campuzano and
Wormley, 2018). Recent studies have reported that NKG2D is a PRR
molecule expressed in lymphocytes but not myeloid cells. NKG2D-
deficient mice are significantly more susceptible to C. neoformans
infection. NKG2D exerts the antifungal effects through the activation
of degranulation and killing of NK cells and T cells, which provides
a new target for immune intervention against cryptococcal infection
(Charpak-Amikam et al., 2024).

3.6 T cells

YO T cells directly disrupt the cell membranes of Cryptococcus
via perforin and granulysin at the early stage of infection (Nanno
etal, 2007; Uezu et al., 2004). The combined use of IL-12 and IL-18
can protect mice from fatal C. neoformans infection by inducing NK
and Y3 T cells to produce IFN-y and suppressing the production of
IL-4 (Qureshi et al., 1999; T. Zhang et al., 1997). Additionally, yd T
cells recruit neutrophils for the early defense via the upregulation of
CXCL1/CXCL5 by IL-17A (Wozniak et al., 2012). At the later stage
of infection, Y0 T cells inhibit the IL-12 production by DCs and the
Th1 differentiation through the sustained IL-17A secretion, which
attenuates the Thl response and avoids immune pathological
damage (Sato et al., 2020; Uezu et al., 2004). Notably, y0 T cell-
dependent TLR2 recognition of sterylglucosides derived from C.
neoformans is activated without the need for the classical antigen-
presentation pathway. ¥ T cell deletion completely abolishes the
protective effect of the sgllA vaccine and this protective effect
depends on the Mincle receptor (Normile et al., 2022; Watanabe
et al, 2025). Therefore, sgll is a central target gene for cryptococcal
vaccine development.

3.7 Other innate immune cells

NKT cells activate the immune response by recognizing glycolipid
antigens (oi-galactosylceramide) presented by CD1d through their
unique Voul4-Jo281 TCR. Vol4" NKT cells migrate rapidly to the
lungs through the monocyte chemoattractant protein-1-dependent
pathway, promoting significantly NK cell-dependent IFN-y
production at the early stage and the differentiation of C.
neoformans-specific Thl cells at the late stage (Kawakami et al,
2001a, 2001b). NKT cell-deficient mice exhibit reduced IFN-y
production, weakened delayed-type hypersensitivity, and delayed
clearance of C. neoformans in the lungs (Kawakami et al, 2001a).
Moreover, the ability of NKT cells against C. neoformans depends on
the age-related maturity of NKT cells (Blackstock and Murphy, 2004).

Innate lymphoid cells (ILCs) participate in immune regulation
during cryptococcal infection. ILC2s activated by IL-33 promote the
type 2 immune response by producing IL-4, IL-5, and IL-13, creating
a microenvironment conducive to the growth of C. neoformans
(Elemam et al,, 2021; Flaczyk et al, 2013). ILC3s combat the
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extracellular pathogens by secreting IL-22 and IL-17 (Elemam
et al, 2021). Additionally, depletion of inflammatory monocytes,
which recruit ILC2s, reduces ILC2 numbers and consequently
improves the host’s prognosis (Heung and Hohl, 2019). ILC2s-
deficient mice show enhanced Thl immune responses, increased
classically activated macrophages, and improved control of C.
neoformans infection (Kindermann et al, 2020). Therefore, the
reduction in the function and number of ILC2s may enhance the
host’s defense against C. neoformans.

In summary, macrophages, monocytes, dendritic cells,
neutrophils, and NK cells are the five innate immune cells that
work together through comprehensive mechanisms to fight the
infection of Cryptococcus (shown in Figure 2). Meanwhile, the roles
of Y8 T cells, NKT cells, and ILCs in cryptococcal infection should
be considered. Notably, the bidirectional action mechanisms of the
innate immune response to cryptococcal invasion should be taken
into consideration in developing the targeted immunotherapy.

4 Adaptive immune response

Adaptive immunity plays a critical role in combating
cryptococcal infection through providing protection against re-
infection. Through the recognition of cryptococcal antigens,
adaptive immunity activates immune effector cells, secretes
cytokines to eliminate the pathogen, and forms immune memory
after the infection, thereby providing protection against future
infection (Mukaremera and Nielsen, 2017). Among the various
mechanisms, T cell-mediated cellular immunity is fundamental to
the adaptive immunity against the infection of Cryptococcus.
Different types of T lymphocytes are involved in the host’s
cellular immune response to Cryptococcus. These T cells not only
take part in the immune response but also exhibit direct
antimicrobial activity against the pathogens. Cellular immunity
mediated by T cells is more prominent than humoral immunity
mediated by B cells in the defense against Cryptococcus. T cells
secrete proteins such as granulysin and perforin, which destroy the
plasma membrane of Cryptococcus, increasing the permeability and
ultimately leading to the lysis of the pathogen(Y. Wang et al., 2022).

41 CD4" T cells

CD4" T cells are commonly classified into four subpopulations,
namely Thl, Th2, Th17 and regulatory T cells, which play distinct
roles in cryptococcal infection. The subtype of Th1 cells secretes IFN-
Y, TNF-0, and IL-2, which exert anti-Cryptococcus activity
(McDermott and Klein, 2018; Oliveira et al,, 2025). Among them,
IFN-y not only induces and sustains macrophage polarization
towards the M1 type, which is highly effective against pathogens,
but also inhibits the differentiation of Th2 cells, thereby blocking the
pathological effects induced by IL-4 and IL-13 (Firacative et al, 2018;
Leopold Wager et al.,, 2018). TNF-o. promotes the maturation of DCs
by enhancing the antigen presentation capabilities, recruits
neutrophils to the infection site for direct killing of C. neoformans,
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A schematic diagram of the innate immune response against cryptococcal infection Macrophages, dendritic cells, and neutrophils are the innate
immune cells with phagocytic functions and play a diversified roles in fighting against Cryptococcus. NK cells and NKT cells are non-phagocytic cells
and can directly kill Cryptococcus through perforin/granulysin-mediated cytolysis or enhance antifungal immunity via IFN-y production. y3 T cells
and innate lymphoid cells exert regulatory functions by modulating Th1/Th17 polarization and the type 2 immune responses. Host defense against
Cryptococcus involves dynamic interactions among these cellular components, PRRs, soluble mediators, and the pathogen’s immune escape
strategies. This multifaceted network underscores the complexity of innate immunity in Cryptococcal infections.

as well as synergizes with IFN-y to maintain the M1 polarization of
macrophages (Fa et al., 2019). IL-2 activates CD8" T cells and NK
cells, facilitating direct killing of C. neoformans while ensuring long-
lasting T cell immune memory (Levitz and Dupont, 1993). Notably,
recent studies have confirmed that Batf3-dependent cDC1 cells are
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critical for initiating the Thl response (J. Xu et al, 2024). IL-17
secreted by Th17 cells exhibits a double-edged characteristic in
controlling C. neoformans infection. At the acute phase, IL-17A
directly kills C. neoformans by recruiting neutrophils via CXCL1/5,
activates the bactericidal functions of macrophages in conjunction
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with Granulocyte-Macrophage Colony-Stimulating Factor (GM-
CSF), and inhibits Th2-mediated mucus secretion and pulmonary
fibrosis, thereby providing a protective role. Conversely, during the
disseminated phase, Th17 cells compromise the lung barrier,
promoting pathogen dissemination, aggravating cerebral edema
caused by central nervous system infection, and inhibiting the Thl
immune response, ultimately leading to pathological damage (X. Guo
et al,, 2022). However, Galectin-3 (Gal-3) inhibits the growth and
destabilizes the extracellular vesicle of C. neoformans by promoting
the Th17 immune response (Almeida et al.,, 2017). Distinct from Th1
and Th17 cells, Th2 cells produce IL-4, IL-13, IL-5, and IL-10, which
facilitate cryptococcal proliferation and tissue damage rather than
resisting infection (Elsegeiny et al, 2018; Scriven et al, 2016).
However, it is noteworthy that despite the general association of
IL-4Ro. with Th2-mediated disease progression, during the early
stage of infection, the IL-4Ro signaling pathway enhances the host
defense through a dual mechanism. On one hand, it upregulates the
activity of the IL-12/IFN-y/NO axis, thereby promoting the Thl
immune response mediated by dendritic cells. On the other hand, it
induces the mucus secretion in the airway epithelial cells and
enhances the recruitment of CCL2/CCL20-dependent macrophages
and dendritic cells (Grahnert et al., 2014). In the later stage, IL-4 and
IL-13 induce the polarization of M2 macrophages, while IL-13
induces Th2 cells, mast cells, and basophils to secrete more IL-4,
IL-5 and IL-13 through autocrine/paracrine action, which forms a
positive feedback loop. Moreover, IL-13 down-regulates the
expression of co-stimulatory molecules (such as CD40 and CD80)
on DCs, thereby inhibiting their ability to present antigens to CD4" T
cells. Simultaneously, it induces the secretion of IL-10, which inhibits
the production of IFN-y by Thl cells. Furthermore, Th2 cells also
activate fibroblasts through IL-13 to upregulate TGF-3 and collagen,
causing the excessive mucus secretion and airway obstruction, which
contributes to the pulmonary fibrosis. Finally, the IL-5-induced
infiltration of eosinophils can promote the clearance of pathogens,
but excessive activation of eosinophils can lead to tissue damage, such
as inflammatory necrosis caused by crystal deposition (Huffnagle
et al., 1998; Miiller et al., 2007; Ueno et al., 2025). Recent studies have
indicated that the IL-33/ST?2 axis may amplify lung-resident memory
Th2 cells, resulting in persistent type II granulomas (Ueno and
Miyazaki, 2023). The shift of Thl to Th2 is an important vicious
element for the reactivation of cryptococcal meningitis in patients
with HIV infection (Li et al,, 2021; Xu et al,, 2019). Additionally, IL-
10 secreted by regulatory T cells can indirectly weaken the Thl
immune response by inhibiting the function of antigen-presenting
cells, and can also inhibit the excessive inflammatory response
mediated by Th2 cells, thereby preventing fatal immune
pathological damage (Rubtsov et al., 2008; Schulze et al, 2014).
Notably, symptom remission has been correlated with the decrease
in the frequencies of activated CD4" and CD8" T cells of patients
with cryptococcal meningoencephalitis (Hargarten et al., 2025).

Given the distinct roles of the different CD4" T cell subsets in
cryptococcal invasion, a multifaceted approach that promotes
the Thl response, precisely modulates the Thl7 response, and
inhibits the Th2 response may represent a promising avenue for
cryptococcal immunotherapy.
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4.2 CD8" T cells

CD8" T cells are able to directly damage cryptococcal cell
membranes by releasing granulysin and perforin (Okafor and
Nielsen, 2024). The killing function of CD8" T cells depends on
the activation of CD4" T cells or IL-15, which is defective in patients
with HIV infection (Ma et al., 2002; Okafor and Nielsen, 2024; S.
Wang et al., 2020). In the absence of CD4" T lymphocytes, CD8" T
lymphocytes can still be activated independently and can control the
infection by secreting IFN-y (Lindell et al., 2005). In mouse model,
CD8+ T cells are able to prevent the spread of pathogens to the brain
during cryptococcal latency. However, in the case of lung infection of
Cryptococcus, the functions of CD8" T cells may be regulated by
CD4" T cells, which affects the IFN-y production (Okafor and
Nielsen, 2024). Immunotherapy needs to be combined with
enhancement of CD8" T cell function (vaccines/Chimeric Antigen
Receptor T cells(CAR-T cells)/IL-15) and modulation of the balance
between Thl and Th2 responses, with a particular attention to the
immune repair and pathological control in HIV patients.

Notably, the most recent report showed that patients with
cryptococcal infection but without definitive immunodeficiency
retained the ability to produce CD4" and CD8" T cell responses
against cryptococcal antigens, which mainly biased towards the Thl
type (high IFN-y, low IL-4). Moreover, the mouse model further
supported that the use of vaccination as a strategy to upgrade the
immune responses to prevent clinical cryptococcus infection, which
provides a basis for the design of cryptococcal vaccines. However,
the immune response of peripheral blood mononuclear cells might
underestimate the intensity of immune responses at the infection
site. Therefore, the vaccine efficacy should be evaluated in
combination with tissue samples, such as spleen and lungs
(Oliveira et al., 2025).

4.3 B cells

The crucial role of B lymphocytes is to mediate humoral
immunity against Cryptococcus by the production of antibodies
(Aslanyan et al., 2017; Boniche et al., 2020). In the deficiency of T
lymphocytes, B lymphocytes inhibit the transfer of C. neoformans
into the brain (Davis and Lionakis, 2018). Immunoglobulin M
(IgM) limits the dissemination of C. neoformans by restricting the
formation of titan cells (Dufaud et al., 2018; Subramaniam et al.,
2009; Szymczak et al., 2013; Trevijano-Contador et al., 2020).
Immunoglobulin G (IgG) mediates the antibody-dependent
cellular cytotoxicity (ADCC) effect of NK cells through FcyR,
thereby inhibiting the growth of C. neoformans (Nabavi and
Murphy, 1986). Immunoglobulin E (IgE) disrupts the immune
homeostasis against C. neoformans by activating mast cells to
release IL-4, thereby inducing a Th2 bias (Casadevall, 2022; Qiu
et al., 2013). Research conducted in 2025 demonstrated that
immunoglobulin A (IgA) inhibits titan cell formation, which
alters the production of C. neoformans extracellular vesicles and
the expression profiles of metabolic genes (Trevijano-Contador
et al., 2025).
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In summary, the adaptive immunity plays a critical role in
eliminating the pathogen during cryptococcal infection (shown in
Figure 3). However, Cryptococcus achieves immune evasion and
dissemination through mechanisms including capsule shielding,
chitin masking of PAMPs, and inducing the differentiation of
immunosuppressive cells. The immunotherapy strategies against
Cryptococcus primarily include: (1) utilizing TLR/Dectin agonists to
enhance the phagocytic function of macrophages, (2) inducing Th1/
Th17 immune responses through vaccines (such as the Asgll
strain), (3) targeting the capsule using CAR-T or monoclonal
antibody technology, (4) blocking the IL-4/IL-10 signaling
pathway to reverse the immunosuppressive state (Mukaremera
and Nielsen, 2017).

5 The prospects for immunotherapy

A weakened immune system is a prerequisite for cryptococcal
infections, and it is also one of the reasons why traditional
antifungal drugs have poor efficacy and are difficult to completely
eliminate Cryptococcus from the body (Iyer et al., 2021; Liu et al,
2024). Developing new immunotherapies that enhance the host’s
anti-Cryptococcus immune response has become the key to breaking
through the existing treatment barriers (Zhou et al., 2025). The
immunotherapeutic methods include monoclonal antibodies
(mADbs), cytokines, CAR-T cells, and vaccines, which are focusing
on two major directions, targeting pathogen-host interactions and
overcoming immune deficiencies (Iyer et al., 2021; Lionakis et al,
2023; Zhou et al., 2025).

There are several mAbs targeting the components of C.
neoformans. Among them, 18B7 is an mAb for GXM and has
completed phase I clinical trials (Larsen et al, 2005). 2G8 is an
mADb for B-1,3-glucan (Rachini et al., 2007). DD11 and CC5 are mAbs
for chitin oligomers (Figueiredo et al, 2021). Anti-PD-1 mAbs
promote the clearance of C. neoformans by restoring the activity of
Th1/Th17 cells and reducing immunosuppressive cytokines (IL-10/
IL-5) (Roussey et al., 2017). Recent studies have shown that mAbs
targeting aspartic protease 1 protein significantly increase the survival
rate of mice infected with C. neoformans (Vernel-Pauillac et al., 2024).
Cytokine therapy regulates the immune response to combat C.
neoformans infection. However, extremely high doses of cytokine,
such as IL-12 or IFN-y, may induce systemic inflammation and
aggravate immune reconstitution inflammatory syndrome (Clemons
et al.,, 1994; Jarvis et al., 2014, 2012; Pappas et al., 2004). GM-CSF can
activate alveolar macrophages and promote Thl polarization in the
infection of C. neoformans (Chen et al., 2016). Notably, the GM-CSF
antibody may be a potential risk factor for the infection of C. gattii,
leading to the increased host’s susceptibility (Yang et al., 2021).
However, studies have demonstrated that the nasal administration
of GM-CSF can effectively target the lungs and minimize the systemic
toxicity in C. gattii infection (Hansakon et al,, 2024). CAR-T cell
therapy modifies T cells through genetic engineering, enabling
them to express chimeric antigen receptors targeting capsular
polysaccharide GXM, thereby enhancing the ability to clear both
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C. neoformans and C. gattii in animal models (Dos Santos et al., 2021).
Two types of GXM-specific CARs have been developed, which can
recognize multiple types of Cryptococcus and significantly activate T
cells to secrete IL-2 and upregulate CD69 expression (Dos Santos
et al, 2022; MaChado et al., 2023). However, a high level of PD-1
expression is induced, which accelerates the T cell exhaustion.
Therefore, the antigen heterogeneity of Cryptococcus, the sustained
maintenance of T cell activation status, and immune-related adverse
reactions are still challenges that need to be overcome (MaChado
et al,, 2023; Majumder, 2023).The vaccines for Cryptococcus include
whole-cell vaccine (attenuated live vaccines, inactivated vaccines),
subunit vaccine, and mRNA vaccine. The research on cryptococcal
vaccines has entered a stage of rapid development with multiple
technologies operating in parallel (Avina et al., 2024; Rivera et al,
2022). The design strategies centered on polysaccharide-protein
antigens, mRNA-Lipid Nanoparticle (LNP) delivery, and novel
adjuvants have demonstrated significant potential (Crawford et al,
20245 Li et al., 2025a, 2025b; Stempinski et al., 2025). Additionally, the
novel vaccines based on dendritic cells are developed to enhance the
protective immunity against C. gattii infection with high pathogenicity
in lung (Ueno et al,, 2025). In the future, key issues to be addressed
include the protective efficacy for immunocompromised hosts,
optimization of delivery systems, selection of adjuvants, coverage of
multivalent vaccines, and large-scale production in clinical translation
(Avina et al., 2024; Rivera et al., 2022).

6 Discussion

Cryptococcal immunotherapy is currently at a critical stage of
translation from preclinical studies to clinical application. Innovative
directions for vaccine development include the following strategies.
First, more attention should be paid to the double-edged features of
immune cells to avoid immune overactivation. For instance,
employing liposome-encapsulated soluble human CD5 to target the
alveolar macrophages through nasal administration can locally elevate
TNF-0/TFN-y secretion while avoiding systemic inflammatory storms
(Velasco-de Andres et al.,, 2020). Furthermore, using pH-sensitive
nanoparticles to deliver IFN-y at the infection site may further
mitigate systemic inflammatory responses (Rajesh et al., 2022).
Second, multi-omics techniques should be utilized to drive precise
antigen design and overcome the limitations of traditional vaccines.
Specific approaches involve the identification of conserved virulence
factors through phospho-proteomics, the optimization of epitopes
using artificial intelligence, and the knockdown of non-protective
GXM epitopes (El Arab et al., 2025; Racle et al., 2023; L. Zhang et al,,
2021; Zhu et al, 2024). Third, the application of the epigenetic
reprogramming mechanism of trained immunity should be
highlighted in reshaping innate immune memory. Specifically, the
activation of the Dectin-1-Syk signaling axis via [3-glucan induces
H3K4me3 modification in monocytes and up-regulates the
expression of inflammatory vesicle genes, thereby enhancing
antifungal activity during secondary infection (Arts et al, 2016;
Bekkering et al., 2021; Eastman et al, 2019; Geckin et al, 2022;
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A schematic diagram of the adaptive immune response against cryptococcal infection CD4" T cells, CD8" T cells and B cells constitute the major
adaptive immune cell types involved in the defense against Cryptococcus. The mechanisms underpinning the adaptive immune response to
cryptococcal invasion are highly sophisticated. Collectively, these cells orchestrate a comprehensive defense through synergistic actions, including
direct cellular cytotoxicity, cytokine-mediated activation of effector cells, and antibody-dependent mechanisms, to combat Cryptococcus infection.

Netea et al,, 2016). Lastly, the mRNA-LNP platform is a promising  high protection rate in immunosuppressed models (Mirza et al., 2017;
avenue to accelerate the clinical translation of vaccines (Sandbrink — R. Wang et al, 2024). The first Cryptococcus vaccine would be
and Shattock, 2020). The synergistic effect of innate immunity and  clinically translated as early as possible through the combination of
adaptive immune response can be enhanced by incorporating trained  intelligent antigen design, trained immunity memory programming
immunity adjuvants (e.g., CAF01 or B-glucan), thereby maintaininga  and immune microenvironment remodeling.
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