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Zihuai Liao1,2, Jingyi Wen1,2, Xiangdong Guan1,2,
Minying Chen1,2*, Jianfeng Wu1,2* and Fei Pei1,2*

1Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University,
Guangzhou, Guangdong, China, 2Guangdong Clinical Research Center for Critical Care Medicine,
Guangzhou, Guangdong, China
Background: Despite advances in understanding sepsis pathophysiology and

extensive research, few treatments effectively target its underlying immune

dysfunction. Thymosin a1 (Ta1) shows promise as an immunomodulator, but

its impact on sepsis remains unclear.

Methods: A search strategy was designed to include any prospective clinical

studies using Ta1 for assessing 28-day mortality in patients with sepsis, excluding

combination therapy studies. We conducted trial sequential analysis (TSA) to

assess the robustness of meta-analyses findings. Heterogeneity of treatment

effects (HTE) was conducted based on individual data from two multicenter

randomized clinical trials (RCTs), with result credibility assessed through the

instrument to assess the credibility of effect modification analyses (ICEMAN).

Results: Out of 3003 identified studies, 11 RCTs met the inclusion criteria (967

patients in Ta1 group and 960 patients in control group). The comprehensive

meta-analysis demonstrated a significant reduction in 28-day mortality

associated with Ta1 administration (OR 0.73, 95%CI: 0.59-0.90, P = 0.003).

Nonetheless, analyses of high-quality (OR 0.82, 95%CI: 0.65-1.03, P = 0.09) and

multi-center (OR 0.86, 95%CI: 0.68-1.08, P = 0.20) subgroups did not reveal a

mortality benefit. The HTE analysis of multiple subgroups in two large RCTs

(representing 75% of the total patients) showed heterogeneity. Potential benefits

were noted in subgroups of cancer (moderate credibility), diabetes (low

credibility), and coronary heart disease (low credibility). Furthermore, the trial

sequential analysis (TSA) suggests that the current sample size is inadequate.

Conclusion: Ta1 has the potential to decrease 28-day mortality rates in patients

with sepsis; however, it is crucial to recognize that its efficacy differs among

various subgroups. These observations underscore the significance of

personalized immunotherapy strategies in forthcoming clinical trials.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42024628937.
KEYWORDS

sepsis, thymosin a1, personalized immunotherapy, heterogeneity of treatment effects,
trial sequential analysis
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Introduction

Sepsis is defined as life-threatening organ dysfunction resulting

from a dysregulated host response to infection, accounting for

almost 20% of all deaths worldwide (Singer et al., 2016; Rudd

et al., 2020; Meyer and Prescott, 2024). Dysregulated immune

responses serve as critical intermediary between infection and

organ dysfunction (van der Poll et al., 2017; Venet and Monneret,

2018; Hotchkiss and Opal, 2020). Immunomodulatory therapy is

regarded as one of the most promising approaches to reduce

mortality by regulating immune function in sepsis patients (Pei

et al., 2018; Torres et al., 2022; Slim et al., 2024; Zhang et al., 2024).

Over 700 studies have investigated various immunomodulatory

treatments, including Thymosin a1 (Ta1), granulocyte-macrophage

colony-stimulating factor, and interleukin-7 (Slim et al., 2024). Of

these, Ta1 is a promising drug with bidirectional modulatory

function, exerting multiple effects in infectious diseases, such as

promoting naive T cell maturation (Shehadeh et al., 2022),

reversing T cell exhaustion (Liu et al., 2020), alleviating cytokine

storms (Matteucci et al., 2021; Tian et al., 2025), and enhancing Th1-

dependent antifungal immunity (Romani et al., 2004). A previous

meta-analysis of 19 studies involving 1354 adult patients suggested

that Ta1 might benefit patients with sepsis (Liu F. et al., 2016),

However, the subsequent TESTS trial, the largest multicenter, double-

blind RCT to date with 1106 patients with sepsis, found no mortality

reduction or clinical improvement with Ta1, though elderly and

diabetic subgroups showed potential effects (Wu et al., 2025), While

the TESTS findings may influence practice, a comprehensive analysis

of all available data is needed to establish definitive clinical guidance.

Traditional meta-analyses have predominantly concentrated on

data pooling without adequately assessing statistical power. Trial

sequential analysis (TSA) addressed this limitation by identifying type

I and type II errors, thereby enhancing the reliability of meta-analytic

findings (Shah and Smith, 2020). TSA also determines the necessary

sample sizes for achieving meaningful outcomes and assesses the

potential value of future trials. Furthermore, existing meta-analyses

often neglect patient-centered outcomes, which constrains our

understanding of how individual patient characteristics influence

the efficacy of immunomodulatory therapy in sepsis, often

erroneously implying a “one size fits all” approach.

Given these considerations, there is an urgent need for an

updated meta-analysis to achieve the following objectives: (1) to

synthesize the evidence regarding the efficacy of Ta1 in patients

with sepsis overall, and (2) to evaluate the comparative efficacy of

Ta1 across various subgroups of septic patients.
Methods

Study design and registration

This is an updated systematic review and meta-analysis aimed

to evaluate the efficacy of adding Ta1 therapy compared to

conventional therapy alone in reducing the 28-day mortality in

patients with sepsis. We followed the PRISMA (Preferred Reporting
Frontiers in Cellular and Infection Microbiology 02
Items for Systematic Reviews and Meta-Analyses) 2020 statement

(Page et al., 2021). The protocol was registered at PROSPERO

International prospective register of systematic reviews, with

registration number CRD42024628937.
Searching strategy

We searched for all studies that investigate whether Ta1 could

improve the prognosis of sepsis or septic shock patients while

excluding COVID-19 pandemic influences. Search terms “thymosin

alpha1” or “thymosin” or “thymus” or “Maipuxin” or “thymalfasin”

or “Zadaxin” referred to thymosin alpha1 and “severe infection” or

“sepsis” or “septic shock” referred to sepsis were used. The strategy

was implemented in both English and Chinese databases including

PubMed, all databases of Web of Science, Embase, Cochrane library,

China National Knowledge Internet (CNKI), China Science and

Technology Journal Database (VIP) and Wanfang Database.

Registers, websites, organizations, reference lists, preprints,

conference literature and other sources were consulted to identify

studies comprehensively. Searching strategies in each database were

shown in Supplementary Material-search strategy.

The literature search was performed on December 4, 2024 and

repeated on January 17, 2025 before final analysis. All the results

were imported into EndNote X9 (Clarivate Analytics) software for

further selection.
Selection criteria

Inclusion criteria were as follows: (1) adults patients aged over 18

years; (2) reported the 28-day mortality; (3) according to the latest

diagnostic criteria, the patient had to be diagnosed with sepsis, severe

sepsis or septic shock; (4) Ta1 was the only different treatment in

interference group; (5) patients in control group were treated with

conventional therapy according to Surviving Sepsis Campaign (SSC)

guidelines. The follows were excluded: (1) a review, case report or

only abstract; (2) objects were animals or cells; (3) not provided

related outcomes; (4) studies had not been completed. (5) key results

cannot be extracted; (6) study about COVID-19.

One independent reviewer (BG) evaluated titles and abstracts

while two reviewers (YZ and YN) thereafter screened full-text

independently. References of the selected studies were also

screened by the two reviewers afterwards. Duplicates were

removed automatically and then manually using EndNote X9

software. We determined whether the included studies were RCTs

or retrospective studies based on the descriptions in the abstracts

and methods sections of each article. Disagreement was resolved by

discussion with a third reviewer (FP).
Data extraction

Two reviewers independently extracted data into consensual

standard table. The following characteristics of included studies
frontiersin.org
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were collected: first author, publication year, type of study,

implementation period, country and settings, dosage and time of

Ta1 use, number of patients, primary and secondary outcomes.

Besides, demographic characteristics of patients were also collected

including age, gender, inclusion and exclusion criterion,

biochemical indicators, 28-day mortality, ICU mortality, length of

ICU stay, duration of mechanical ventilation, sequential organ

failure assessment (SOFA) score and acute physiology and

chronic health evaluation (APACHE) II score.

Any disagreement between the two reviewers was resolved by

discussion or consulted with the third reviewer. When encountering

self-contradictory data or errors in studies, we also e-mailed the

author for more detailed information; if there was no response, the

study was excluded.
Quality assessment

The quality of studies included in extracting data process were

judged by the Cochrane Collaboration’s tool for assessing risk of

bias (Higgins et al., 2011). We used scores to quantify the quality of

every study: for each aspect of bias, two scores for low risk of bias,

one for unclear risk of bias and zero for high risk of bias (Georgiou

et al., 2009; Fan et al., 2012). A total of 7 aspects of bias were judged

and summed up. A maximum score of 14 was possible, with 11–14

considered relatively high quality and 0–10 considered relatively

low quality. Two reviewers (YZ and BG) independently judged the

studies. Disagreement was solved through discussion or consensus

meeting with senior investigators. Any study that received a high

score was reassessed.
Statistical analysis

For dichotomous variables, odds ratio (OR) and 95%

confidence intervals (CI) of every study were calculated. For

continuous variables, weighted mean difference was calculated. I2

and chi-squared statistics were applied to estimate heterogeneity.

The random-effects model was used if heterogeneity is significant

(I2 ≥ 50%), otherwise the fixed-effects model was used (Higgins

et al., 2003). Both the Mantel-Haenszel test and inverse-variance (I-

V) weighting were applied.

We used Egger’s test to evaluate publication bias and

constructed funnel plot if at least ten studies were available for

meta-analysis (Sterne et al., 2011). The sensitivity analysis was

conducted by taking each single study away from the total and

reanalyzing the remaining studies. In addition, we performed the

subgroup analyses to identify the source of heterogeneity and the

effect of confounding based on the following variables: study

quality, study design, dosage and applied SSC guidelines. The

significance of the pooled index was determined using the Z test.

To mitigate the risk of misinterpreting random error in meta-

analysis, trial sequential analysis (TSA) was performed for 28-day

mortality using the TSA software (0.9.5.10 Beta, The Copenhagen
Frontiers in Cellular and Infection Microbiology 03
Trial Unit, Denmark) (Shah and Smith, 2020). We set conventional

test boundary at type I error 5% (two-sided), and dichotomous

alpha-spending boundary using O’Brien-Fleming function at the

same type I error. Information size was estimated through power of

90%, low bias based relative risk reduction (RRR) and calculated

incidence in control group of all included randomized clinical trials

(RCTs). Heterogeneity correction was model variance based.

We acquired detailed information to investigate hazard ratio

(HR) of subgroups classified by age, gender, cancer, hypertension,

diabetes, coronary heart disease and chronic obstructive pulmonary

disease of two multi-center, high quality studies (Wu et al., 2013;

Wu et al., 2025). Cox regression was used to calculate HR adjusted

by different study with 95% CI as well as reporting test of interaction

(Wallach et al., 2017). Results of subgroups with P < 0.1 for

interaction were graded by Instrument for the Credibility of Effect

Modification Analyses (ICEMAN) (Schandelmaier et al., 2020).

A two-tailed P < 0.05 was considered statistically significant.

The meta-analysis was done using Stata/MP statistical software

(version 14.0), Review Manager software (version 5.3) and SPSS

software (version 25.0).
Results

Characteristics of eligible studies

A database search identified 3003 records, with 18 selected after

full-text screening. Excluding three retrospective studies and four

RCTs lacking 28-day mortality data, 11 RCTs with 1927 patients

remained for evaluating Ta1 efficacy in the meta-analysis (Wu and

Fang, 2004; Chen, 2007; Zhou et al., 2009; Gui et al., 2012; Wu et al.,

2013; Wu et al., 2014; Xiao et al., 2015; Hu et al., 2016; Pei et al.,

2017; Yang et al., 2018; Wu et al., 2025). Flow diagram shown the

details of screening process (Figure 1), and the characteristics of the

included studies were listed in Table 1 and Supplementary Table S1.

Summary and details of quality assessment of each RCT were

shown in the Supplementary Figure S1. Five studies scored 11

and above were regarded as relatively high quality.
Primary outcome for the 28-day mortality

A total of 1927 septic patients from 11 RCTs, including 967 in

Ta1 group and 960 in control group, were evaluated for the 28-day

mortality, with 218 and 274 deaths in the Ta1 and control groups,

respectively. The results showed that Ta1 therapy significantly

reduced 28-day mortality compared to controls (OR 0.73, 95%CI:

0.59-0.90, P = 0.003, Figure 2A). A meta-analysis including four

RCTs without 28-day mortality data, showed similar results

(Supplementary Figure S2).

Sensitivity analysis indicated this result was robust although one

study had huge impact (Supplementary Figure S3). However,

publication bias was evident as shown in the funnel plot

(Supplementary Figure S4) and confirmed by Egger’s test (P = 0.01).
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Subgroup analysis for primary outcome

We conducted several subgroup analyses at the study level to

further examine the primary outcome. First, we categorized studies

by quality. Five higher-quality studies (1568 patients with sepsis)

showed no significant benefit of Ta1 therapy (OR 0.82, 95% CI:

0.65–1.03, P = 0.09), while six lower-quality studies (359 patients)
Frontiers in Cellular and Infection Microbiology 04
demonstrated a significant reduction in 28-day mortality (OR 0.41,

95% CI: 0.24–0.68, P = 0.0007, Figure 2B). Subgroup differences

were significant (P = 0.02), with low heterogeneity in each

subgroup. Second, we grouped studies by design into single-

center and multi-center subgroups. Ta1 therapy significantly

reduced 28-day mortality in single-center studies (OR 0.40, 95%

CI: 0.25–0.63, P = 0.0001) but not in multi-center studies (OR 0.86,
FIGURE 1

Flow diagram of searching and enrolling studies.
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95% CI: 0.68–1.08, P = 0.20, Figure 2C). Subgroup differences were

significant (P = 0.004), with low heterogeneity in both subgroups.

Third, regardless of whether the drug dosage was twice a day or

once a day, the subgroup results both favored Ta1 treatment (OR

0.60, 95% CI: 0.37–0.96, P = 0.03 and OR 0.51, 95% CI: 0.29–0.91,

P = 0.02 respectively, Supplementary Figure S5). In addition, two

studies which followed sepsis 3.0 diagnosis criterion showed no

significant 28-day survival benefit, while sum of the others

suggested Ta1 treatment (Supplementary Figure S6).

Then, we also conducted subgroup analyses at the patient level.

The heterogeneity of treatment effects (HTE) was analyzed using
Frontiers in Cellular and Infection Microbiology 05
individual data from two high-quality, multicenter RCTs (Wu et al.,

2013; Wu et al., 2025), which including 75% patients of total. By day

28 post-randomization, 174 of 723 patients (24.1%) in the Ta1 group
and 195 of 727 patients (26.8%) in the control group had died (HR

0.88, 95% CI: 0.72–1.08, Figure 3). HTE analysis across seven

subgroups showed Ta1 improved 28-day survival in septic patients

with cancer (HR 0.59, 95% CI: 0.37–0.94, Pinteraction = 0.04; moderate

credibility), diabetes (HR 0.64, 95% CI: 0.41–0.98; low credibility) and

coronary heart disease (HR 0.56, 95% CI: 0.31–0.99; low credibility)

(Figure 3). Detailed HTE analyses for three subgroups are provided in

Supplementary Material-ICEMAN reports.
TABLE 1 General characteristics of the 11 RCTs.

Study Country
Implementation

period
Study
type

Study
design

Total
patients

Usage
of Ta1 Observation and measurement

(Wu et al., 2014) China 2002.7-2004.5 RCT
single-
center

44
1.6mg every
day for
ten days

mHLA-DR, CRP, APACHE II, numbers of
organ dysfunction, 28-day mortality

(Chen, 2007) China 2000.5-2006.5 RCT
single-
center

42
1.6mg twice a

day for
one week

T cells and NK cells counting, body
temperature peak, length of ICU stay,

mechanical ventilation, 28-day mortality

(Zhou et al., 2009) China 2004.6-2007.10 RCT
single-
center

47
1.6mg every
day for
one week

HLA-DR, T cells counting, APACHE II,
Marshall scores, length ICU stay, mechanical
ventilation, 28-day and 90-day mortality

(Gui et al., 2012) China 2010.6-2011.2 RCT
multi-
center

42
1.6mg every
day for
one week

Subsets of T cells, IgG, IgA, IgM, PCT, IL-1,
IL-6, IL-10, APACHE II scores, 28-

day mortality

(Wu et al., 2013) China 2008.5-2010.12 RCT
multi-
center

361

1.6mg twice a
day for five
days and
then every
for two days

28-day mortality, SOFA score, CD4/CD8,
monocyte HLA-DR expression

(Wu et al., 2014) China 2008.7-2009.8 RCT
single-
center

54

1.6mg twice a
day for five
days and
then every
for two days

mRNA level of TLR2/TLR4/MYD88, 28-
day mortality

(Xiao et al., 2015) China 2013.10-2014.7 RCT
single-
center

60
1.6mg every
day for
six days

Subsets of T cells, CD4/CD8, change of IgG,
IgA and IgM, length of ICU stay, readmission

to hospital, 28-day mortality

(Hu et al., 2016) China 2012.7-2014.7 RCT
single-
center

106
1.6mg twice a

day for
five days

HLA-DR, CD4/CD8, lymphocyte counting,
WBC counting, cytokine, APACHE II, SOFA

score, antibiotic usage, vasoactive agent,
mechanical ventilation, length of ICU stay,

ICU mortality, 28-day mortality

(Pei et al., 2017) China 2016.3-2016.9 RCT
single-
center

20
1.6mg twice a

day for
one week

SOFA score, PCT, CD86/PD-L1 expression of
monocyte, length of ICU stay, 28-day mortality

(Yang et al., 2018) China 2016.5-2017.6 RCT
single-
center

62
1.6mg every
day for
one week

Subsets and apoptosis of lymphocytes, function
of liver and kidney, APACHE II, length of ICU

stay, 28-day mortality

(Wu et al., 2025) China 2016.9-2021.3 RCT
multi-
center

1089
1.6mg every
12 hours for
one week

HLA-DR, Treg counting, NLR, length of ICU
stay, organ supportive time, 28-day and 90-

day mortality
RCT, randomized controlled trial. Ta1, thymosin alpha 1. SOFA, sequential organ failure assessment. APACHE, acute physiology and chronic health evaluation. CRP, C reaction protein. WBC,
white blood cell. HLA-DR, human leukocyte antigen DR. TLR, toll-like receptor. MYD, myeloid differentiation factor. PBMC, peripheral blood mononuclear cell. PD-L1, programmed death
ligand 1. TNF-a, tumor necrosis factor a. NLR, neutrophil to lymphocyte ratio. PCT, procalcitonin.
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Furthermore, TSA graphs were presented in Figure 4, which

revealed that the current systematic review did not achieve the

required information size (RIS) to determine the effect on 28-day

mortality. While the cumulative Z-curve from all 11 RCTs crossed

conventional meta-analysis boundaries, it did not cross trial sequential
Frontiers in Cellular and Infection Microbiology 06
boundaries, indicating a risk of false positives and the need for cautious

interpretation. For the five higher-quality RCTs, the cumulative Z-

curve did not cross conventional meta-analysis, trial sequential, or

futility boundaries, underscoring the need for more rigorously designed

studies to confirm the efficacy of Ta1 in patient with sepsis.
FIGURE 2

Forest plot of thymosin a1 on 28-day mortality. (A) pooled analysis of 11 RCTs, (B) subgroup analysis of relatively high- and low- quality studies,
(C) subgroup analysis of multi-center and single-center studies.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1673959
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gu et al. 10.3389/fcimb.2025.1673959
The severity of sepsis

To assess the value of Ta1 in attenuating the disease severity in

patients with sepsis, SOFA score and APACHE II score were

compared. The pooled results indicated no significant difference

in SOFA between Ta1 and control groups (mean difference: -0.38,

95%CI: -1.35 to 0.60, P = 0.45, Supplementary Figure S5). We found

Ta1 therapy reduced APACHE II score more significantly

compared to control group (mean difference: -2.81, 95%CI: -4.39

to -1.22, P = 0.0005, Supplementary Figure S6).
Discussion

In this updated meta-analysis, we found that thymosin alpha 1

(Ta1) may reduce 28-day mortality in patients with sepsis

compared to the control group. However, the reliability of the

current evidence remains uncertain because the analysis did not

reach the required sample size. Furthermore, both study-level and

patient-level subgroup analyses exhibited high heterogeneity,

indicating that future clinical trials should adopt personalized

treatment strategies instead of a one-size-fits-all approach.

Ta1, as an immunomodulator, has the potential to improve

prognosis by reestablishing immune homeostasis (Serafino et al.,

2012; Pei et al., 2018; Aynekulu Mersha et al., 2025). In other acute

diseases, its anti-inflammatory effects had been studied (Liu et al.,

2025; Tian et al., 2025). Previous meta-analyses had suggested that

Ta1, whether administrated as monotherapy or in conjunction with

anti-inflammatory agents, could reduce mortality among septic
Frontiers in Cellular and Infection Microbiology 07
patients (Li et al., 2015; Feng et al., 2016; Liu D. et al., 2016; Liu

F. et al., 2016; Wang et al., 2016). Approximately a decade ago, Liu

and colleagues (Liu F. et al., 2016) conducted an analysis of 10

randomized controlled trials encompassing 530 sepsis patients,

proposing that Ta1 treatment might reduce mortality, although

this conclusion was constrained by small sample sizes and low

quality of evidence. Concurrently, a meta-analysis by Wang et al.

(2016) investigated 944 sepsis patients across 6 randomized

controlled trials, demonstrating that Ta1, when combined with

ulinastatin, could improve short-term survival. Despite these early

findings, a recent high-quality, multi-center randomized clinical

trial failed to corroborate these results (Wu et al., 2025). This

inconsistency prompted us to undertake an updated meta-analysis.

Consistent with previous results, the findings of this study endorse

the hypothesis that Ta1 reduces mortality in patients with sepsis.

However, further TSA analysis reveals that the assertion regarding

Ta1’s effect on reducing sepsis mortality remains inconclusive due

to an inadequate sample size.

Sepsis presents as a highly heterogeneous clinical syndrome,

wherein single therapeutic interventions often exhibit variable

efficacy across different patient populations (Seymour et al., 2019;

Shah et al., 2021; Pei et al., 2024). In this study, we assessed

heterogeneity at two different levels: the study level and the

patient level. At the study level, subgroups derived from multi-

center studies and those with higher quality did not yield results

consistent with the overall findings. This underscores the critical

importance of conducting high-quality, multi-center studies in

sepsis immunology research. At the patient level, multiple

subgroups with chronic diseases also exhibited significant
FIGURE 3

Heterogeneity of treatment effects analysis. Hazard ratio (HR) was adjusted by the studies. COPD, chronic obstructive pulmonary disease.
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treatment heterogeneity. Although these findings considerably

undermine our primary results, it may also indicate potential

target populations for Ta1 treatment. As Kalil et al. (2025) stated,

stratifying sepsis patients into subphenotypes may aid in elucidating

the complexities of sepsis.

Interestingly, our subgroup analysis suggests that patients with

chronic conditions may exhibit heightened responsiveness to Ta1
therapy. This observation is in consistent with the immunomodulatory

effects of the drug observed in elderly COVID-19 patients (Liu et al.,

2020; Yu et al., 2020). Recent studies have showed that Ta1 therapy

can benefit elderly COVID-19 patients by modulating T lymphocyte

responses, specifically by increasing CD4+ and CD8+ T cell
Frontiers in Cellular and Infection Microbiology 08
populations while preventing excessive activation of CD8+ T cells

(Liu et al., 2020; Yu et al., 2020). The increasing prevalence of chronic

diseases introduces additional complexity to sepsis treatment (Zheng

et al., 2018; Zhou et al., 2021). These conditions can cause sustained

damage to the immune system and may exacerbate the already

compromised immune function in sepsis patients, potentially leading

to immunosuppression (Mian et al., 2014; Pene et al., 2016; Frydrych

et al., 2017; Trevelin et al., 2017; Mikolajczyk and Guzik, 2019).

Although our findings suggest that patients with chronic conditions

might be an appropriate target population for Ta1 treatment, this

hypothesis requires validation through high-quality clinical trials

before definitive conclusions can be established.
FIGURE 4

Trial sequential analysis for 28-day mortality. (A) all included 11 RCTs, (B) five relatively high-quality RCTs. The blue Z-curve represents the pooled
odds ratio, with yellow dotted lines indicating conventional meta-analysis boundaries (5% alpha level). Trial sequential boundaries are shown by the
symmetric red line above the Z-curve. Between the yellow dotted lines, the triangular futility zone indicates conclusive evidence that treatment
effects fail to reach significance. RIS, required information size.
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While we have compared different administration methods of

Ta1, the optimal dosage for sepsis treatment remains

undetermined. Lin (2007) identified a dose-dependent effect of

Ta1, with administration twice daily resulting a prognostic

improvement. A subgroup analysis within this study revealed that

both once-daily and twice-daily dosing reduced 28-day mortality,

suggesting that twice-daily administration was safe. In addition,

similarly to the therapeutic dose, there is insufficient evidence

regarding the optimal therapeutic duration of Ta1. Current

clinical studies have set the therapeutic course at seven days,

which may facilitate study implementation. However, the

restoration of immune function in sepsis patients is a prolonged

process, with some patients experiencing immune imbalance for

three weeks or longer (Inoue et al., 2013; Stortz et al., 2018).

Consequently, real-world studies are necessary to further

ascertain the appropriate therapeutic duration.
Strengths and limitations

The present study has several notable strengths. First, our

comprehensive systematic search and rigorous quality assessment,

alongside the exclusive inclusion of RCTs, have enhanced the

reliability of our findings. Second, we have innovatively applied

TSA to evaluate the efficacy of Ta1, thereby providing valuable

insights for future trial design. Third, our heterogeneity analyses,

which utilizes individual patient data from two high-quality

multicenter RCTs (accounting for 75% of the total study

population) and is validated by ICEMAN, offers a rigorous

evaluation of potential effect modifications. These methodological

strengths collectively render our study the most rigorous evaluation

of Ta1 treatment in sepsis to date.

However, this meta-analysis also has several limitations that

should be acknowledged. First, all included studies were conducted

in China, raising concerns about the generalizability of the findings

to other racial or ethnic populations. Second, the potential for

publication bias cannot be ruled out, particularly due to the

influence of the recent TESTS study (Wu et al., 2025). Third, a

significant limitation of the included studies lies in their small

sample sizes. Ten out of fourteen studies enrolled fewer than 100

participants, potentially diminishing the statistical power and

reliability of the results. Fourth, this analysis exclusively

considered 28-day mortality as the primary outcome measure,

due to incomplete or inconsistently reported data on ICU and in-

hospital across many studies. We strongly recommended that

future randomized controlled trials implement standardized and

comprehensive outcome reporting. Fifth, to specifically assess the

effect of Ta1, combination therapies (e.g., ulinastatin or continuous

renal replacement therapy) were excluded, which may limit the

applicability of our findings to real-world clinical settings where

such combination therapies are prevalent. Sixth, the diagnostic

criteria for sepsis varied across the included studies. Over the past

two decades, sepsis definitions have been undergone multiple

refinements, leading to inconsistencies in diagnosis and treatment

strategies, which may contribute to heterogeneity in the results.
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Conclusion

Recent evidence suggests that Ta1 may reduce 28-day mortality

in patients with sepsis. However, it is important to emphasize that

the current sample size is insufficient to confirm this conclusion.

Furthermore, the efficacy of Ta1 varies significantly among

different subgroups, suggesting that uniform clinical trials across

the entire sepsis population may not be appropriate. Future

research in immunotherapy should focus on developing

personalized treatment strategies to improve therapeutic efficacy

and patient outcomes.
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