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Human endogenous retroviruses
In schizophrenia: clinical
evidence, molecular
mechanisms, and implications

Mengyu Zhang*, Xiaoge Wang, Yun Liu, Chenxuan Bao,
Qing Gao and Lingxiang Mao

Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan,
Jiangsu, China

Human endogenous retroviruses (HERVs), comprising 8% of the human genome,
are implicated in schizophrenia, a complex psychiatric disorder driven by genetic,
epigenetic, and environmental factors. This review examines the role of HERVs in
schizophrenia pathogenesis. We synthesized clinical evidence, molecular
mechanisms, and gene-environment interactions from studies on HERVs
expression in schizophrenia, focusing on HERV-W and HERV-K in peripheral
blood, cerebrospinal fluid, and brain tissues. Elevated HERV-W and HERV-K env
and gag transcripts are consistently observed in individuals with schizophrenia,
indicating potential diagnostic biomarkers. HERVs contribute to
neuroinflammation, neurotoxicity, and epigenetic dysregulation of risk genes.
The HERV-W env activates the Toll-like receptor 4 (TLR4)/MyD88 pathway,
disrupting glutamatergic and dopaminergic signaling, leading to synaptic
dysfunction and neuronal apoptosis. Environmental triggers, such as viral
infections and early-life stress, activate HERVs, linking genetic and
environmental risks. Variability in HERV expression across disease stages
highlights the need for standardized assays and longitudinal studies. Emerging
technologies and preclinical models targeting HERV-W env offer promise for
developing novel diagnostics and therapies. HERVs serve as pivotal mediators of
schizophrenia’s etiology, advancing precision psychiatry through biomarker and
therapeutic innovation.

KEYWORDS
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1 Introduction

Approximately 8% of the human genome comprises sequences derived from retroviral
integrations, collectively termed HERVs (Kury et al., 2018). Retroviruses, characterized by
their RNA genomes, integrate into host chromosomes via reverse transcriptase. These exist
in exogenous or endogenous forms, or both. Exogenous retroviruses infect cells through
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specific receptors, whereas endogenous retroviruses are embedded
in the genomes of all host cells and inherited in a Mendelian
fashion. Owing to mutations, frameshifts, and deletions, most
HERVSs have lost their coding potential.

Schizophrenia is a severe psychiatric disorder characterized by
positive symptoms (e.g., hallucinations, delusions, disordered
thinking and behavior) and negative symptoms (e.g., apathy,
anhedonia, social withdrawal) (McCutcheon et al., 2020). Its
etiology remains incompletely understood, with contributions
from genetic and environmental factors (Sullivan et al., 2003).
Genetic studies have identified 287 genomic loci associated with
schizophrenia risk, primarily affecting neuronal gene expression,
synaptic function, neurotransmitter signaling, neurodevelopment,
immune responses, and epigenetic regulation (Chang et al., 2017;
Sekar et al., 2016; Trubetskoy et al., 2022). Aberrant gene regulation
during fetal brain development may influence postnatal brain
phenotypes, with open chromatin regions enriched for
schizophrenia risk alleles (Hill and B, 2012; Tao et al., 2014).
Environmental risk factors, including socioeconomic stressors
(e.g., poverty, inequality, urban density) (Kirkbride et al.,, 2014);
the season of birth (Szoke et al., 2024); maternal infections during
pregnancy (e.g., influenza, rubella, herpes simplex virus,
cytomegalovirus, hepatitis B, and Toxoplasma gondii) (Illescas-
Montes et al., 2019; Liu et al., 2017; Mohebalizadeh et al., 2024);
and immune dysregulation, also contribute to schizophrenia risk.

HERVs occupy a unique position at the intersection of genetic,
epigenetic, and environmental risk factors, offering a valuable
perspective for exploring the complex etiology of schizophrenia. As
genomic regulatory elements, HERVs can act as enhancers or
promoters, influencing the expression of genes critical for
neurodevelopment and synaptic function, such as brain-derived
neurotrophic factor (BDNF) and disrupted in schizophrenia 1
(DISCI) (Chen et al, 2018; Qin et al, 2016). Additionally, HERVs
activation is often linked to viral infections, inflammation, and
epigenetic dysregulation, all of which are pivotal in schizophrenia
pathophysiology (Rangel et al., 2022; Wang et al,, 2021). For instance,
the HERV-W env protein can trigger neuroinflammation by activating

10.3389/fcimb.2025.1677212

microglia and proinflammatory cytokines, potentially exacerbating
schizophrenia pathology (Wang et al., 2021). Numerous clinical
studies have reported elevated HERV expression in the peripheral
blood and brain tissues of individuals with schizophrenia, suggesting
its potential as a biomarker (Rangel et al,, 2024; Wu et al., 2023a, 2023;
Yolken, 2004; Zhang et al., 2024). Thus, HERVSs offer a molecular entry
point for studying schizophrenia and hold promise as targets for novel
diagnostic and therapeutic strategies. This review synthesizes clinical
evidence, molecular mechanisms, and risk factor associations to
elucidate the role of HERVs in schizophrenia and their significance
in psychiatric research.

2 Biology of HERVs
2.1 Structure and classification of HERVs

HERVs are a subclass of transposable elements (TEs) that
mobilize within the genome via an RNA intermediate through a
“copy-and-paste” mechanism (Vargiu et al, 2016). Structurally,
HERVSs contain essential viral genes, such as gag (encoding capsid
proteins), pro (encoding proteases), pol (encoding reverse
transcriptase), and env (encoding envelope proteins), which are
flanked by long terminal repeats (LTRs) (Figure 1). LTRs,
noncoding regions with promoter and enhancer activity, serve as
influential regulatory modules for both HERVs and adjacent host
genes. However, owing to negative selection and mutation
accumulation (e.g., deletions, stop codons, frameshifts), most
HERVs are transcriptionally silent. Historically considered “junk
DNA” (Ochoa Thomas et al.,, 2020), recent evidence suggests that
HERVs can regulate gene expression under specific physiological
conditions (Shin et al., 2013), impacting transcriptional activity
(Fueyo et al, 2022; Lawson et al, 2023) and genomic stability
through rearrangements or insertional mutagenesis (Hughes and
Coffin, 2001).

On the basis of their sequence characteristics, HERVs are
classified into three major groups: gamma-like, beta-like, and
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FIGURE 1

Schematic structure of a human endogenous retrovirus genome. gag encodes capsid (CA), nucleocapsid (NC), and matrix protein (MA); pro encodes
protease (PR); pol encodes reverse transcriptase (RT), RNase H (RH), and integrase (IN); and env encodes surface (SU) and transmembrane (TM) units.
A noncoding primer-binding site (PBS) specific to tRNA is located between the 5’ LTR and the first gag codon. LTRs consist of unique 3’ (U3), repeat

(R), and unique 5’ (U5) regions.
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spuma-like retroviruses (Tristem, 2003). HERV nomenclature
typically reflects the tRNA specificity of their primer-binding sites
and LTR structure (Heidmann et al., 2018). For example, HERV-W
uses a tryptophan-specific tRNA primer, HERV-H uses a histidine-
specific tRNA, and HERV-K uses a lysine-specific tRNA (Dolei,
2006). Table 1 summarizes the classification, tRNA primer
specificity, and key features of the 26 HERV lineages.

2.2 Physiological functions and regulatory
mechanisms of HERVs

HERVs are relics of ancient exogenous retroviral infections that
have been integrated into the germline, with most having lost
replication capacity due to mutations over millions of years.
However, some retain functional sequences that contribute to

TABLE 1 Classification and characteristics of HERV families.
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essential physiological processes, particularly during
embryogenesis and placentation (Lavialle et al., 2013). For
instance, the HERV-W element on chromosome 7q21 encodes
Syncytin-1 (ERVW-1), integrated approximately 12-80 million
years ago, which facilitates trophoblast cell fusion during
placental development (Mi et al., 2000) and regulates maternal
immune tolerance via exosomal sorting (Tolosa et al, 2012).
HERV-H elements, which are highly expressed in embryonic
stem cells, regulate pluripotency (Santoni et al., 2012). HERV-K
(HML-2 subtype) retains relatively intact genomic sequences,
enabling the production of functional viral proteins or particles
under specific conditions (Shin et al., 2023). HERVs also modulate
innate immune responses, acting as endogenous sensors of viral
infections by interacting with pattern recognition receptors (e.g.,
Toll-like receptors, RIG-I-like receptors), initiating antiviral
pathways, and influencing cytokine production (Russ and

HERV " o . . Disease
. tRNA primer specificity Key structural features Physiological role o
lineages associations
11-defined, iall
HERV.Z69907 Not Determined (ND) Contains gag, pol, env, LTRs NOt we <€le ned potent{a Y
involved in gene regulation
Not established'
HERV ADP RNAT™(?) Contains LTBS, may lack some Possibl?r involved in
coding genes embryonic development
HERV.E {RNAS Regulation of gene Cancer
expression
Phe . May influence genomic
HERV.F tRNA Contains gag, pol, env, LTRs .
stability
HERV.F
RVb) (type tRNA"® Not established Not established
; Mediates trophoblast cell
HERV.FRD tRNAMS Contains env, encodes Syncytin-2 ecia 'es 'rop oblast ce
fusion in placenta
HERVH (RNAS Highly expressed in embryonic stem Regulates p}uripotency in ‘Cancer, '
cells embryonic stem cells Schizophrenia
Class I HERV.H49C23 No LTRs Atypical strl.lctur.e, limited Not established
functionality
(gamma-like)
Ile . Possibly involved in .
HERV.I tRNA Contains gag, pol, env, LTRs K i Not established
immune regulation
tains LTRs, lack
RRHERV.I ERNA"™ Contains LTRs, may lack some Not established
coding genes
Potentially involved i
ERV-9 (RNAME otentialy Ivoved I BeNe | g hizophrenia
regulation
HERV.F (type (RNAPHE
)
Pro
HERV.P tRNA Contains gag, pol, env, LTRs
HERV.R tRNAATS Not established Not established
HERV.R (type (RNAATE
b)
HERV.T tRNA™
HERV.W tRNAT™
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TABLE 1 Continued

a3 tRNA primer specificity

lineages

Key structural features

10.3389/fcimb.2025.1677212

Disease

Physiological role associations

Contains env (ERVW-1, Syncytin-
1), LTRs with promoter/enhancer

Schizophrenia,

Placentation, immune
Multiple

tolerance regulation

activity Sclerosis, Cancer
HERV.XA tRNA Contains gag, pol, env, LTRs Not established Not established
HERV.K. HMLI1- (RNALYS Relatively intact genome, capable of Potentially involved in Schizophrenia,
4 producing functional viral proteins innate immune responses Cancer
Class II (beta- | HERV.K.HMLS tRNA"™
like)
HERV.K.HML6 tRNAM®
HERV.K.HML9 ND
HERV.L tRNALY Contains gag, pol, env, LTRs Not established Not established
Ser
Class T1I HERV.S tRNA
(spuma-like) HERV.U2 ND
HERV.U3 ND

"Where physiological roles or disease associations are listed as 'Not established, further research is needed to clarify their involvement.

lordanskiy, 2023). Additionally, HERVs contribute to genetic
diversity and evolution by providing regulatory sequences (e.g.,
promoters, enhancers, alternative splice sites) that modulate
adjacent gene expression and drive genomic recombination (Jern
and Coffin, 2008).

3 Aberrant activation of HERVs in
disease

Aberrant HERVs reactivation threatens genomic integrity and
contributes to the development of various diseases, including
psychiatric disorders. Environmental stimuli, including viral
infections (Canli, 2019), pharmacological agents (Liu et al, 2017)
and epigenetic modifications (van der Kuyl, 2012), can activate
HERVs, leading to DNA damage, inflammation, and
neurodegeneration (Chuong et al, 2017; Ochoa Thomas et al,
2020). HERVs are implicated in multifactorial diseases
characterized by immune dysregulation, such as cancer,
inflammatory disorders, and neurological and psychiatric
conditions (Grandi and Tramontano, 2018; Groger and Cynis,
2018; Kury et al, 2018; Matteucci et al., 2018). For example,
HERV-K LTRs act as enhancers in breast, lung, and colorectal
cancers, driving oncogene expression and tumorigenesis (Fan and
Cui, 2023). In addition to acting as enhancers in cancer and driving
oncogene expression and tumorigenesis, HERVs can also function
directly as oncogenes. According to the classical definition, oncogenes
are genes that, through mutation, overexpression, or aberrant
activation, promote cell proliferation, inhibit apoptosis, or induce
metastasis. Research has demonstrated that specific mutations in the
3’-long terminal repeat (LTR) region of the HERV-W family on
chromosome 7 enhance binding to the transcription factor c-Myb,
significantly upregulating syncytin-1 expression. In urothelial cell
carcinoma of the bladder, syncytin-1 overexpression directly drives
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cancer cell proliferation, survival, and tumorigenesis (Yu et al., 2014).
Similar to the mutational activation of classical oncogenes, HERV
elements transition from “passive” sequences to core drivers of tumor
development. Similarly, in hepatocellular carcinoma, syncytin-1
overexpression enhances cell proliferation, metastasis, invasiveness,
and doxorubicin resistance via activation of the MEK/ERK signaling
pathway (Zhou et al., 2021). HERVs also exacerbate infectious and
chronic inflammatory diseases by stimulating proinflammatory
cytokine production (e.g., interleukin-6 [IL-6] and tumor necrosis
factor-alpha [TNF-a])) (Rangel et al., 2022). In neurodegenerative
and neuroinflammatory disorders, HERV-W env is overexpressed in
multiple sclerosis lesions, and this overexpression is correlated with
microglial activation and neuroinflammation (Kury et al, 2018).
HERVs also exhibit transcriptional activity in Alzheimer’s and
Parkinson’s diseases (Adler et al., 2024).

The causality of HERVs activation in disease remains debated.
The evidence supporting causality includes HERV-W env
overexpression preceding multiple sclerosis symptoms (Kury et al.,
2018) and HERV-K-driven oncogene activation in early
tumorigenesis (Mao et al., 2021). Conversely, HERV activation may
be a consequence of inflammation or infection, establishing a feedback
loop that exacerbates disease progression (Rangel et al., 2022). The
HervD Atlas database highlights bidirectional associations between
HERVs and disease, where HERVs may exacerbate pathology or result
from it (Li C. et al., 2024). Given their role in neuroinflammation and
psychiatric disorders, HERVs are a compelling focus for schizophrenia
research, a disorder characterized by gene-environment interactions,
neurodevelopmental abnormalities, and synaptic dysfunction (Duarte
et al, 2024). Elevated HERVs expression in individuals with
schizophrenia’ blood and brain tissues suggests a role in mediating
interactions among infection, immune dysregulation, and genetic risk
(Tamouza et al., 2021). Thus, schizophrenia provides a valuable model
for investigating the pathological mechanisms of HERVs in
psychiatric disorders.
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4 Clinical evidence of HERVs
expression in schizophrenia

4.1 HERVs expression in peripheral and
central nervous systems

Numerous clinical studies have demonstrated aberrant HERV's
expression in the peripheral blood and central nervous system
(CNS) of individuals with schizophrenia (Table 2). In peripheral
blood, HERV-W env and gag transcripts and proteins are detectable
in both healthy controls and first-episode schizophrenia (FES)
patients, with significantly higher levels in patients (Perron et al,
2008; Rangel et al., 2024; Wu et al., 2023a, b; Yao et al., 2008; Zhang
etal,, 2024). One study reported HERV-W env homologous mRNA
sequences in the plasma of 42 out of 118 recent-onset individuals
with schizophrenia, but not in controls. This discrepancy may be
due to differences in sample type (plasma vs. whole blood) and
target sequence (cloned vs. canonical HERV-W env transcripts).
Plasma-free HERV RNA may reflect recent viral activity, while
cellular transcripts are more stable and detectable (Rangel et al.,
2024). A reduced HERV-W env gene copy number (Perron et al.,
2012) and detection of reverse transcriptase activity(W. Huang
et al,, 2011, 2006) further suggest enhanced HERV transcriptional
and translational activity in individuals with schizophrenia.

However, viral metagenomics in drug-naive FES patients with
predominant negative symptoms revealed no evidence of HERVs
involvement (Canuti et al., 2015b). This discrepancy may stem from
sample type, cohort size, or the lower neuroinflammatory state in
negative-symptom patients, as HERV upregulation is often linked
to inflammatory signals or stress responses (Tamouza et al., 2021).
Furthermore, inflammation can activate HERVs via epigenetic
mechanisms, establishing a positive feedback loop (Perron
et al., 2012).

CNS studies reveal HERVs expression in cerebrospinal fluid
(CSF) and brain tissue. Retroviral RN A was detected in the CSF and
brains of individuals with schizophrenia, with 28.6% of 35 FES
patients’ CSF samples showing HERV pol homologous sequences,
indicating enhanced reverse transcriptase activity (Karlsson et al,
2001; Yolken, 2004). However, some studies suggest weak
correlations between brain HERV pol transcription and
schizophrenia, potentially influenced by genetic background,
brain-infiltrating immune cells, or medications (Frank et al,
2005). RNA-seq analyses reveal upregulated HERV-W/H
transcripts in the frontal cortex and pons of individuals with
schizophrenia (Li et al, 2019), supporting a role for HERVs
transcriptional activation in disease development. Similarly,
HERV-W env is strongly expressed in the pons, a region that
regulates vital functions (Kim et al., 2008). Conversely, HERV-W
GAG protein expression is reduced in the cingulate gyrus and
hippocampus, possibly due to transcriptional defects or antisense
transcription (Mack et al., 2004; Mura et al., 2004; Weis et al., 2007).
These regional differences underscore the complexity of HERVs
expression, which is likely influenced by disease stage and
neuroinflammatory status. Recent transcriptome-wide association
studies (TWAS) integrating HERVs expression data revealed 13
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HERV loci significantly associated with schizophrenia risk
(P<5x10™), with HERV-W and HERV-K transcripts upregulated
in glutamatergic neurons, linking HERV activity to genetic risk and
neurodevelopmental dysregulation (Duarte et al., 2024).

4.2 Heterogeneity of HERVs expression
across schizophrenia stages

HERVSs expression is closely tied to the clinical presentation and
disease course of schizophrenia. HERV-K115 insertions are more
prevalent in younger-onset patients, suggesting a role in early
disease stages (Otowa et al., 2006). FES patients exhibit
significantly lower HERV-K methylation levels compared to
controls, whereas patients with multiepisode schizophrenia (MES)
show normalized methylation. In MES patients, HERV-K
methylation correlates positively with chlorpromazine dosage, but
not in FES patients, indicating that antipsychotics may modulate
HERV methylation (Mak et al., 2019). DNA methylation, a critical
epigenetic modification, regulates gene expression by altering
chromatin accessibility and is implicated in neurodevelopment
and synaptic plasticity (Greenberg and Bourc’his, 2019; Hosak
and Hosakova, 2015). Genetic variants associated with DNA
methylation are enriched in schizophrenia risk loci during fetal
brain development (Hannon et al, 2016). HERV-W env protein
positivity is linked to increased manic symptoms and higher
chlorpromazine doses, potentially involving inflammatory
processes (Queissner et al., 2018; Tamouza et al., 2021). Valproic
acid (VPA) upregulates HERV-W and ERV9 transcription in a
dose-dependent manner, with HERV-W showing the strongest
response in glioblastoma cell lines, while HERV-K (HML-2)
transcription remains unaffected (Diem et al, 2012). These
findings highlight the complex interplay between HERV
expression, disease stage, clinical phenotype, and therapeutic
interventions, emphasizing the need to further explore the
pathophysiological roles of HERVs in schizophrenia.

5 Molecular mechanisms of HERVs in
schizophrenia

5.1 HERVs activation of neuroinflammatory
pathways and programmed cell death

Neuroinflammation has been increasingly recognized as a key
contributor to schizophrenia pathogenesis, especially during
vulnerable periods of brain development, where prenatal or early-
life immune activation can disrupt neural circuits and lead to long-
term neurodevelopmental abnormalities (Meyer, 2013). Abnormal
activation of HERVs during brain development may represent a
potential trigger for inflammatory responses. HERVs may both
promote and be activated by inflammation (Helmy and Selvarajoo,
20215 Rangel et al,, 2022). Elevated HERV-W env expression in
individuals with schizophrenia correlates with proinflammatory
cytokines (Tamouza et al, 2021), and downregulation of IL-6 in
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TABLE 2 Clinical evidence of HERV expression in schizophrenia.

Study
reference

Wu et al,,
2023 (Wu
et al,, 2023a)

Wu et al.,
2023 (Wu
et al., 2023b)

Rangel et al,,
2024 (Rangel
et al., 2024)

Zhang et al.,
2024 (Zhang
et al., 2024)

Perron et al.,
2008 (Perron
et al., 2008)

Yao et al.,
2008 (Yao
et al., 2008)

Perron et al.,
2012 (Perron
et al,, 2012)

Mak et al.,
2019 (Mak
et al., 2019)

Tamouza
et al., 2021
(Tamouza

et al., 2021)

Sample

type HERV type

Peripheral
Blood (Whole
Blood, Plasma)

Peripheral
Blood (Plasma)

Expression pattern

Significant upregulation of
ERVWEI transcripts

Significant upregulation of
HERV-W env protein

Patient cohort

First-Episode Schizophrenia
(FES)

FES

Key findings

ERVWETI significantly upregulated in FES patients (15 whole blood,
44 plasma) vs. controls (14 whole blood, 37 plasma), positively
correlated with HTR1B, ALKBH5, and Arc.

HERV-W env protein significantly elevated in plasma of recent-onset
schizophrenia patients (n=44) vs. controls (n=37) by ELISA,
negatively correlated with reduced 5-HT4R levels.

Limitations

Small sample size (15 FES vs. 14
controls, whole blood; 44 FES vs.
37 controls, plasma). No
demographic differences, but
potential confounders not fully
addressed.

Small sample size (44 FES vs. 37
controls). Potential confounders
(e.g., medication) not fully
addressed, although age, gender,
body mass index (BMI) controlled.

Significant upregulation of
HERV-W env transcripts

Schizophrenia (nonpsychotic
phase)

HERV-W env transcripts significantly higher in schizophrenia
patients (n=24) vs. controls (n=46) (p<0.01) by using quantitative
reverse transcription polymerase chain reaction (QRT-PCR). Elevated
TNEF-0,, IL-10 (p=0.01), reduced IFN-y, IL-2 (p=0.05) in
schizophrenia, but no correlation with HERV-W env.

Small sample size (24
schizophrenia vs. 46 controls).
Medicated patients may confound
results. Limited to nonpsychotic
phase, not reflecting acute states.

HERV-W
Small sample size (44
ERVW-1 transcripts significantly elevated in schizophrenia plasma schizophrenia vs. 37 controls).
Significant upregulation of Schizophrenia (Stage not (n=44) vs. co Stage unclear, likely FES. Potential
ERVW-1 transcripts specified) ntrols (n=37) (p<0.05) by qRT-PCR, negatively correlated with confounders (e.g., medication) not
reduced GPX4 and SLC3A2 (p<0.05), supporting ferroptosis role. fully addressed, although age,
gender controlled.
Significant upregulation of env HERV-W env and gag antigenemia higher in schizophrenia patients Small sample size, specificity
and gag transcripts than healthy controls, suggesting potential as a biomarker requires further validation
FES
Peripheral Did not explore diff
eriphera . HERV-W transcripts significantly higher in blood cells of FES 1, not explore _1 é rences ‘a cross
Blood (Whole Elevated transcript levels . disease stages, limited to single
patients compared to healthy controls
Blood) sample type
Reduced env gene copy . . s . . o . .
Schizophrenia (Stage not Increased HERV-W transcriptional and translational activity, Limited sample size, did not
number, enhanced reverse . . . . . e
. . specified) potentially linked to inflammation distinguish between FES and MES
transcriptase activity
HERV-K methylation significantly in FE i Limi le size, diffe i
HERV-K Reduced methylation levels FES V-K methylation signi cantly lower in S p'atlents compared to imited sample size differences in
healthy controls, independent of antipsychotic drug dosage MES patients not explored
Peripheral
Blood
HERV-W ENV protein positivity Schizophrenia (Stage not HERV-W ENV-positive patients exhibited more manic symptoms Disease stage not specified,

specified)

and higher chlorpromazine dosage

causality requires further validation

(Continued)
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TABLE 2 Continued

Study
reference

Huang et al,,
2006 (Huang
et al., 2006)

Otowa et al.,
2006 (Otowa
et al., 2006)

Canuti et al.,
2015 (Canuti
et al., 2015a)

Peripheral
Blood (Serum)

HERV type

HERV-K115

Multiple HERV's

Expression pattern

Detection of pol RNA and
protein

No significant difference in
HERV-K115 insertion
frequency

No evidence of endogenous
retrovirus involvement

Patient cohort

FES(Predominantly negative
symptoms)

Key findings

HERV pol RNA and protein detected in blood, suggesting reverse
transcriptase activity

HERV-K115 insertion frequency similar in schizophrenia
(8.4%, n=119) vs. controls (9.4%, n=117) (p>0.05) by PCR; marginal
link to younger onset in schizophrenia (p=0.057).

Viral metagenomics found no HERV involvement, possibly due to
low inflammation in patients with negative symptoms

Limitations

Patient clinical characteristics not
specified, detection method
specificity needs optimization

No HERV expression data, only
insertion polymorphism. Small
sample size (119 schizophrenia vs.
117 controls). Schizophrenia stage
unspecified, mixing acute/chronic
cases. Limited power for age-at-
onset analysis.

Sample biased toward negative-
symptom patients, small sample
size

Karlsson
Cerebrospinal
et al,, 2001 ere. msPlfl HERV . . Schizophrenia (Stage not Retroviral RNA detected in cerebrospinal fluid and brain tissue, HERYV type not specified, limited
Fluid, Brain R Detection of retroviral RNA K o R X
(Karlsson Tissue (Unspecified) specified) indicating central expression sample size
et al,, 2001) .
Yolken et al., . HERV (pol . N .
ofen eta Cerebrospinal (po Pol homologous sequences Detection of HERV pol homologous sequences suggests enhanced Small sample size, limited detection
2004 (Yolken, R homologous . FES . . e
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SH-SY5Y cells inhibits HERV-W env-induced C-reactive protein
(CRP) expression (Wang et al., 2018). In mice, prenatal
inflammatory exposure induces persistent HERVs expression
changes associated with IL-6 (Herrero et al, 2023). Conversely,
HERVs exhibit proinflammatory properties; for example, human
and rat microglia exposed to HERV-W env show increased
proinflammatory cytokine and chemokine production (Kremer
et al,, 2019; Wang et al., 2021). HERV-W also enhances Th1-like
responses via TLR4 activation in monocytes (Rolland et al., 2006).
HERV-W env upregulates TNF-o and IL-10 via the TLR4/MyD88
pathway in glial cells, disrupting the proinflammatory/anti-
inflammatory balance and contributing to neuroinflammation
and synaptic dysfunction (Wang et al., 2021). These findings are
consistent with evidence from maternal immune activation models
of schizophrenia, where microglial inducible nitric oxide synthase
(INOS) upregulation drives oxidative/nitrosative stress and
hippocampal neuronal damage (MacDowell et al., 2017; Ribeiro
etal, 2013). HERV-W env further amplifies this by inducing iNOS
expression in human microglia-like CHME-5 cells, elevating nitric
oxide (NO) production and promoting microglial migration,
thereby contributing to neuronal injury (Xiao et al., 2017).
Beyond these direct neurotoxic effects, HERV-W env engages
adaptive immune mechanisms, where specific HLA-A*0201-
restricted epitopes trigger robust cytotoxic T lymphocyte (CTL)
responses, potentially exacerbating neuronal injury through
targeted immune attack (Tu et al., 2017). This pathway, distinct
from direct cellular effects, involves sustained immune-mediated
processes that may perpetuate neuroinflammatory damage over
time. Furthermore, HERV-W env engages broader inflammatory
cascades, such as cGAS/STING-dependent innate immune
activation that promotes neuronal apoptosis (Li et al., 2023).
Programmed cell death (PCD), including apoptosis and
pyroptosis, is intricately linked to inflammation, where
inflammatory signals can trigger PCD pathways as a mechanism
to resolve or propagate tissue damage, while dysregulated PCD may
in turn amplify inflammatory responses through the release of
damage-associated molecular patterns (DAMPs) (Yang et al., 2015).
In recent-onset schizophrenia, HERV-W env suppresses linc01930
expression, enhancing ¢cGAS/STING-IRF3 signaling and IFN-f
production, which drives innate immune activation and neuronal
apoptosis (Li et al, 2023). Similarly, HERV-W env upregulates
NLRP3, CASP1, and GSDMD expression, promoting lactate
dehydrogenase (LDH) and IL-1fB release and inducing CASP1-
GSDMD-dependent neuron pyroptosis in recent-onset
schizophrenia (Jia et al., 2025). These innate immune pathways
intersect with mitochondrial function, where inflammatory signals
impair energy metabolism and exacerbate neuronal vulnerability
(Buttiker et al., 2022). HERVs amplifies this damage by disrupting
mitochondrial function. For instance, ERVWE]L, through
interaction with CPEBI1, downregulates NDUFV2 expression,
leading to mitochondrial complex I defects in SH-SY5Y
neuroblastoma cells, contributing to neuronal dysfunction in
recent-onset schizophrenia (Xia et al., 2021). ERVWEIL
upregulates circ_0001810 through AK2 activation, disrupting
mitochondrial membrane potential and mitochondrial dynamics,
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which further compromises neuronal function (Li W. et al., 2024).
Additionally, Some researchers suggested that micromitophagy
may be involved in schizophrenia pathophysiology, possibly
influenced by viral infections that induce mitochondrial
autophagy. Specifically, ERVWEI inhibited micromitophagy by
increasing NADPH oxidase activator 1 (NOXAL) expression,
which in turn decreases the expression of key micromitophagy-
related genes, PTEN-induced kinase 1 (PINK1) and Parkin, and
reduces the production of PDHAI-positive TOM20-negative
mitochondrial derived vesicles (MDVs) (Zhang et al.,, 2025).
These findings suggest that HERVs-induced inflammation forms
a critical link between genetic and environmental risk, with
bidirectional feedback loops (Kury et al., 2018). However, some
studies report weak associations between systemic inflammation
and HERV-W expression, possibly due to nonacute disease stages
or limited sample sizes(Sara Coelho Rangel et al., 2024).

5.2 HERVSs disruption of neurotransmitter
systems and synaptic function

HERVs also disrupt neurotransmitter systems and neuronal
function. In mice, hippocampal HERV-W env overexpression
during development impairs the glutamatergic system, inducing
psychosis-related behaviors in adulthood (Johansson et al., 2020).
Similarly, HERV-W env enhances dopamine receptor d2 (DRD2)
signaling via the protein phosphatase 2A (PP2A)/protein kinase B
(AKT1)/glycogen synthase kinase 3(GSK3) pathway, leading to
dopaminergic hyperactivity (Yan et al, 2022). HERVs affect
neuronal morphology and function; ERVW-1 reduces
hippocampal neuron density and impairs dendritic spine
morphology in individuals with schizophrenia(W. Yao et al,
2023), contributing to disease pathogenesis. In serotonergic
neurons, ERVWEI reduces neuronal complexity and spine
density by upregulating 5-Hydroxytryptamine receptor 1B
(HTRIB) (Wu et al,, 2023a). Conversely, HERV-W env can
activate neurons by reducing 5-HT4Rs, thereby activating small
conductance calcium-activated potassium channel 2(SK2) channels,
suggesting a novel mechanism for neuronal activity modulation
(Wu, Yan, et al, 2023). Collectively, HERVs contribute to a
complex neurotoxicity network in schizophrenia by disrupting
neurotransmitter balance and impairing neuronal structure.

5.3 HERVs' regulation of epigenetic
networks and schizophrenia risk genes

A series of inflammatory responses in the brain may be
associated with the aberrant expression of ERVs resulting from
the loss of epigenetic co-repressor proteins, such as Trim28
(Jonsson et al., 2021). Numerous psychiatric disorders, including
schizophrenia, are recognized as outcomes of neurodevelopmental
alterations (Bale et al,, 2010; Horwitz et al,, 2019). The interplay
between genetic predispositions and environmental exposures
contributes significantly to the onset and progression of these
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disorders, highlighting the critical role of epigenetic modifications
in disease processes (Khashan et al., 2008). During early
development, ERVs are dynamically silenced at the
transcriptional level through epigenetic modifications, including
histone methylation and deacetylation as well as DNA methylation
(Rowe et al,, 2010). These repressive mechanisms collectively
suppress ERV expression in somatic tissues. Research has
indicated that the link between aberrant ERV expression and
inflammatory responses in the brain is associated with the loss of
Trim28, an epigenetic co-repressor protein. In proliferating neural
progenitor cells (NPCs), ERV expression is subject to dynamic
regulation dependent on H3K9me3 histone methylation, whereas in
cortical neurons of adult mice, Trim28 deficiency leads to elevated
ERV expression, accompanied by microglial activation and
accumulation of inflammatory proteins (Jonsson et al, 2021).
Furthermore, the accumulation of misfolded proteins and the
disruption of protein homeostasis can induce endoplasmic
reticulum (ER) stress, triggering the unfolded protein response
(UPR). ER stress impairs neuroplasticity (Kawada et al, 2014)
and is closely associated with metabolic dysregulation in
individuals with schizophrenia (Hong et al, 2022; Zhou et al,
2022). Evidence suggests that ERVW-1 downregulates GANAB
expression in SH-SY5Y neuroblastoma cells, activating the ATF6-
mediated unfolded protein response, which upregulates CHOP and
XBP1ls, thereby inducing ER stress and impairing protein
homeostasis in recent-onset schizophrenia (Xue et al., 2023).
Moreover, HERVs activation influences the expression of
schizophrenia risk genes through epigenetic modifications, with
evidence suggesting that HERV-mediated transcriptional changes
are associated with altered DNA methylation (Chen et al., 2018;
Duarte et al., 2024). A human-specific HERV insertion
(hsERV_PRODH) serves as an enhancer for the schizophrenia-
linked gene PRODH, upregulating its expression via low
methylation and SOX2 binding, underscoring the role of HERV
in epigenetic and transcriptional regulation (Suntsova et al., 2013).
Under physiological conditions, HERVs are silenced by DNA
methylation and histone modifications to prevent genomic
instability and aberrant immune activation (Geis and Goff, 2020).
HERV LTRs serve as sense or antisense promoters (Cohen et al.,
2009), regulate host gene expression (Dunn et al., 2006), and drive
long noncoding RNAs (e.g., vlincRNAs) that influence pluripotency
and tumorigenesis (St Laurent et al., 2013). A full-length HERV-W
LTR in the gamma-aminobutyric acid type B receptor 1(GABBR1)
regulatory region may induce hypermethylation, downregulating
GABBRI expression (Hegyi, 2013), which is consistent with DNA
methyltransferase 1 (DNMT1) overexpression in GABAergic
interneurons and reelin promoter hypermethylation in
schizophrenia (Grayson et al., 2005; Veldic et al, 2003).
Collectively, these methylation-mediated mechanisms highlight
the multifaceted role of HERVs in modulating schizophrenia risk
genes. Beyond DNA methylation, HERVs also modulate risk gene
expression via post-translational phosphorylation pathways,
integrating signaling cascades that further dysregulate neuronal
function. In U251 glioma cells, HERV-W env overexpression
upregulated BDNF via glycogen synthase kinase 3 beta(GSK3p)
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Ser9 phosphorylation (Qin et al., 2016). Similarly, HERV-W env
regulates schizophrenia risk genes through phosphorylation-related
pathways, activating cAMP response element-binding protein
(CREB) phosphorylation to upregulate the expression of the small
conductance Ca®*-activated K* channel gene (KCNN2) in human
neuroblastoma cells, thereby modulating neuronal excitability and
synaptic signaling (Li et al., 2013). This CREB-dependent
mechanism may synergize with GSK3B-mediated pathways, as
HERV-W env also enhances CREB phosphorylation to upregulate
BDNF and dopamine receptor D3 (DRD3), contributing to
excitatory-inhibitory imbalances in schizophrenia (Huang et al,
2011). BDNF, a neurotrophin critical for neuronal survival,
migration, differentiation, and synaptic plasticity (Guo et al,
2010), is regulated by DISCI, a schizophrenia risk gene
modulated by HERV-W env through calcium-dependent
Transient receptor potential canonical 3(TRPC3) channel
activation (Chen et al., 2018). The DISCI-GSK3[3-BDNF axis may
mediate the pathological effects of HERVs.

In summary, the molecular mechanisms underlying HERV's
involvement in schizophrenia reveal a multifaceted interplay of
immune-mediated neuroinflammation, programmed cell death,
neurotransmitter dysregulation, and epigenetic modulation of risk
genes, collectively bridging genetic vulnerabilities with
environmental triggers to perpetuate synaptic dysfunction and
neurodevelopmental deficits. These insights not only underscore
HERVS’ potential as biomarkers, but also highlight opportunities
for targeted therapies.

6 HERVs as mediators of
schizophrenia risk factors

The risk factors for schizophrenia include genetic
predispositions, infections, and social stressors (Davis et al.,
2016). The ‘viral hypothesis’ posits that prenatal/perinatal or
postnatal viral infections, or immune responses to them, impair
brain maturation, leading to psychotic symptoms in adolescence
(Canuti et al., 2015a). Supporting evidence includes elevated
maternal IL-8 levels linked to the risk of schizophrenia in
offspring (Brown et al., 2004) and a 5-8% increased risk for
individuals born in winter/spring, when infections are prevalent
(O’'Callaghan et al., 1991). Persistent or reactivated dormant viral
infections during adolescence may also contribute (Kotsiri et al,
2023). HERVs, as retroviruses, may directly contribute to
schizophrenia or be activated by other viruses, such as influenza
or herpes simplex virus type 1, which upregulate HERV-W env
transcription (Nellaker et al., 2006; Ruprecht et al., 2006). Influenza
infection activates ERVWEL by increasing Glial cells missing
homolog 1(GCM1) transcription and reducing repressive histone
marks (H3K9me3)(F. Li et al., 2014), whereas SARS-CoV-2
upregulates HERV-W env in lymphoid cells (Charvet et al,
2023), highlighting the role of HERVs as a bridge in virus-
mediated schizophrenia pathogenesis.

Environmental stressors also stimulate HERVs expression.
HERV-W env antigenemia is significantly more common in
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individuals with schizophrenia and correlated with childhood
trauma, suggesting that early adversity is a trigger for HERV
reactivation (Tamouza et al., 2021). Pharmacological agents, such
as caffeine and aspirin, increase HERV-W env and gag expression in
SH-SY5Y neuroblastoma cells (Liu et al., 2013). However, some
studies argue that HERV's activation directly contributes to disease
causation, not merely as a compensatory or environmentally
triggered response. A TWAS of the dorsolateral prefrontal cortex
identified 163 significant risk expression traits in schizophrenia,
with 15 (9%) HERVs-related traits, including 9 upregulated and 6
downregulated features associated with genetic risk (Duarte et al.,
2024). Thus, HERVs may directly contribute to schizophrenia risk
or act as a bridge between genetic and environmental factors,
emphasizing their critical role in the complex etiology of
this disease.

7 Discussion

HERVs are emerging as key players in schizophrenia, with
clinical evidence, molecular mechanisms, and risk factor
associations highlighting their importance. Mounting evidence
from numerous studies has demonstrated aberrant HERVs
expression, particularly of HERV-W and HERV-K expression, in
the peripheral blood, cerebrospinal fluid, and brain tissues of patients
with schizophrenia, with elevated env and gag transcripts frequently
observed in these patients compared with healthy controls. These
findings position HERVSs as potential biomarkers for schizophrenia
diagnosis and prognosis, particularly in first-episode and acute-phase
patients. Moreover, HERVSs activation interacts with environmental
factors, such as viral infections, childhood trauma, and
pharmacological interventions, underscoring their role as a nexus
between genetic and environmental risk. HERVs contribute to
schizophrenia pathogenesis through neuroinflammatory pathways,
neurotoxicity, and the dysregulation of risk genes (e.g., BDNF, DISCI,
PRODH) via epigenetic and transcriptional mechanisms. Notably,
HERV-W env-mediated activation of the TLR4/MyD88 pathways
and its impact on glutamatergic and dopaminergic signaling highlight
their multifaceted role in neuroinflammation, synaptic dysfunction,
and neuronal apoptosis.

Despite these advances, challenges persist in elucidating the
precise roles of HERVs. Inconsistent findings, potentially
attributable to variations in sample types (e.g., blood vs. CSF),
disease stages (e.g., FES vs. MES), and methodological differences,
underscore the need for standardized HERV-specific assays.
Whether HERVs activation is a cause or consequence of
schizophrenia remains unresolved, with evidence suggesting
bidirectional feedback loops involving inflammation and
epigenetic dysregulation. Small sample sizes and patient
heterogeneity limit statistical power, necessitating larger,
longitudinal studies to track HERVs expression across disease
stages and correlate it with clinical phenotypes and biomarkers
(e.g., cytokines and neurotransmitter metabolites).
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Future research should leverage advanced sequencing
technologies, such as long-read and single-cell RNA sequencing,
to map HERVs expression at specific genomic loci and cell types,
potentially identifying novel therapeutic targets. Preclinical studies
targeting HERV-W env, inspired by monoclonal antibodies such as
temelimab in multiple sclerosis, could inform similar interventions
in schizophrenia. Correlating HERVs expression with epigenetic
markers (e.g., DNA methylation and histone modifications) may
elucidate regulatory mechanisms and facilitate the development of
biomarker panels for early diagnosis. Additionally, investigating the
effects of exploring environmental triggers (e.g., infections and
stress) on HERVs activation could clarify gene-environment
interactions, guiding preventive strategies.

In conclusion, HERVs represent a critical intersection of
genetic, epigenetic, and environmental factors in schizophrenia,
offering a unique lens through which to investigate its complex
etiology. Addressing methodological inconsistencies, expanding
cohort studies, and leveraging cutting-edge genomic tools will be
essential to unravel the pathomechanisms of HERVs and translate
these insights into actionable targets for innovative diagnostics and
therapies in schizophrenia management.
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