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Human endogenous retroviruses
in schizophrenia: clinical
evidence, molecular
mechanisms, and implications
Mengyu Zhang*, Xiaoge Wang, Yun Liu, Chenxuan Bao,
Qing Gao and Lingxiang Mao

Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan,
Jiangsu, China
Human endogenous retroviruses (HERVs), comprising 8% of the human genome,

are implicated in schizophrenia, a complex psychiatric disorder driven by genetic,

epigenetic, and environmental factors. This review examines the role of HERVs in

schizophrenia pathogenesis. We synthesized clinical evidence, molecular

mechanisms, and gene-environment interactions from studies on HERVs

expression in schizophrenia, focusing on HERV-W and HERV-K in peripheral

blood, cerebrospinal fluid, and brain tissues. Elevated HERV-W and HERV-K env

and gag transcripts are consistently observed in individuals with schizophrenia,

indicat ing potential diagnost ic biomarkers. HERVs contr ibute to

neuroinflammation, neurotoxicity, and epigenetic dysregulation of risk genes.

The HERV-W env activates the Toll-like receptor 4 (TLR4)/MyD88 pathway,

disrupting glutamatergic and dopaminergic signaling, leading to synaptic

dysfunction and neuronal apoptosis. Environmental triggers, such as viral

infections and early-life stress, activate HERVs, linking genetic and

environmental risks. Variability in HERV expression across disease stages

highlights the need for standardized assays and longitudinal studies. Emerging

technologies and preclinical models targeting HERV-W env offer promise for

developing novel diagnostics and therapies. HERVs serve as pivotal mediators of

schizophrenia’s etiology, advancing precision psychiatry through biomarker and

therapeutic innovation.
KEYWORDS

human endogenous retroviruses, schizophrenia, neuroinflammation, gene-
environment interactions, synaptic dysfunction, precision psychiatry
1 Introduction

Approximately 8% of the human genome comprises sequences derived from retroviral

integrations, collectively termed HERVs (Kury et al., 2018). Retroviruses, characterized by

their RNA genomes, integrate into host chromosomes via reverse transcriptase. These exist

in exogenous or endogenous forms, or both. Exogenous retroviruses infect cells through
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1677212/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1677212/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1677212/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1677212/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1677212&domain=pdf&date_stamp=2025-10-22
mailto:myzujs@163.com
https://doi.org/10.3389/fcimb.2025.1677212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1677212
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Zhang et al. 10.3389/fcimb.2025.1677212
specific receptors, whereas endogenous retroviruses are embedded

in the genomes of all host cells and inherited in a Mendelian

fashion. Owing to mutations, frameshifts, and deletions, most

HERVs have lost their coding potential.

Schizophrenia is a severe psychiatric disorder characterized by

positive symptoms (e.g., hallucinations, delusions, disordered

thinking and behavior) and negative symptoms (e.g., apathy,

anhedonia, social withdrawal) (McCutcheon et al., 2020). Its

etiology remains incompletely understood, with contributions

from genetic and environmental factors (Sullivan et al., 2003).

Genetic studies have identified 287 genomic loci associated with

schizophrenia risk, primarily affecting neuronal gene expression,

synaptic function, neurotransmitter signaling, neurodevelopment,

immune responses, and epigenetic regulation (Chang et al., 2017;

Sekar et al., 2016; Trubetskoy et al., 2022). Aberrant gene regulation

during fetal brain development may influence postnatal brain

phenotypes, with open chromatin regions enriched for

schizophrenia risk alleles (Hill and B, 2012; Tao et al., 2014).

Environmental risk factors, including socioeconomic stressors

(e.g., poverty, inequality, urban density) (Kirkbride et al., 2014);

the season of birth (Szoke et al., 2024); maternal infections during

pregnancy (e.g., influenza, rubella, herpes simplex virus,

cytomegalovirus, hepatitis B, and Toxoplasma gondii) (Illescas-

Montes et al., 2019; Liu et al., 2017; Mohebalizadeh et al., 2024);

and immune dysregulation, also contribute to schizophrenia risk.

HERVs occupy a unique position at the intersection of genetic,

epigenetic, and environmental risk factors, offering a valuable

perspective for exploring the complex etiology of schizophrenia. As

genomic regulatory elements, HERVs can act as enhancers or

promoters, influencing the expression of genes critical for

neurodevelopment and synaptic function, such as brain-derived

neurotrophic factor (BDNF) and disrupted in schizophrenia 1

(DISC1) (Chen et al., 2018; Qin et al., 2016). Additionally, HERVs

activation is often linked to viral infections, inflammation, and

epigenetic dysregulation, all of which are pivotal in schizophrenia

pathophysiology (Rangel et al., 2022; Wang et al., 2021). For instance,

the HERV-W env protein can trigger neuroinflammation by activating
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microglia and proinflammatory cytokines, potentially exacerbating

schizophrenia pathology (Wang et al., 2021). Numerous clinical

studies have reported elevated HERV expression in the peripheral

blood and brain tissues of individuals with schizophrenia, suggesting

its potential as a biomarker (Rangel et al., 2024; Wu et al., 2023a, 2023;

Yolken, 2004; Zhang et al., 2024). Thus, HERVs offer a molecular entry

point for studying schizophrenia and hold promise as targets for novel

diagnostic and therapeutic strategies. This review synthesizes clinical

evidence, molecular mechanisms, and risk factor associations to

elucidate the role of HERVs in schizophrenia and their significance

in psychiatric research.
2 Biology of HERVs

2.1 Structure and classification of HERVs

HERVs are a subclass of transposable elements (TEs) that

mobilize within the genome via an RNA intermediate through a

“copy-and-paste” mechanism (Vargiu et al., 2016). Structurally,

HERVs contain essential viral genes, such as gag (encoding capsid

proteins), pro (encoding proteases), pol (encoding reverse

transcriptase), and env (encoding envelope proteins), which are

flanked by long terminal repeats (LTRs) (Figure 1). LTRs,

noncoding regions with promoter and enhancer activity, serve as

influential regulatory modules for both HERVs and adjacent host

genes. However, owing to negative selection and mutation

accumulation (e.g., deletions, stop codons, frameshifts), most

HERVs are transcriptionally silent. Historically considered “junk

DNA” (Ochoa Thomas et al., 2020), recent evidence suggests that

HERVs can regulate gene expression under specific physiological

conditions (Shin et al., 2013), impacting transcriptional activity

(Fueyo et al., 2022; Lawson et al., 2023) and genomic stability

through rearrangements or insertional mutagenesis (Hughes and

Coffin, 2001).

On the basis of their sequence characteristics, HERVs are

classified into three major groups: gamma-like, beta-like, and
FIGURE 1

Schematic structure of a human endogenous retrovirus genome. gag encodes capsid (CA), nucleocapsid (NC), and matrix protein (MA); pro encodes
protease (PR); pol encodes reverse transcriptase (RT), RNase H (RH), and integrase (IN); and env encodes surface (SU) and transmembrane (TM) units.
A noncoding primer-binding site (PBS) specific to tRNA is located between the 5′ LTR and the first gag codon. LTRs consist of unique 3′ (U3), repeat
(R), and unique 5′ (U5) regions.
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spuma-like retroviruses (Tristem, 2003). HERV nomenclature

typically reflects the tRNA specificity of their primer-binding sites

and LTR structure (Heidmann et al., 2018). For example, HERV-W

uses a tryptophan-specific tRNA primer, HERV-H uses a histidine-

specific tRNA, and HERV-K uses a lysine-specific tRNA (Dolei,

2006). Table 1 summarizes the classification, tRNA primer

specificity, and key features of the 26 HERV lineages.
2.2 Physiological functions and regulatory
mechanisms of HERVs

HERVs are relics of ancient exogenous retroviral infections that

have been integrated into the germline, with most having lost

replication capacity due to mutations over millions of years.

However, some retain functional sequences that contribute to
Frontiers in Cellular and Infection Microbiology 03
essentia l physiological processes , part icular ly during

embryogenesis and placentation (Lavialle et al., 2013). For

instance, the HERV-W element on chromosome 7q21 encodes

Syncytin-1 (ERVW-1), integrated approximately 12–80 million

years ago, which facilitates trophoblast cell fusion during

placental development (Mi et al., 2000) and regulates maternal

immune tolerance via exosomal sorting (Tolosa et al., 2012).

HERV-H elements, which are highly expressed in embryonic

stem cells, regulate pluripotency (Santoni et al., 2012). HERV-K

(HML-2 subtype) retains relatively intact genomic sequences,

enabling the production of functional viral proteins or particles

under specific conditions (Shin et al., 2023). HERVs also modulate

innate immune responses, acting as endogenous sensors of viral

infections by interacting with pattern recognition receptors (e.g.,

Toll-like receptors, RIG-I-like receptors), initiating antiviral

pathways, and influencing cytokine production (Russ and
TABLE 1 Classification and characteristics of HERV families.

HERV
class

HERV
lineages

tRNA primer specificity Key structural features Physiological role
Disease

associations

Class I
(gamma-like)

HERV.Z69907 Not Determined (ND) Contains gag, pol, env, LTRs
Not well-defined, potentially
involved in gene regulation

Not established1

HERV.ADP tRNAThr(?)
Contains LTRs, may lack some

coding genes
Possibly involved in

embryonic development

HERV.E tRNAGlu

Contains gag, pol, env, LTRs

Regulation of gene
expression

Cancer

HERV.F tRNAPhe May influence genomic
stability

Not established
HERV.F (type

b)
tRNAPhe Not established

HERV.FRD tRNAHis Contains env, encodes Syncytin-2
Mediates trophoblast cell

fusion in placenta

HERV.H tRNAHis Highly expressed in embryonic stem
cells

Regulates pluripotency in
embryonic stem cells

Cancer,
Schizophrenia

HERV.H49C23 No LTRs
Atypical structure, limited

functionality
Not established

Not establishedHERV.I tRNAIle Contains gag, pol, env, LTRs
Possibly involved in
immune regulation

RRHERV.I tRNAIle Contains LTRs, may lack some
coding genes

Not established

ERV-9 tRNAArg

Contains gag, pol, env, LTRs

Potentially involved in gene
regulation

Schizophrenia

HERV.F (type
c)

tRNAPhe

Not established Not established

HERV.P tRNAPro

HERV.R tRNAArg

HERV.R (type
b)

tRNAArg

HERV.T tRNAThr

HERV.W tRNATrp

(Continued)
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Iordanskiy, 2023). Additionally, HERVs contribute to genetic

diversity and evolution by providing regulatory sequences (e.g.,

promoters, enhancers, alternative splice sites) that modulate

adjacent gene expression and drive genomic recombination (Jern

and Coffin, 2008).
3 Aberrant activation of HERVs in
disease

Aberrant HERVs reactivation threatens genomic integrity and

contributes to the development of various diseases, including

psychiatric disorders. Environmental stimuli, including viral

infections (Canli, 2019), pharmacological agents (Liu et al., 2017)

and epigenetic modifications (van der Kuyl, 2012), can activate

HERVs, leading to DNA damage, inflammation, and

neurodegeneration (Chuong et al., 2017; Ochoa Thomas et al.,

2020). HERVs are implicated in multifactorial diseases

characterized by immune dysregulation, such as cancer,

inflammatory disorders, and neurological and psychiatric

conditions (Grandi and Tramontano, 2018; Groger and Cynis,

2018; Kury et al., 2018; Matteucci et al., 2018). For example,

HERV-K LTRs act as enhancers in breast, lung, and colorectal

cancers, driving oncogene expression and tumorigenesis (Fan and

Cui, 2023). In addition to acting as enhancers in cancer and driving

oncogene expression and tumorigenesis, HERVs can also function

directly as oncogenes. According to the classical definition, oncogenes

are genes that, through mutation, overexpression, or aberrant

activation, promote cell proliferation, inhibit apoptosis, or induce

metastasis. Research has demonstrated that specific mutations in the

3’-long terminal repeat (LTR) region of the HERV-W family on

chromosome 7 enhance binding to the transcription factor c-Myb,

significantly upregulating syncytin-1 expression. In urothelial cell

carcinoma of the bladder, syncytin-1 overexpression directly drives
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cancer cell proliferation, survival, and tumorigenesis (Yu et al., 2014).

Similar to the mutational activation of classical oncogenes, HERV

elements transition from “passive” sequences to core drivers of tumor

development. Similarly, in hepatocellular carcinoma, syncytin-1

overexpression enhances cell proliferation, metastasis, invasiveness,

and doxorubicin resistance via activation of the MEK/ERK signaling

pathway (Zhou et al., 2021). HERVs also exacerbate infectious and

chronic inflammatory diseases by stimulating proinflammatory

cytokine production (e.g., interleukin-6 [IL-6] and tumor necrosis

factor-alpha [TNF-a])) (Rangel et al., 2022). In neurodegenerative

and neuroinflammatory disorders, HERV-W env is overexpressed in

multiple sclerosis lesions, and this overexpression is correlated with

microglial activation and neuroinflammation (Kury et al., 2018).

HERVs also exhibit transcriptional activity in Alzheimer’s and

Parkinson’s diseases (Adler et al., 2024).

The causality of HERVs activation in disease remains debated.

The evidence supporting causality includes HERV-W env

overexpression preceding multiple sclerosis symptoms (Kury et al.,

2018) and HERV-K-driven oncogene activation in early

tumorigenesis (Mao et al., 2021). Conversely, HERV activation may

be a consequence of inflammation or infection, establishing a feedback

loop that exacerbates disease progression (Rangel et al., 2022). The

HervD Atlas database highlights bidirectional associations between

HERVs and disease, where HERVsmay exacerbate pathology or result

from it (Li C. et al., 2024). Given their role in neuroinflammation and

psychiatric disorders, HERVs are a compelling focus for schizophrenia

research, a disorder characterized by gene-environment interactions,

neurodevelopmental abnormalities, and synaptic dysfunction (Duarte

et al., 2024). Elevated HERVs expression in individuals with

schizophrenia’ blood and brain tissues suggests a role in mediating

interactions among infection, immune dysregulation, and genetic risk

(Tamouza et al., 2021). Thus, schizophrenia provides a valuable model

for investigating the pathological mechanisms of HERVs in

psychiatric disorders.
TABLE 1 Continued

HERV
class

HERV
lineages

tRNA primer specificity Key structural features Physiological role
Disease

associations

Contains env (ERVW-1, Syncytin-
1), LTRs with promoter/enhancer

activity

Placentation, immune
tolerance regulation

Schizophrenia,
Multiple

Sclerosis, Cancer

HERV.XA tRNAPhe Contains gag, pol, env, LTRs Not established Not established

Class II (beta-
like)

HERV.K.HML1-
4

tRNALys Relatively intact genome, capable of
producing functional viral proteins

Potentially involved in
innate immune responses

Schizophrenia,
Cancer

HERV.K.HMLS tRNAIle

Contains gag, pol, env, LTRs Not established Not established

HERV.K.HML6 tRNALys

HERV.K.HML9 ND

Class III
(spuma-like)

HERV.L tRNALeu

HERV.S tRNASer

HERV.U2 ND

HERV.U3 ND
1Where physiological roles or disease associations are listed as 'Not established,' further research is needed to clarify their involvement.
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4 Clinical evidence of HERVs
expression in schizophrenia

4.1 HERVs expression in peripheral and
central nervous systems

Numerous clinical studies have demonstrated aberrant HERVs

expression in the peripheral blood and central nervous system

(CNS) of individuals with schizophrenia (Table 2). In peripheral

blood, HERV-W env and gag transcripts and proteins are detectable

in both healthy controls and first-episode schizophrenia (FES)

patients, with significantly higher levels in patients (Perron et al.,

2008; Rangel et al., 2024; Wu et al., 2023a, b; Yao et al., 2008; Zhang

et al., 2024). One study reported HERV-W env homologous mRNA

sequences in the plasma of 42 out of 118 recent-onset individuals

with schizophrenia, but not in controls. This discrepancy may be

due to differences in sample type (plasma vs. whole blood) and

target sequence (cloned vs. canonical HERV-W env transcripts).

Plasma-free HERV RNA may reflect recent viral activity, while

cellular transcripts are more stable and detectable (Rangel et al.,

2024). A reduced HERV-W env gene copy number (Perron et al.,

2012) and detection of reverse transcriptase activity(W. Huang

et al., 2011, 2006) further suggest enhanced HERV transcriptional

and translational activity in individuals with schizophrenia.

However, viral metagenomics in drug-naive FES patients with

predominant negative symptoms revealed no evidence of HERVs

involvement (Canuti et al., 2015b). This discrepancy may stem from

sample type, cohort size, or the lower neuroinflammatory state in

negative-symptom patients, as HERV upregulation is often linked

to inflammatory signals or stress responses (Tamouza et al., 2021).

Furthermore, inflammation can activate HERVs via epigenetic

mechanisms, establishing a positive feedback loop (Perron

et al., 2012).

CNS studies reveal HERVs expression in cerebrospinal fluid

(CSF) and brain tissue. Retroviral RNA was detected in the CSF and

brains of individuals with schizophrenia, with 28.6% of 35 FES

patients’ CSF samples showing HERV pol homologous sequences,

indicating enhanced reverse transcriptase activity (Karlsson et al.,

2001; Yolken, 2004). However, some studies suggest weak

correlations between brain HERV pol transcription and

schizophrenia, potentially influenced by genetic background,

brain-infiltrating immune cells, or medications (Frank et al.,

2005). RNA-seq analyses reveal upregulated HERV-W/H

transcripts in the frontal cortex and pons of individuals with

schizophrenia (Li et al., 2019), supporting a role for HERVs

transcriptional activation in disease development. Similarly,

HERV-W env is strongly expressed in the pons, a region that

regulates vital functions (Kim et al., 2008). Conversely, HERV-W

GAG protein expression is reduced in the cingulate gyrus and

hippocampus, possibly due to transcriptional defects or antisense

transcription (Mack et al., 2004; Mura et al., 2004; Weis et al., 2007).

These regional differences underscore the complexity of HERVs

expression, which is likely influenced by disease stage and

neuroinflammatory status. Recent transcriptome-wide association

studies (TWAS) integrating HERVs expression data revealed 13
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HERV loci significantly associated with schizophrenia risk

(P<5×10-8), with HERV-W and HERV-K transcripts upregulated

in glutamatergic neurons, linking HERV activity to genetic risk and

neurodevelopmental dysregulation (Duarte et al., 2024).
4.2 Heterogeneity of HERVs expression
across schizophrenia stages

HERVs expression is closely tied to the clinical presentation and

disease course of schizophrenia. HERV-K115 insertions are more

prevalent in younger-onset patients, suggesting a role in early

disease stages (Otowa et al., 2006). FES patients exhibit

significantly lower HERV-K methylation levels compared to

controls, whereas patients with multiepisode schizophrenia (MES)

show normalized methylation. In MES patients, HERV-K

methylation correlates positively with chlorpromazine dosage, but

not in FES patients, indicating that antipsychotics may modulate

HERV methylation (Mak et al., 2019). DNA methylation, a critical

epigenetic modification, regulates gene expression by altering

chromatin accessibility and is implicated in neurodevelopment

and synaptic plasticity (Greenberg and Bourc’his, 2019; Hosak

and Hosakova, 2015). Genetic variants associated with DNA

methylation are enriched in schizophrenia risk loci during fetal

brain development (Hannon et al., 2016). HERV-W env protein

positivity is linked to increased manic symptoms and higher

chlorpromazine doses, potentially involving inflammatory

processes (Queissner et al., 2018; Tamouza et al., 2021). Valproic

acid (VPA) upregulates HERV-W and ERV9 transcription in a

dose-dependent manner, with HERV-W showing the strongest

response in glioblastoma cell lines, while HERV-K (HML-2)

transcription remains unaffected (Diem et al., 2012). These

findings highlight the complex interplay between HERV

expression, disease stage, clinical phenotype, and therapeutic

interventions, emphasizing the need to further explore the

pathophysiological roles of HERVs in schizophrenia.
5 Molecular mechanisms of HERVs in
schizophrenia

5.1 HERVs activation of neuroinflammatory
pathways and programmed cell death

Neuroinflammation has been increasingly recognized as a key

contributor to schizophrenia pathogenesis, especially during

vulnerable periods of brain development, where prenatal or early-

life immune activation can disrupt neural circuits and lead to long-

term neurodevelopmental abnormalities (Meyer, 2013). Abnormal

activation of HERVs during brain development may represent a

potential trigger for inflammatory responses. HERVs may both

promote and be activated by inflammation (Helmy and Selvarajoo,

2021; Rangel et al., 2022). Elevated HERV-W env expression in

individuals with schizophrenia correlates with proinflammatory

cytokines (Tamouza et al., 2021), and downregulation of IL-6 in
frontiersin.org
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TABLE 2 Clinical evidence of HERV expression in schizophrenia.

Study Sample
findings Limitations

ated in FES patients (15 whole blood,
whole blood, 37 plasma), positively
R1B, ALKBH5, and Arc.

Small sample size (15 FES vs. 14
controls, whole blood; 44 FES vs.

37 controls, plasma). No
demographic differences, but
potential confounders not fully

addressed.

tly elevated in plasma of recent-onset
44) vs. controls (n=37) by ELISA,
with reduced 5-HT4R levels.

Small sample size (44 FES vs. 37
controls). Potential confounders

(e.g., medication) not fully
addressed, although age, gender,

body mass index (BMI) controlled.

gnificantly higher in schizophrenia
=46) (p<0.01) by using quantitative
e chain reaction (qRT-PCR). Elevated
reduced IFN-g, IL-2 (p=0.05) in
orrelation with HERV-W env.

Small sample size (24
schizophrenia vs. 46 controls).

Medicated patients may confound
results. Limited to nonpsychotic
phase, not reflecting acute states.

tly elevated in schizophrenia plasma
44) vs. co
T-PCR, negatively correlated with
p<0.05), supporting ferroptosis role.

Small sample size (44
schizophrenia vs. 37 controls).

Stage unclear, likely FES. Potential
confounders (e.g., medication) not

fully addressed, although age,
gender controlled.

emia higher in schizophrenia patients
gesting potential as a biomarker

Small sample size, specificity
requires further validation

cantly higher in blood cells of FES
red to healthy controls

Did not explore differences across
disease stages, limited to single

sample type

iptional and translational activity,
ked to inflammation

Limited sample size, did not
distinguish between FES and MES

tly lower in FES patients compared to
ent of antipsychotic drug dosage

Limited sample size, differences in
MES patients not explored

nts exhibited more manic symptoms
lorpromazine dosage

Disease stage not specified,
causality requires further validation
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HERV type Expression pattern Patient cohort Key

Wu et al.,
2023 (Wu

et al., 2023a)

Peripheral
Blood (Whole
Blood, Plasma)

HERV-W

Significant upregulation of
ERVWE1 transcripts

First-Episode Schizophrenia
(FES)

ERVWE1 significantly upregu
44 plasma) vs. controls (14

correlated with H

Wu et al.,
2023 (Wu

et al., 2023b)

Peripheral
Blood (Plasma)

Significant upregulation of
HERV-W env protein

FES
HERV-W env protein significa

schizophrenia patients (n=
negatively correlated

Rangel et al.,
2024 (Rangel
et al., 2024)

Significant upregulation of
HERV-W env transcripts

Schizophrenia (nonpsychotic
phase)

HERV-W env transcripts s
patients (n=24) vs. controls (

reverse transcription polymera
TNF-a, IL-10 (p=0.01),
schizophrenia, but no

Zhang et al.,
2024 (Zhang
et al., 2024)

Significant upregulation of
ERVW-1 transcripts

Schizophrenia (Stage not
specified)

ERVW-1 transcripts significa
(n

ntrols (n=37) (p<0.05) by q
reduced GPX4 and SLC3A2

Perron et al.,
2008 (Perron
et al., 2008)

Peripheral
Blood (Whole

Blood)

Significant upregulation of env
and gag transcripts

FES

HERV-W env and gag antigen
than healthy controls, su

Yao et al.,
2008 (Yao
et al., 2008)

Elevated transcript levels
HERV-W transcripts signifi

patients compa

Perron et al.,
2012 (Perron
et al., 2012)

Reduced env gene copy
number, enhanced reverse

transcriptase activity
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specified)
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potentially lin

Mak et al.,
2019 (Mak
et al., 2019)
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Blood

HERV-K Reduced methylation levels FES
HERV-K methylation significa

healthy controls, indepen

Tamouza
et al., 2021
(Tamouza
et al., 2021)

HERV-W ENV protein positivity
Schizophrenia (Stage not

specified)
HERV-W ENV-positive patie

and higher ch
l

T

n

i
n
s

c

n
=
R
(

g

r

n
d

https://doi.org/10.3389/fcimb.2025.1677212
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


TABLE 2 Continued

Study Sample
Key findings Limitations

and protein detected in blood, suggesting reverse
transcriptase activity

Patient clinical characteristics not
specified, detection method
specificity needs optimization

5 insertion frequency similar in schizophrenia
. controls (9.4%, n=117) (p>0.05) by PCR; marginal
younger onset in schizophrenia (p=0.057).

No HERV expression data, only
insertion polymorphism. Small

sample size (119 schizophrenia vs.
117 controls). Schizophrenia stage
unspecified, mixing acute/chronic
cases. Limited power for age-at-

onset analysis.

mics found no HERV involvement, possibly due to
mation in patients with negative symptoms

Sample biased toward negative-
symptom patients, small sample

size

A detected in cerebrospinal fluid and brain tissue,
indicating central expression

HERV type not specified, limited
sample size

ERV pol homologous sequences suggests enhanced
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Huang et al.,
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et al., 2006)
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2015 (Canuti
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et al., 2001
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Yolken et al.,
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Fluid

HERV (pol
homologous
sequences)

Pol homologous sequences
detected in 28.6% of samples
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Duarte et al.,
2024 (Duarte
et al., 2024)

Brain Tissue
HERV-W, HERV-

K

Significant upregulation of
HERV-W and HERV-K

transcripts

Schizophrenia (Stage not
specified)
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Li et al., 2019
(Li et al.,
2019)

Brain Tissue
(Frontal Cortex,

Pons)
HERV-W/H Transcriptional upregulation

HERV-W/H t

Kim et al.,
2008 (Kim
et al., 2008)

Brain Tissue
(Pons)

HERV-W

Strong env expression
High HERV-W

Weis et al.,
2007 (Weis
et al., 2007)

Brain Tissue
(Cingulate
Gyrus,
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Reduced GAG protein
expression

Reduced HE
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SH-SY5Y cells inhibits HERV-W env-induced C-reactive protein

(CRP) expression (Wang et al., 2018). In mice, prenatal

inflammatory exposure induces persistent HERVs expression

changes associated with IL-6 (Herrero et al., 2023). Conversely,

HERVs exhibit proinflammatory properties; for example, human

and rat microglia exposed to HERV-W env show increased

proinflammatory cytokine and chemokine production (Kremer

et al., 2019; Wang et al., 2021). HERV-W also enhances Th1-like

responses via TLR4 activation in monocytes (Rolland et al., 2006).

HERV-W env upregulates TNF-a and IL-10 via the TLR4/MyD88

pathway in glial cells, disrupting the proinflammatory/anti-

inflammatory balance and contributing to neuroinflammation

and synaptic dysfunction (Wang et al., 2021). These findings are

consistent with evidence from maternal immune activation models

of schizophrenia, where microglial inducible nitric oxide synthase

(iNOS) upregulation drives oxidative/nitrosative stress and

hippocampal neuronal damage (MacDowell et al., 2017; Ribeiro

et al., 2013). HERV-W env further amplifies this by inducing iNOS

expression in human microglia-like CHME-5 cells, elevating nitric

oxide (NO) production and promoting microglial migration,

thereby contributing to neuronal injury (Xiao et al., 2017).

Beyond these direct neurotoxic effects, HERV-W env engages

adaptive immune mechanisms, where specific HLA-A*0201-

restricted epitopes trigger robust cytotoxic T lymphocyte (CTL)

responses, potentially exacerbating neuronal injury through

targeted immune attack (Tu et al., 2017). This pathway, distinct

from direct cellular effects, involves sustained immune-mediated

processes that may perpetuate neuroinflammatory damage over

time. Furthermore, HERV-W env engages broader inflammatory

cascades, such as cGAS/STING-dependent innate immune

activation that promotes neuronal apoptosis (Li et al., 2023).

Programmed cell death (PCD), including apoptosis and

pyroptosis, is intricately linked to inflammation, where

inflammatory signals can trigger PCD pathways as a mechanism

to resolve or propagate tissue damage, while dysregulated PCD may

in turn amplify inflammatory responses through the release of

damage-associated molecular patterns (DAMPs) (Yang et al., 2015).

In recent-onset schizophrenia, HERV-W env suppresses linc01930

expression, enhancing cGAS/STING-IRF3 signaling and IFN-b
production, which drives innate immune activation and neuronal

apoptosis (Li et al., 2023). Similarly, HERV-W env upregulates

NLRP3, CASP1, and GSDMD expression, promoting lactate

dehydrogenase (LDH) and IL-1b release and inducing CASP1–

GSDMD-dependent neuron pyroptosis in recent-onset

schizophrenia (Jia et al., 2025). These innate immune pathways

intersect with mitochondrial function, where inflammatory signals

impair energy metabolism and exacerbate neuronal vulnerability

(Buttiker et al., 2022). HERVs amplifies this damage by disrupting

mitochondrial function. For instance, ERVWE1, through

interaction with CPEB1, downregulates NDUFV2 expression,

leading to mitochondrial complex I defects in SH-SY5Y

neuroblastoma cells, contributing to neuronal dysfunction in

recent-onset schizophrenia (Xia et al., 2021). ERVWE1

upregulates circ_0001810 through AK2 activation, disrupting

mitochondrial membrane potential and mitochondrial dynamics,
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which further compromises neuronal function (Li W. et al., 2024).

Additionally, Some researchers suggested that micromitophagy

may be involved in schizophrenia pathophysiology, possibly

influenced by viral infections that induce mitochondrial

autophagy. Specifically, ERVWE1 inhibited micromitophagy by

increasing NADPH oxidase activator 1 (NOXA1) expression,

which in turn decreases the expression of key micromitophagy-

related genes, PTEN-induced kinase 1 (PINK1) and Parkin, and

reduces the production of PDHA1-positive TOM20-negative

mitochondrial derived vesicles (MDVs) (Zhang et al., 2025).

These findings suggest that HERVs-induced inflammation forms

a critical link between genetic and environmental risk, with

bidirectional feedback loops (Kury et al., 2018). However, some

studies report weak associations between systemic inflammation

and HERV-W expression, possibly due to nonacute disease stages

or limited sample sizes(Sara Coelho Rangel et al., 2024).
5.2 HERVs disruption of neurotransmitter
systems and synaptic function

HERVs also disrupt neurotransmitter systems and neuronal

function. In mice, hippocampal HERV-W env overexpression

during development impairs the glutamatergic system, inducing

psychosis-related behaviors in adulthood (Johansson et al., 2020).

Similarly, HERV-W env enhances dopamine receptor d2 (DRD2)

signaling via the protein phosphatase 2A (PP2A)/protein kinase B

(AKT1)/glycogen synthase kinase 3(GSK3) pathway, leading to

dopaminergic hyperactivity (Yan et al., 2022). HERVs affect

neuronal morphology and function; ERVW-1 reduces

hippocampal neuron density and impairs dendritic spine

morphology in individuals with schizophrenia(W. Yao et al.,

2023), contributing to disease pathogenesis. In serotonergic

neurons, ERVWE1 reduces neuronal complexity and spine

density by upregulating 5-Hydroxytryptamine receptor 1B

(HTR1B) (Wu et al., 2023a). Conversely, HERV-W env can

activate neurons by reducing 5-HT4Rs, thereby activating small

conductance calcium-activated potassium channel 2(SK2) channels,

suggesting a novel mechanism for neuronal activity modulation

(Wu, Yan, et al., 2023). Collectively, HERVs contribute to a

complex neurotoxicity network in schizophrenia by disrupting

neurotransmitter balance and impairing neuronal structure.
5.3 HERVs’ regulation of epigenetic
networks and schizophrenia risk genes

A series of inflammatory responses in the brain may be

associated with the aberrant expression of ERVs resulting from

the loss of epigenetic co-repressor proteins, such as Trim28

(Jonsson et al., 2021). Numerous psychiatric disorders, including

schizophrenia, are recognized as outcomes of neurodevelopmental

alterations (Bale et al., 2010; Horwitz et al., 2019). The interplay

between genetic predispositions and environmental exposures

contributes significantly to the onset and progression of these
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disorders, highlighting the critical role of epigenetic modifications

in disease processes (Khashan et al., 2008). During early

development , ERVs are dynamical ly s i lenced at the

transcriptional level through epigenetic modifications, including

histone methylation and deacetylation as well as DNA methylation

(Rowe et al., 2010). These repressive mechanisms collectively

suppress ERV expression in somatic tissues. Research has

indicated that the link between aberrant ERV expression and

inflammatory responses in the brain is associated with the loss of

Trim28, an epigenetic co-repressor protein. In proliferating neural

progenitor cells (NPCs), ERV expression is subject to dynamic

regulation dependent on H3K9me3 histone methylation, whereas in

cortical neurons of adult mice, Trim28 deficiency leads to elevated

ERV expression, accompanied by microglial activation and

accumulation of inflammatory proteins (Jonsson et al., 2021).

Furthermore, the accumulation of misfolded proteins and the

disruption of protein homeostasis can induce endoplasmic

reticulum (ER) stress, triggering the unfolded protein response

(UPR). ER stress impairs neuroplasticity (Kawada et al., 2014)

and is closely associated with metabolic dysregulation in

individuals with schizophrenia (Hong et al., 2022; Zhou et al.,

2022). Evidence suggests that ERVW-1 downregulates GANAB

expression in SH-SY5Y neuroblastoma cells, activating the ATF6-

mediated unfolded protein response, which upregulates CHOP and

XBP1s, thereby inducing ER stress and impairing protein

homeostasis in recent-onset schizophrenia (Xue et al., 2023).

Moreover, HERVs activation influences the expression of

schizophrenia risk genes through epigenetic modifications, with

evidence suggesting that HERV-mediated transcriptional changes

are associated with altered DNA methylation (Chen et al., 2018;

Duarte et al., 2024). A human-specific HERV insertion

(hsERV_PRODH) serves as an enhancer for the schizophrenia-

linked gene PRODH, upregulating its expression via low

methylation and SOX2 binding, underscoring the role of HERV

in epigenetic and transcriptional regulation (Suntsova et al., 2013).

Under physiological conditions, HERVs are silenced by DNA

methylation and histone modifications to prevent genomic

instability and aberrant immune activation (Geis and Goff, 2020).

HERV LTRs serve as sense or antisense promoters (Cohen et al.,

2009), regulate host gene expression (Dunn et al., 2006), and drive

long noncoding RNAs (e.g., vlincRNAs) that influence pluripotency

and tumorigenesis (St Laurent et al., 2013). A full-length HERV-W

LTR in the gamma-aminobutyric acid type B receptor 1(GABBR1)

regulatory region may induce hypermethylation, downregulating

GABBR1 expression (Hegyi, 2013), which is consistent with DNA

methyltransferase 1 (DNMT1) overexpression in GABAergic

interneurons and reelin promoter hypermethylation in

schizophrenia (Grayson et al., 2005; Veldic et al., 2003).

Collectively, these methylation-mediated mechanisms highlight

the multifaceted role of HERVs in modulating schizophrenia risk

genes. Beyond DNA methylation, HERVs also modulate risk gene

expression via post-translational phosphorylation pathways,

integrating signaling cascades that further dysregulate neuronal

function. In U251 glioma cells, HERV-W env overexpression

upregulated BDNF via glycogen synthase kinase 3 beta(GSK3b)
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Ser9 phosphorylation (Qin et al., 2016). Similarly, HERV-W env

regulates schizophrenia risk genes through phosphorylation-related

pathways, activating cAMP response element-binding protein

(CREB) phosphorylation to upregulate the expression of the small

conductance Ca2+-activated K+ channel gene (KCNN2) in human

neuroblastoma cells, thereby modulating neuronal excitability and

synaptic signaling (Li et al., 2013). This CREB-dependent

mechanism may synergize with GSK3b-mediated pathways, as

HERV-W env also enhances CREB phosphorylation to upregulate

BDNF and dopamine receptor D3 (DRD3), contributing to

excitatory-inhibitory imbalances in schizophrenia (Huang et al.,

2011). BDNF, a neurotrophin critical for neuronal survival,

migration, differentiation, and synaptic plasticity (Guo et al.,

2010), is regulated by DISC1, a schizophrenia risk gene

modulated by HERV-W env through calcium-dependent

Transient receptor potential canonical 3(TRPC3) channel

activation (Chen et al., 2018). The DISC1-GSK3b-BDNF axis may

mediate the pathological effects of HERVs.

In summary, the molecular mechanisms underlying HERVs

involvement in schizophrenia reveal a multifaceted interplay of

immune-mediated neuroinflammation, programmed cell death,

neurotransmitter dysregulation, and epigenetic modulation of risk

genes, collectively bridging genetic vulnerabilities with

environmental triggers to perpetuate synaptic dysfunction and

neurodevelopmental deficits. These insights not only underscore

HERVs’ potential as biomarkers, but also highlight opportunities

for targeted therapies.
6 HERVs as mediators of
schizophrenia risk factors

The risk factors for schizophrenia include genetic

predispositions, infections, and social stressors (Davis et al.,

2016). The ‘viral hypothesis’ posits that prenatal/perinatal or

postnatal viral infections, or immune responses to them, impair

brain maturation, leading to psychotic symptoms in adolescence

(Canuti et al., 2015a). Supporting evidence includes elevated

maternal IL-8 levels linked to the risk of schizophrenia in

offspring (Brown et al., 2004) and a 5–8% increased risk for

individuals born in winter/spring, when infections are prevalent

(O’Callaghan et al., 1991). Persistent or reactivated dormant viral

infections during adolescence may also contribute (Kotsiri et al.,

2023). HERVs, as retroviruses, may directly contribute to

schizophrenia or be activated by other viruses, such as influenza

or herpes simplex virus type 1, which upregulate HERV-W env

transcription (Nellaker et al., 2006; Ruprecht et al., 2006). Influenza

infection activates ERVWE1 by increasing Glial cells missing

homolog 1(GCM1) transcription and reducing repressive histone

marks (H3K9me3)(F. Li et al., 2014), whereas SARS-CoV-2

upregulates HERV-W env in lymphoid cells (Charvet et al.,

2023), highlighting the role of HERVs as a bridge in virus-

mediated schizophrenia pathogenesis.

Environmental stressors also stimulate HERVs expression.

HERV-W env antigenemia is significantly more common in
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individuals with schizophrenia and correlated with childhood

trauma, suggesting that early adversity is a trigger for HERV

reactivation (Tamouza et al., 2021). Pharmacological agents, such

as caffeine and aspirin, increase HERV-W env and gag expression in

SH-SY5Y neuroblastoma cells (Liu et al., 2013). However, some

studies argue that HERVs activation directly contributes to disease

causation, not merely as a compensatory or environmentally

triggered response. A TWAS of the dorsolateral prefrontal cortex

identified 163 significant risk expression traits in schizophrenia,

with 15 (9%) HERVs-related traits, including 9 upregulated and 6

downregulated features associated with genetic risk (Duarte et al.,

2024). Thus, HERVs may directly contribute to schizophrenia risk

or act as a bridge between genetic and environmental factors,

emphasizing their critical role in the complex etiology of

this disease.
7 Discussion

HERVs are emerging as key players in schizophrenia, with

clinical evidence, molecular mechanisms, and risk factor

associations highlighting their importance. Mounting evidence

from numerous studies has demonstrated aberrant HERVs

expression, particularly of HERV-W and HERV-K expression, in

the peripheral blood, cerebrospinal fluid, and brain tissues of patients

with schizophrenia, with elevated env and gag transcripts frequently

observed in these patients compared with healthy controls. These

findings position HERVs as potential biomarkers for schizophrenia

diagnosis and prognosis, particularly in first-episode and acute-phase

patients. Moreover, HERVs activation interacts with environmental

factors, such as viral infections, childhood trauma, and

pharmacological interventions, underscoring their role as a nexus

between genetic and environmental risk. HERVs contribute to

schizophrenia pathogenesis through neuroinflammatory pathways,

neurotoxicity, and the dysregulation of risk genes (e.g., BDNF,DISC1,

PRODH) via epigenetic and transcriptional mechanisms. Notably,

HERV-W env-mediated activation of the TLR4/MyD88 pathways

and its impact on glutamatergic and dopaminergic signaling highlight

their multifaceted role in neuroinflammation, synaptic dysfunction,

and neuronal apoptosis.

Despite these advances, challenges persist in elucidating the

precise roles of HERVs. Inconsistent findings, potentially

attributable to variations in sample types (e.g., blood vs. CSF),

disease stages (e.g., FES vs. MES), and methodological differences,

underscore the need for standardized HERV-specific assays.

Whether HERVs activation is a cause or consequence of

schizophrenia remains unresolved, with evidence suggesting

bidirectional feedback loops involving inflammation and

epigenetic dysregulation. Small sample sizes and patient

heterogeneity limit statistical power, necessitating larger,

longitudinal studies to track HERVs expression across disease

stages and correlate it with clinical phenotypes and biomarkers

(e.g., cytokines and neurotransmitter metabolites).
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Future research should leverage advanced sequencing

technologies, such as long-read and single-cell RNA sequencing,

to map HERVs expression at specific genomic loci and cell types,

potentially identifying novel therapeutic targets. Preclinical studies

targeting HERV-W env, inspired by monoclonal antibodies such as

temelimab in multiple sclerosis, could inform similar interventions

in schizophrenia. Correlating HERVs expression with epigenetic

markers (e.g., DNA methylation and histone modifications) may

elucidate regulatory mechanisms and facilitate the development of

biomarker panels for early diagnosis. Additionally, investigating the

effects of exploring environmental triggers (e.g., infections and

stress) on HERVs activation could clarify gene-environment

interactions, guiding preventive strategies.

In conclusion, HERVs represent a critical intersection of

genetic, epigenetic, and environmental factors in schizophrenia,

offering a unique lens through which to investigate its complex

etiology. Addressing methodological inconsistencies, expanding

cohort studies, and leveraging cutting-edge genomic tools will be

essential to unravel the pathomechanisms of HERVs and translate

these insights into actionable targets for innovative diagnostics and

therapies in schizophrenia management.
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