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Malaria associated anemia is increasingly recognized as a consequence not only

of red cell destruction but of profound, parasite driven disruption of

erythropoiesis within the bone marrow niche. Here, we synthesize recent in

vitro, ex vivo, clinical and postmortem studies to construct a unified mechanistic

framework in which four interlocking pathways converge to produce

dyserythropoiesis. First, a cytokine storm dominated by IL-6, TNF-a, IFN-g and
MIF suppresses erythropoietin synthesis, upregulates hepcidin and diverts

erythroid progenitors toward myeloid fate via destabilization of GATA-1.

Second, hemozoin crystals catalyze Fenton chemistry and lipid peroxidation,

generating 4-hydroxynonenal adducts that cripple GATA-1 and trigger

mitochondrial apoptosis of erythroblasts. Third, Plasmodium parasites

preferentially infect orthochromatic erythroblasts, prolonging a 10-day

gametocyte maturation cycle beyond the host’s 3–4-day enucleation window

and releasing extracellular vesicles that arrest terminal differentiation. Fourth,

hemozoin-ladenmacrophages remodel erythroblastic islands, precipitating local

iron restriction and sustained oxidative stress. Together these processes create a

“developmental sanctuary” that favors parasite persistence while crippling host

erythropoiesis. We also highlight emerging single-cell and spatial-omics

technologies, together with 3-D bone-marrow organoids, as platforms for

dissecting spatiotemporal parasite–host interactions and for testing niche-

targeted therapies aimed at reversing ineffective erythropoiesis.
KEYWORDS

malaria, anemia, dyserythropoiesis, ineffective erythropoiesis, bone marrow niche,
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1 Introduction

Malaria, a major parasitic disease threatening global public health security, exhibits

pathological complexity not only in the systemic inflammatory response during acute

infection but also in the long-term impact of chronic anemia on patient quality of life.

According to the World Health Organization’s 2024 World Malaria Report, there were an

estimated 263 million malaria cases globally in 2023, with approximately 597,000 malaria-

related deaths (Venkatesan, 2025). Severe anemia, a critical complication resulting from red
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blood cell destruction, significantly contributes to malaria’s severity

and mortality, particularly in high-transmission regions. Children

under five years of age and pregnant women represent particularly

vulnerable groups. In high-transmission areas, malaria is one of the

most common indications for blood transfusion, yet transfusion

thresholds in severe malaria management remain uncertain

(Ackerman et al., 2020). Although artemisinin-based combination

therapies (ACTs) have significantly reduced acute-phase mortality,

clinical observations reveal that a subset of patients experience

persistent anemia even after parasite clearance (Eastman and

Fidock, 2009; Fernandez-Arias et al., 2016; Ndour et al., 2017).

Classical theories attribute malarial anemia to three primary

mechanisms: direct parasite lysis of infected red blood cells (RBCs);

splenic hyper-removal of uninfected RBCs with impaired

deformability and disturbances in iron metabolism coupled with

insufficient erythropoietin (EPO) synthesis due to chronic

inflammation (Looareesuwan et al., 1991; Dondorp et al., 1999).

However, this framework is increasingly challenged by new evidence.

For instance, The deposition of malaria pigments (hemozoin) in the

bone marrow directly induces apoptosis of erythroid precursors and

is significantly associated with ineffective erythropoiesis and

dyserythropoiesis in bone marrow (Casals-Pascual et al., 2006;

Lamikanra et al., 2009; Aguilar et al., 2014), while iron kinetic

studies demonstrate that the decline in hemoglobin synthesis rate

precedes RBC destruction (Pathak and Ghosh, 2016). Thus,

ineffective erythropoiesis and dyserythropoiesis may be potential

core drivers of malaria anemia, while the bone marrow is a

“hidden battlefield”. Substantial progress in understanding malaria

pathogenesis has stemmed from meticulous characterization of the

bone marrow microenvironment. Intravital imaging confirms that

immature P. falciparum gametocytes and P. vivax asexual/sexual

stages colonize the bone marrow, forming a significant reservoir

(Joice et al., 2014; Baro et al., 2017; De Niz et al., 2018). Single-cell

transcriptomics in murine models reveal dysregulation of erythroid

transcriptional networks (e.g., GATA1) in infected progenitors,

contributing to impaired erythropoiesis (Silva-Filho et al., 2020).

Additionally, parasite metabolites (e.g., hemozoin) and inflammatory

cytokines (TNF-a, IFN-g) disrupt hematopoietic niche function,

triggering microenvironmental remodeling (Silva-Filho et al., 2020).

The regulatory role of host genetic background in anemia

susceptibility cannot be overlooked. Polymorphisms in the ABO

and Duffy blood group systems significantly influence disease

progression: individuals with blood group O exhibit reduced

P. falciparum PfEMP1-mediated cytoadhesion due to the absence

of A/B antigens (Degarege et al., 2019), while Duffy antigen-

negative populations (common in individuals of African descent)

display innate resistance to P. vivax infection (Baird, 2022). Since

blood group influences malaria susceptibility, the anemia status of

individuals with different blood groups after contracting malaria

may vary. This may also suggest that blood group molecules could

potentially impact erythropoiesis. However, changes in the

expression of blood group molecules might merely be a

downstream manifestation of altered erythropoiesis. Overall, the

pathology of malaria anemia may result from the interplay of host

genetics, parasite virulence, and microenvironmental remodeling.
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This mini-review aims to elucidate the bone marrow

pathogenesis of malarial anemia, focusing on three core questions:

1) How parasites disrupt erythropoiesis through direct infection and

paracrine effects; 2) How the inflammatory microenvironment and

oxidative stress synergistically disrupt hematopoietic homeostasis;

and 3) Prospects for developing novel therapeutic strategies targeting

bone marrow pathways. By integrating clinical data, molecular

biology evidence, and innovative model systems (e.g., bone marrow

organoids), this study will provide a theoretical foundation for

reversing ineffective erythropoiesis.
2 Cytokine-mediated suppression of
erythropoiesis

To control parasitemia, host immune cells release a cascade of

pro-inflammatory and anti-inflammatory cytokines, chemokines,

growth factors, and other mediators. While these immune

responses confer host protection, in this inflammatory state,

multiple factors simultaneously suppress erythropoiesis by

interfering with erythroid progenitor differentiation, disrupting

iron metabolism homeostasis, and altering the hematopoietic

microenvironment, thereby exacerbating anemia.

During the early stages of malaria, the cytokine IL-6 plays a

protective role, stimulating the acute phase response and supporting

immune cell differentiation (Gowda andWu, 2018). Peripheral blood

mononuclear cells (PBMCs) are likely the primary source of IL-6

during acute malaria (Aubouy et al., 2002). Studies in murine models

indicate that interleukin-6 (IL-6) mediates protective immunity

against the pre-erythrocytic stage of malaria by inducing

interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a), and
enhances specific immunoglobulin G (IgG) antibodies to control

blood-stage parasitemia during the erythrocytic phase (Pied et al.,

1992). However, as the disease progresses, persistently elevated levels

of IL-6, IL-1b, and others lead to systemic inflammation (Obeagu,

2024). Research in malaria infection models reveals that IL-6

regulates iron metabolism homeostasis through a dual mechanism:

on one hand, it induces hepatic hepcidin synthesis via the JAK2-

STAT3 pathway, resulting in decreased serum iron concentration

(Wrighting and Andrews, 2006); on the other hand, it directly

suppresses renal erythropoietin (EPO) expression (Jelkmann, 1998).

Furthermore, elevated serum IL-6 levels in malaria patients positively

correlate with anemia severity (Lyke et al., 2004).

Beyond IL-6, IL-1b also plays a crucial role in suppressing

erythropoietic differentiation. This cytokine promotes PU.1

expression by activating the NLRP3 inflammasome (Pietras et al.,

2016), while simultaneously disrupting the erythroid-myeloid

differentiation balance through caspase-1-mediated proteolysis of

GATA-1 (Tyrkalska et al., 2019). Indeed, similar to TNF-a, IL-1b
promotes the acute inflammatory response at the onset of

malaria infection, providing a first line of defense against invading

pathogens (Penha-Goncalves, 2019). For example, IL-1b can synergize

with IL-1a and TNF-a to enhance nitric oxide (NO) and IFN-g
production in murine malaria models (Rockett et al., 1994). However,

sustained high-level production of IL-1b can induce anemia, a
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phenomenon also documented in numerous other disease models

beyond malaria (Pascual et al., 2005).

Members of the interferon family, particularly IFN-g, play a

prominent role in inflammation-associated anemia. Plasmodium

parasites and their byproducts, such as hemozoin, can amplify a

robust inflammatory response by increasing TNF-a and IFN-g
(Giribaldi et al., 2004; Jaramillo et al., 2004). While these

inflammatory mediators stimulate monocyte/macrophage activation

and help control parasitemia during the early infection phase

(Kremsner et al., 1995), substantial evidence confirms that their

persistent overproduction can also significantly suppress

erythropoiesis (Miller et al., 1989; Felli et al., 2005). IFN-g promotes

myeloid differentiation via the IRF1/PU.1 axis (Libregts et al., 2011). In

TLR9-driven models of hemophagocytic lymphohistiocytosis (HLH),

this cytokine not only suppresses bone marrow erythropoiesis but also

limits compensatory splenic erythropoiesis (Canna et al., 2013).

Macrophage migration inhibitory factor (MIF) plays a distinct

role in parasite infection-associated anemia. The malarial metabolite

hemozoin induces monocytes to release MIF, which exerts synergistic

inhibitory effects with TNF and IFN-g (Martiney et al., 2000;

McDevitt et al., 2015). Furthermore, parasite-secreted MIF

homologs may amplify the suppression of uninfected erythroid

progenitors (Ghosh et al., 2019). Additionally, studies show

that MIF inhibits erythropoietin-dependent erythroid colony

formation, as well as colony formation derived from multipotential

(CFU-GEMM) and granulocyte-macrophage (CFU-GM) progenitor

cells (Martiney et al., 2000; Chaiyaroj et al., 2004). It has been also

demonstrated in murine studies that compared to wild-type controls,

MIF-knockout mice infected with malaria develop less severe anemia,

exhibit improved erythroid progenitor development, and display

higher survival rates (McDevitt et al., 2006).
3 Oxidative damage effects of
hemozoin

Hemozoin (Hz), a dark brown crystalline substance, is formed

when malaria parasites detoxify toxic heme into insoluble b-hematin

crystals during hemoglobin digestion within infected erythrocytes.

Following erythrocyte invasion, Plasmodium parasites extensively

ingest host hemoglobin, transport it to acidic digestive vacuoles for

proteolytic degradation, and polymerize liberated heme into Hz via

biomineralization. Clinical studies demonstrate that plasma Hz levels

correlate significantly with anemia severity and reticulocyte suppression

in malaria patients (Aguilar et al., 2014), while in vitro exposure to Hz

directly inhibits erythropoiesis (Giribaldi et al., 2004; Skorokhod et al.,

2010). Crucially, Hz accumulates in the bone marrow niche where it

inflicts direct damage on erythroid hematopoiesis primarily through

induction of oxidative stress and lipid peroxidation cascades.
3.1 Iron-mediated ROS generation and
cellular consequences

The iron-rich crystalline lattice of Hz catalyzes robust Reactive

Oxygen Species (ROS) production via Fenton chemistry (Schwarzer
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et al., 2003; Dumarchey et al., 2022). Studies have shown bone

marrow Hz burden correlates positively with anemia severity in

patients (Casals-Pascual et al., 2006; Aguilar et al., 2014).

Experimental models confirm that Hz-exposed macrophages and

erythroid precursors exhibit markedly elevated ROS levels, resulting

in membrane lipid peroxidation, mitochondrial dysfunction, and

direct suppression of erythroid progenitor proliferation and

differentiation (Jaramillo et al., 2003; Shio et al., 2009; Cambos

et al., 2010; Barrera et al., 2011). This oxidative milieu further

activates pro-apoptotic pathways (notably caspase-3) to induce

erythroblast apoptosis (Lamikanra et al., 2009; Skorokhod et al.,

2010). Importantly, Hz-induced oxidative stress may trigger

mitochondrial dysfunction, as elevated ROS levels are known to

disrupt mitochondrial integrity in other pathological contexts

(Zorov et al., 2014). This could potentially initiate a cycle of

amplified oxidative damage and depletion of antioxidants such as

glutathione (GSH) (Kotepui et al., 2023), though direct evidence

linking Hz to mitochondrial electron transport chain disruption

remains limited.
3.2 4-Hydroxynonenal as a cytotoxic
effector

Hz-triggered peroxidation of polyunsaturated fatty acids

(PUFAs) non-enzymatically generates 4-hydroxynonenal (4-HNE),

a highly reactive lipid peroxidation end-product (Miller et al., 2005;

Skorokhod et al., 2005). In vitro studies reveal that even low

concentrations of 4-HNE potently inhibit BFU-E and CFU-E

colony formation independently of apoptosis induction (Giribaldi

et al., 2004; Skorokhod et al., 2010). Instead, 4-HNE imposes G0/G1

cell cycle arrest in erythroid progenitors and downregulates

expression of GATA-1—a master transcriptional regulator of

erythropoiesis—through covalent modification of its DNA-binding

domain (Skorokhod et al., 2010). This dual action disrupts

hemoglobin synthesis and terminal erythroid maturation.

Mechanistically, 4-HNE-adducted GATA-1 suffers impaired DNA-

binding affinity and accelerated proteasomal degradation, thereby

crippling erythroid differentiation programs.
3.3 Immunomodulatory amplification of
erythropoietic suppression

Beyond direct cytotoxicity, Hz indirectly exacerbates anemia by

stimulating pro-inflammatory cytokine production (Shio et al., 2010).

Notably, natural Hz (containing adsorbed parasite DNA and proteins)

usually exhibits stronger immunomodulatory activity than synthetic

Hz due to its parasite-derived nucleic acids and protein complexes.

Evidence shows that natural Hz can synergistically induces robust

secretion of IL-6, TNF-a, and IFN-g from immune cells (Martiney

et al., 2000; Jaramillo et al., 2004; Thawani et al., 2014; Banesh et al.,

2022). In contrast, synthetic Hz lacking parasite-derived components

exhibits minimal immunogenicity (Thawani et al., 2014). Incidentally,

it is suggested that the inflammation status induced by natural Hz is

likely to be mediated by activating Toll like receptor 9 (TLR9)
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(Parroche et al., 2007). Recent studies using human iPSC-derived

cerebral malaria models further demonstrate that natural Hz

enhances secretion of IFN-g, IL-1b, IL-8, and IL-16, collectively

exacerbating inflammatory anemia (Pranty et al., 2024).

4 Direct parasite infection and
transcriptional reprogramming

Invasion of bone-marrow erythroid precursors by malaria

parasites has emerged as a critical intra-medullary driver of

malarial anemia. Using ex-vivo cultures, Tamez and colleagues first

showed that the parasite preferentially infects orthochromatic

erythroblasts, whereas polychromatic erythroblasts exhibit only

sporadic, low-level invasion (Tamez et al., 2009). Microarray

profiling revealed that infected orthochromatic cells display altered

expression of 609 genes—570 of which are up-regulated—with

significant enrichment of NRF2-mediated oxidative-stress pathways

and heat-shock proteins (Tamez et al., 2011). Subsequent RNA-seq

analyses corroborated the activation of oxidative-stress and

mitochondrial-dysfunction pathways, indicating that the parasite

re-programmes host metabolism and stress responses to support its

own development (Feldman et al., 2023). Co-culture experiments

further demonstrated that polychromatic erythroblasts exposed to

malaria parasites up-regulate GDF15 (Tamez et al., 2011), a cytokine

known to suppress hepcidin and thereby exacerbate ineffective

erythropoiesis (Tanno et al., 2007; Guimaraes et al., 2015).

Systematic autopsy studies employing dual immunohistochemistry

for pLDH and Pfs16 identified the extravascular niche of the bone

marrow as the principal site for immature gametocyte sequestration

and maturation, with gametocyte fractions reaching 44.9%—far

exceeding those in brain (4.8%) or spleen (1.3%) (Joice et al., 2014).

Neveu and co-workers (Neveu et al., 2020) subsequently

demonstrated that immature gametocytes require approximately

ten days to complete stages I–IV within erythroblasts, markedly

surpassing the host’s normal enucleation timeline and thus delaying

terminal differentiation. Moreover, parasite-infected erythroblasts

release extracellular vesicles that elicit oxidative stress and inhibit

reticulocyte release (Neveu et al., 2020; Ben Ami Pilo et al., 2022).

Collectively, malaria infection establishes a “developmental

sanctuary” within the bone marrow by directly infecting terminally

committed erythroblasts and deploying paracrine modulators;

through transcriptional reprogramming, oxidative-stress signaling is

activated and the cell cycle is arrested, thereby disrupting

erythropoiesis. Notably, Plasmodium infection also profoundly

remodels the expression profile of erythroid blood group antigens

(Liu and Li, 2024). The EMP3 antigen (Blood Group System 41),

whose normal expression is critical for enucleation during terminal

erythropoiesis (Thornton et al., 2020), shows aberrant regulation

following infection. This dysregulation likely contributes to observed

enucleation defects in malaria patients, evidenced by morphological

abnormalities in blood smears such as nuclear budding, inter-nuclear

bridges, and multinucleated erythroblasts (Brito et al., 2022). This

phenomenon may partially explain the impaired reticulocyte

production characteristic of malarial anemia.
Frontiers in Cellular and Infection Microbiology 04
5 Host- and context-dependent
heterogeneity in malaria-associated
dyserythropoiesis

It should be noted that the mechanisms underlying malaria-

induced anemia differ according to host age, nutritional status and

clinical contexts, with the relative contribution of each factor

mentioned above varying markedly.

In malaria-endemic regions, children under five years of age are

likely to experience dyserythropoiesis driven chiefly by

inflammatory cytokines such as IL-6, TNF-a and IFN-g. Their
still-maturing immune systems mount vigorous yet poorly

regulated pro-inflammatory cascades (Simon et al., 2015) that

rapidly suppress erythropoietin synthesis and disrupt the stability

of the “master” erythroid transcription factor GATA-1. Moreover,

compared with adults, these children possess fewer memory

lymphocytes, are more susceptible to infection, and rely more

heavily on innate immune responses during the initial phase of

infection. A recent study of Malian children corroborates this

hierarchy: in 1–5-year-olds, gene expression signatures are

dominated by type I interferon, TLR and NLR innate pathways,

with minimal T-cell memory signatures, and the proportion of

neutrophils rises steeply with parasite density (Tebben et al., 2024).

By contrast, older children and adults subjected to repeated low-

density parasitemias accumulate hemozoin within splenic and

marrow macrophages; persistent oxidative stress then fuels the

progressive build-up of lipid-peroxidation products such as 4-

HNE, which potently inhibit GATA-1. Consequently, anemia can

persist long after peripheral parasitemia has been cleared.

When the host is chronically undernourished, deficiencies in iron,

folate or vitamin B12 directly limit hemoglobin synthesis and

erythroblast proliferation (Kassebaum et al., 2014). Concurrently, the

acute inflammatory response inmalaria rapidly elevates hepcidin levels,

blocking intestinal iron absorption and macrophage iron recycling

(Camaschella, 2019), thereby exacerbating functional iron deficiency

and preventing effective erythroid expansion even under EPO

stimulation. Moreover, hemoglobinopathies such as sickle cell disease

(SCD) or a/b-thalassemia not only alter red-cell susceptibility to

Plasmodium but also modify the marrow’s “starting burden” and

“proliferative ceiling.” (Lelliott et al., 2015) When superimposed on

the marrow-suppressive signals of malaria, these conditions can rapidly

progress to transfusion-dependent severe anemia (Henrici et al., 2021;

Uyoga et al., 2022).

The above factors, such as malnutrition, a/b-thalassemia and

SCD, are all distinctly distributed geographically. TheMediterranean-

Middle East-South Asia belt is dominated by thalassemia (Tuo et al.,

2024), whereas sub-Saharan Africa has the highest prevalence of SCD

(Collaborators GBDSCD, 2023). The degree of protection provided

by these haemoglobinopathies and their genotypes (homozygous and

heterozygous) differs substantially (Taylor et al., 2012). Additionally,

the geographic distribution of plasmodium species also differs:

Plasmodium falciparum predominates in sub-Saharan Africa and

causes earlier and more severe anemia, while Plasmodium vivax is

widespread across Asia-Pacific and the Americas and is associated
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with comparatively milder anemia (Weiss et al., 2025). Therefore,

only by integrating the local composite etiologic profile and the

prevailing parasite species can precise bone-marrow-targeted

interventions be designed.
6 Future perspectives

The mechanisms underlying malaria-induced dyserythropoiesis

are summarized in Figure 1. Despite significant progress in

elucidating the pathogenesis of malarial anemia, critical scientific

questions remain unresolved. Integration of single-cell technologies

with spatial transcriptomics, combined with artificial intelligence-

driven multi-omics analysis (e.g., deep learning), holds promise to

elucidate the spatiotemporal dynamics of erythropoietic blockade.

Spatial transcriptomics preserves tissue spatial conformation,

overcoming the technical limitations of single-cell RNA

sequencing by enabling single-cell-resolution mapping of parasite-

induced transcriptional gradients in the bone marrow

microenvironment. Furthermore, the integration of three-
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techniques may enable real-time observation of parasite

colonization dynamics and host-pathogen interactions within the

hematopoietic niche. With advancements in biotechnology, the

application of these novel methods and experimental approaches

enables further exploration of metabolic dormancy mechanisms in

the bone marrow microenvironment and bidirectional

signaling between parasites and erythroblasts or other stromal

cells. This will deepen our understanding of erythropoietic

dysfunction and anemia in malaria. Additionally, ligand-trap

agents such as luspatercept (TGF-b/activin inhibition, facilitating

late-stage erythroid differentiation) (Martinez et al., 2020; Santini

and Consagra, 2025), BRAF inhibitors that treat anemia

through activation of MAPK signaling (Wu et al., 2024), and low-

cost host-defense peptides with anti-inflammatory properties

(e.g., IDR-1018) (Achtman et al., 2012) warrant systematic

evaluation as adjunctive therapies for malaria-associated anemia,

given their established erythropoietic or anti-inflammatory

efficacy in other contexts; such studies may yield unforeseen

clinical benefits.
FIGURE 1

Schematic summary of malaria-induced dyserythropoiesis. EBI, The erythroblastic island; ProE, proerythroblast; BasoE, basophilic erythroblast; PolyE,
polychromatophilic erythroblast; OrthoE, orthochromatic erythroblast.
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