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Beyond viral suppression:
decoding the mitochondrial-
immune axis in HIV-associated
inflammation and
immune dysfunction
Tracy Okine, Eleanor Hill , Kate Sheran and Talia H. Swartz*

Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai,
New York, NY, United States
Antiretroviral therapy (ART) has transformed HIV into a chronic, manageable

condition, yet people living with HIV (PLWH) continue to experience persistent

immune activation and systemic inflammation that drive long-term comorbidities,

including neurocognitive impairment and cardiovascular disease. This residual

inflammation requires new mechanistic explanations and targeted therapeutic

approaches. Increasing evidence highlights mitochondria as central hubs in the

regulation of cellular metabolism and immune responses. In PLWH, both HIV and

ART disrupt mitochondrial function, leading to the release of proinflammatory

mediators such as reactive oxygen species (ROS) and oxidized mitochondrial DNA

(mtDNA). These signals activate the NLRP3 inflammasome, resulting in secretion of

IL-1b and other cytokines. In parallel, excess mitochondrial ATP engages purinergic

receptors such as P2X1 and P2X7, propagating inflammatory signaling to

surrounding immune cells. This review examines the mito–immune axis in HIV,

focusing on OxPhos dysregulation, inflammasome activation, and purinergic

receptor signaling, and explores potential interventions—including purinergic

antagonists—that aim not only to suppress viral replication but also to restore

immunometabolic balance. By recognizing mitochondria as dynamic regulators of

immune function, we outline a paradigm shift in HIV treatment that addresses the

underlying drivers of chronic inflammation.
KEYWORDS
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1 Introduction

HIV infection results in progressive immune dysfunction characterized by chronic

inflammation, immune activation, and gradual loss of CD4+ T cells (Deeks et al., 2013; Ellis

et al., 2021). If untreated, this trajectory culminates in acquired immunodeficiency

syndrome (AIDS), with profound susceptibility to opportunistic infections. ART has

dramatically altered this natural history, effectively suppressing viral replication and
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reducing AIDS-related mortality (Maagaard and Kvale, 2009;

McComsey et al., 2013). However, even among individuals with

durable viral suppression, residual immune activation and systemic

inflammation persist (Deeks et al., 2013; Ellis et al., 2021). These

abnormalities are influenced by ongoing low-level viral activity, the

legacy of immune damage, co-infections, microbial translocation,

and ART-associated toxicity (Feeney et al., 2012; Mikaeloff et al.,

2023). Early studies demonstrated that massive depletion of CD4+ T

cells in the gastrointestinal tract drives epithelial barrier dysfunction

and microbial translocation, which in turn fuel chronic immune

activation (Brenchley et al., 2004).

A growing body of evidence suggests that mitochondrial

dysfunction plays a crucial role in contributing to this inflammatory

environment (Valle-Casuso et al., 2019; Kallianpur et al., 2020;

Freeman et al., 2023). Once regarded purely as energy-generating

organelles, mitochondria are now understood to act as integrated

platforms for metabolic and immune signaling (Patrick and Watson,

2021). In the context of HIV and ART, mitochondrial dysregulation

can drive chronic inflammation through multiple mechanisms,

including disruption of OxPhos, release of mitochondrial danger

signals, and altered immune cell metabolism. These processes are

linked to long-term complications such as neurocognitive decline, gut

barrier impairment, and cardiovascular disease (Kallianpur et al.,

2020; Ambikan et al., 2022). Defining the mechanisms by which the

mito–immune axis is perturbed in HIV may enable the development

of targeted interventions that address comorbidity risk in PLWH.

Modern HIV treatment relies on combination regimens, most

commonly integrase strand transfer inhibitors (INSTIs) combined

with nucleoside reverse transcriptase inhibitors (NRTIs). Historically,

protease inhibitor (PI)–based regimens and older NRTIs such as

zidovudine and stavudine were widely used but carried greater

mitochondrial toxicity, leading to metabolic complications

(Maagaard and Kvale, 2009; Feeney et al., 2012; McComsey et al.,

2013; Rodriguez et al., 2024). The evolution of these therapeutic

backbones provides important context for interpreting how ART

intersects with HIV-driven metabolic remodeling.
2 OxPhos reprogramming and
dysfunction in HIV

OxPhos is a central mitochondrial pathway for ATP production via

the electron transport chain (ETC). In HIV infection, OxPhos is

reprogrammed. Infected cells, particularly activated CD4+ T cells,

show a consistent shift toward glycolysis and fatty acid oxidation,

accompanied by mitochondrial hyperactivation and accumulation of

reactive oxygen species (ROS), as demonstrated in ex vivo human

lymphoid tissue and animal models (Valle-Casuso et al., 2019; Freeman

et al., 2023; Rodriguez et al., 2024). This reprogramming may fulfill the

elevated biosynthetic and energetic demands of viral replication but also

predisposes mitochondria to stress responses that release ROS and ATP

—two upstream triggers of NLRP3 inflammasome activation (Ekabe

et al., 2021; Guo et al., 2021; Freeman et al., 2023). While the glycolytic
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shift is well-documented, the relative contribution of OxPhos

upregulation versus functional impairment likely varies by cell type,

stage of infection, and ART exposure, underscoring the need for

longitudinal, cell-specific studies in PLWH. HIV also induces

transcriptional changes in ETC components, particularly Complex IV,

which reduce the efficiency of ATP synthesis (Tripathy andMitra, 2010;

Kallianpur et al., 2020). These disruptions contribute to cellular stress

and further sensitize immune cells to inflammasome activation and

functional dysregulation.

Beyond altering cellular energy production, HIV-associated

OxPhos reprogramming modifies mitochondrial membrane

potential, ROS signaling thresholds, and metabolite profiles such as

succinate and citrate—changes that influence inflammasome priming

and cytokine production (Kepp et al., 2011; Hileman et al., 2021).

These bioenergetic alterations may also lower the mitochondrial

reserve capacity, potentially increasing susceptibility to secondary

insults. In PLWH, one such secondary factor is ART exposure,

which can impose distinct, regimen-specific mitochondrial stresses.

The combined effects of viral-induced metabolic remodeling and

ART-associated toxicity can interact to amplify oxidative stress,

disrupt mtDNA maintenance, and accelerate mitochondrial aging,

as discussed in the following section.
3 Antiretroviral therapy–associated
effects on mitochondrial function

While ART has transformed HIV into a chronic, manageable

condition, its effects on mitochondrial health are regimen-dependent.

Older nucleoside reverse transcriptase inhibitors (NRTIs), such as

zidovudine and stavudine, directly inhibit mitochondrial DNA

polymerase g, leading to profound depletion of mtDNA, reduced

synthesis of OxPhos proteins, and impaired respiratory chain

activity. Protease inhibitors (PIs) have been associated with altered

mitochondrial lipid metabolism and additional oxidative stress,

contributing to metabolic complications such as lactic acidosis and

lipodystrophy (Maagaard and Kvale, 2009; Feeney et al., 2012;

McComsey et al., 2013; Mikaeloff et al., 2023). Although modern

integrase inhibitor–based regimens have fewer overt mitochondrial

toxicities, emerging evidence indicates that subtle, chronic effects

persist. These may include modest reductions in mtDNA copy

number, increased markers of oxidative damage, and altered

mitochondrial dynamics, even in the absence of clinical symptoms.

Importantly, these ART-related changes can occur on the background

of HIV-driven metabolic remodeling, creating additive or synergistic

stress on mitochondrial function.

By impairing ATP generation, increasing ROS production, and

promoting mtDNA instability, ART can exacerbate the same

pathways activated by HIV infection, including those that prime

the NLRP3 inflammasome. Understanding how specific ART

components influence mitochondrial bioenergetics is essential for

optimizing therapy in PLWH, particularly those at increased risk

for inflammation-associated comorbidities.
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3.1 Impact on immune cell metabolism

HIV-driven mitochondrial dysfunction also reshapes the

metabolic landscape of key immune cells. CD4+ and CD8+ T

cells, as well as macrophages, undergo metabolic reprogramming

during HIV infection (Castellano et al., 2019; Valle-Casuso et al.,

2019; Alrubayyi et al., 2022; Mikaeloff et al., 2023). For instance, T

cells exhibit impaired OxPhos and increased dependence on

glycolysis, a shift associated with immune exhaustion and

diminished antiviral responses. This metabolic remodeling has

functional consequences. Disruption of OxPhos contributes to the

loss of effector function, impaired immune surveillance, and

sustained inflammation, all of which are hallmarks of chronic

HIV infection (Guo et al., 2021; Ambikan et al., 2022). By

altering how immune cells generate energy and respond to stress,

mitochondrial dysfunction becomes a key driver of HIV

pathogenesis. Together, these insights position the mito-immune

axis as a critical node in understanding the persistent inflammation

seen in HIV. Focusing on this axis, particularly mechanisms like

NLRP3 inflammasome activation, may reveal new therapeutic

targets that extend beyond viral suppression.
3.2 NLRP3 inflammasome and HIV

The NLRP3 inflammasome is a critical node linking

mitochondrial stress to downstream inflammation in HIV

infection. Human tissue studies confirm elevated NLRP3

components and IL-1b in PLWH, but direct causal evidence

connecting NLRP3 activation to specific comorbidities such as

CVD remains limited. Much of the cardiovascular link is inferred

from biomarker associations (IL-6, hsCRP, D-dimer) and animal

models in which NLRP3 inhibition reduces atherosclerotic burden.

Consequently, while NLRP3 is a promising therapeutic target, its

exact contribution to disease progression in treated PLWH is still

being defined.

These cytosolic proteins activate caspases that regulate

inflammation and apoptosis (Ekabe et al., 2021). The NLRP3

inflammasome mediates caspase-1 activation and the secretion of

proinflammatory cytokines IL-1b and IL-18 (Kelley et al., 2019).

During HIV infection, NLRP3 activation contributes to

neuroinflammation in the central nervous system (CNS) and

promotes CD4+ T cell apoptosis (Doitsh et al., 2010; Feria et al.,

2018). Rodent models of HIV associated neurocognitive disorders

(HAND), such as Alzheimer’s disease, bipolar disorder, and

Parkinson’s, further display NLRP3’s role in brain dysfunction

(Torices et al., 2023). In Parkinson’s, elevated IL-1b and CNS

protein inclusions in the gut indicate NLRP3 overactivation

(Pellegrini et al., 2020). Enteric bacteria may further activate

NLRP3, influencing peripheral nervous system (PNS) and CNS

responses. NLRP3-related inflammation is also linked to

cardiovascular disease (CVD) and atherosclerosis in PLWH on

antiretroviral therapy (ART). This risk is associated with elevated

baseline levels of IL-6, hsCRP, and D-dimer, all indicators of bodily

inflammation in PLWH using ART (Duprez et al., 2012). NLRP3
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blockage may reduce IL-1b activity and heart disease progression,

suggesting a correlation between CVD and HIV infection (Duprez

et al., 2012; Bracey et al., 2013). These findings underscore NLRP3’s

role in linking HIV-induced immune activation with systemic

comorbidities, positioning it as a promising therapeutic target.

Reactive oxygen species (ROS) and oxidized mtDNA are critical

modulators of NLRP3 inflammasome activation, linking cellular

stress to HIV-related inflammation. ROS are byproducts of

mitochondrial metabolism and activate NLRP3. ROS from

complexes I and III of the electron transport chain (ETC)

stimulate IL-1b release and interact with kinases such as mitogen-

activated protein kinase (MAPK) and extracellular signal-related

kinases 1 and 2 (ERK1/2) (Kepp et al., 2011). MAPK is a kinase

crucial for transducing signals from the outside of the mitochondria

to the inside, including mediating cytokines such as TNF-alpha and

IL-10, increasing ROS production, and decreasing the activity of

antioxidant enzymes (Dhingra et al., 2007). This results in increased

oxidative stress, modulated by ERK1/2, which directs the

mitochondria to either a pro- or anti-inflammatory state

(Dhingra et al . , 2007). These findings highlight how

mitochondrial dysfunction not only amplifies inflammation via

the NLRP3 pathway but also significantly contributes to HIV-

associated immune activation and neuroinflammation.

Notably, ROS can have both activating and inhibitory effects.

Though ROS can directly activate caspase-1 and indirectly activate

caspase-3 via ERK1/2 (Cruz et al., 2007), excessive ROS can

suppress IL-1b secretion, as seen in SOD-1-deficient macrophages

(van de Veerdonk et al., 2010). This paradox is explained by

oxidative damage decreasing redox-sensitive molecules, such as

caspase-1 (Meissner et al., 2008). Thus, while ROS are key players

in NLRP3 activation, their effects are context-dependent and

oscillate between inflammation and redox activation. In addition

to ROS, other mitochondrial byproducts such as oxidized

mitochondrial DNA (mtDNA) serve as potent activators of

NLRP3 under conditions of cellular stress. Oxidized mtDNA acts

as a ligand for NLRP3 and is critical for inflammasome signaling

(Kim et al., 2023). Altogether, the dual role of ROS and

proinflammatory signaling highlights how mitochondrial stress is

underscored by oxidized mtDNA as a nuanced and dynamic

indicator of inflammasome activation.
3.3 Crosstalk between mitochondria and
inflammasome

HIV proteins, including Tat, Vpr, and gp120 facilitate

communication between the mitochondria and the inflammasome

(Jones et al., 2007; Chivero et al., 2017; Arjona et al., 2023). Tat, or

the transactivator of transcription, enhances IL-1b secretion,

activates NLRP3 in microglia, and disrupts mitochondrial

integrity through PTPIP5-mediated ROS accumulation (Chivero

et al., 2017; Arjona et al., 2023). Viral protein R (Vpr) promotes the

expression of neuroinflammatory markers and neuronal apoptosis

signaling through the activation of caspases and the release of

cytochrome c (Jones et al., 2007; Williams et al., 2023). Gp120,
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which mediates viral entry, also contributes to immune

dysregulation and the internalization of CD4+ T cells (Yoon

et al., 2010). Crosstalk is also essential for maintaining autophagy,

a process that clears damaged mitochondria, which HIV disrupts to

create an ideal environment for viral replication (Sun et al., 2024).

Beyond autophagy, mitochondria-associated membranes (MAMs)

serve as an interface between the endoplasmic reticulum (ER) and

mitochondria, facilitating communication. MAM disruption

contributes to cognitive decline in PLWH (Arjona et al., 2023).

These mitochondrial-ER contact sites not only influence immune

signaling but are part of a network of mitochondrial maintenance

and NLRP3 regulation. In summary, the NLRP3 inflammasome

mediates crosstalk between HIV, mitochondrial dysfunction, and

immune signaling, driving inflammation, neurodegeneration, and

comorbidities in PLWH.
4 Purinergic receptors, ATP signaling,
and inflammation

4.1 ATP-driven inflammasome activation
and chronic inflammation

HIV infected cells show altered OxPhos activity with acute

infection, which resembles increased ATP production. Latent

infection is characterized by the upregulation of OxPhos and

pannexin production (Freeman et al . , 2023). OxPhos

hyperactivation in HIV-infected cells is often coupled to

pannexin-1 channel opening, enabling ATP efflux into the

extracellular space. This ATP acts on purinergic receptors such as

P2X1 and P2X7, altering ionic flux and triggering caspase activation

and IL-1b processing. Experimental data from HIV-infected

lymphoid explants and macrophage cultures support this

pathway, but direct in vivo demonstration in PLWH is lacking.

Notably, mitochondrial ROS can synergize with ATP signaling by

sensitizing NLRP3 to purinergic cues, suggesting a coordinated

stress-response axis rather than isolated pathways (Swartz et al.,

2015). This upregulation of ATP production leads to inflammation

in neighboring immune cells, bridging the gap between altered

mitochondrial activity and increased inflammatory activity.

Crucially, in CD4 T cells, both OxPhos and pannexin-linked

genes are upregulated, allowing ATP to rapidly leave the cell

through pannexin1, a transmembrane ion channel (Freeman

et al., 2023). This results in extracellular fluid rich in ATP, which

then activates purinergic receptors. Purinergic receptors P2X1 and

P2X7 are found in the cell membranes of CD4+ cells. They are

cation channels, which, when bound to ATP, undergo a

conformational change and allow cation flow into the cell. By

transporting these cations in and out of the cell, P2X1 and P2X7

shift the charge of the cell by letting in Na+ and Ca²+. The change in

charge causes potassium ions to rush out of the cell, triggering a

chain of proinflammatory signaling. Ultimately, this activates

caspase, an enzyme that cleaves the precursor form of IL-1b (pre-

IL-1b) into the proinflammatory form, IL-1b (Peng et al., 2023).

The altered mitochondrial landscape of HIV-infected cells can
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change the chemical landscape of the cell and surrounding cells,

providing an ideal environment for proinflammatory molecule

activation. It is important to note that excess extracellular ATP

causes P2X1 to become overexposed and close. Nevertheless,

purinergic receptors remain open for brief periods after

prolonged exposure to ATP and trigger inflammation (Giniatullin

and Nistri, 2013; Peng et al., 2023). This suggests that overactivation

of P2X1 is not a self-repairing issue, and therapeutic intervention

remains favorable.
4.2 CD39 regulation of extracellular ATP
and implications for HIV persistence and
immune cell dysfunction

CD39 and CD73 are two ectoenzymes that catalyze the ATP to

adenosine reaction, thereby dampening immune activation. This

reaction dampens inflammasome activation because the ATP

required to activate purinergic receptors, which is upstream in

inflammasome activation, is no longer available. Additionally, A2A

signaling dampens proinflammatory signaling (Nikolova et al.,

2011). In cells with active HIV infection, CD39 is upregulated,

essentially turning off the ATP signaling for purinergic receptors.

This favors the proliferation of the virus by diminishing the

inflammatory response to it. With less inflammatory response,

CD8+ T cells will not kill cells hosting the virus (by producing

proinflammatory cytokines), and regulatory T cells will have

reduced inflammatory response, providing the virus with ample

replication grounds. This favors faster development of AIDS. In

HIV-infected cells, CD73 is typically downregulated, so there is no

conversion to adenosine, meaning there is no anti-inflammatory

A2A signaling, and therefore CD39 is not a complete inhibitor of

inflammation (Nikolova et al., 2011).
4.3 NF449 as a model purinergic
antagonist impacting HIV entry and
immunometabolic regulation, and potential
novel therapies

Purinergic receptors also play a critical role in initial HIV

infection. For HIV to bind to the host cell its receptors must be

able to bind complementary host cell receptors. Recent research

suggests that NF449 interferes with the viral membrane directly to

inhibit viral fusion (Soare et al., 2020). At a benzene disulfonic acid

group in NF449, there is overlap with the binding position of ATP,

making the ATP bond with P2X1 non-functional (Qiang et al.,

2025). NF449 is a large polar molecule derived from suramin, an

antiparasitic drug, that binds to P2X1. The NF449 molecule

however, is only approved for scientific use, according to

manufacturers, and has a similar efficacy to AZT (in terms of

viral fusion inhibition) (Soare et al., 2020). NF449 has intense effects

on other proteins not targeted in purinergic receptor therapy and

has low bioavailability (Qiang et al., 2025), making it ill-suited for

use as a drug therapy. However, compounds with similar
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mechanisms of action to NF449 could potentially serve as drugs for

PWLH with chronic inflammation.
5 Clinical relevance: mito-immune
dysfunction in HIV-associated
comorbidities

5.1 HIV-associated neurocognitive
disorders

The mechanistic pathways described earlier converge with

striking consequence in the central nervous system. Persistent

mitochondrial dysfunction in microglia, astrocytes, and infiltrating

immune cells sustains a state of chronic neuroinflammation in people

living with HIV (Datta et al., 2019; Velasquez et al., 2019; Cheney

et al., 2020; Hileman et al., 2021). This inflammatorymilieu correlates

with the clinical spectrum of HAND, from asymptomatic

neurocognitive impairment to severe dementia. Elevated

concentrations of IL-1b, soluble CD14, and neurofilament light

chain in cerebrospinal fluid provide measurable biomarkers of this

ongoing injury. Even in individuals with complete virologic

suppression, cognitive decline may progress, reflecting the resilience

of CNS reservoirs and the self-perpetuating nature of mitochondrial

and inflammasome-driven pathology. Antiretroviral regimens,

particularly those with documented mitochondrial toxicity, can

compound this burden, amplifying oxidative stress and accelerating

synaptic and neuronal loss (Rodriguez et al., 2024).
5.2 Cardiometabolic diseases

A parallel narrative unfolds within the cardiovascular system.

Mitochondrial injury in endothelial cells and cardiomyocytes

fosters oxidative stress, disrupts nitric oxide signaling, and

impairs vascular homeostasis (Parikh et al., 2015; Teer and Essop,

2018). These changes precede and predict clinical events such as

myocardial infarction and stroke in ART-treated cohorts. Large

epidemiologic studies consistently demonstrate a higher incidence

of cardiovascular disease in people living with HIV than in matched

uninfected populations, even after rigorous adjustment for

traditional risk factors. ART-associated dyslipidemia and adipose

tissue dysfunction further intensify metabolic strain (Murata et al.,

2000; Murata et al., 2002; Maagaard and Kvale, 2009), creating an

environment in which vascular injury and systemic inflammation

are mutually reinforcing. This confluence of virologic,

immunologic, and metabolic forces produces a cardiovascular

phenotype that is unique to the HIV population and not entirely

mitigated by conventional preventive strategies.
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5.3 Cellular senescence and accelerated
aging

Beyond neurocognitive and cardiometabolic complications

PLWH exhibit features of accelerated biological aging including

increased senescence-associated T cells and premature

multimorbidity. Mitochondrial dysfunction contributes directly to

this process: persistent ROS production, mtDNA instability, and

chronic inflammasome activation promote DNA damage and

reinforce senescence-associated inflammatory phenotypes. These

changes sustain systemic inflammation and immunosenescence,

linking mitochondrial injury to frailty, osteoporosis and early

cardiovascular and neurocognitive decline (Hileman et al., 2021;

Ambikan et al., 2022). Recognizing accelerated aging as a

consequence of mito-immune dysfunction underscores the need

for therapies that preserve mitochondrial health and limit

senescence driven inflammation.
5.4 Therapeutic interventions targeting the
mito-immune axis

The translation of mechanistic insight into therapeutic

innovation is both a challenge and an opportunity. Agents such

as metformin, already widely used in metabolic disorders, have

shown the capacity to restore OxPhos and temper inflammasome

activation (Guo et al., 2021; Pulipaka et al., 2023; Rezaei et al., 2024).

Mitochondria-targeted antioxidants, including naringin, and

pleiotropic agents such as statins offer the potential to attenuate

oxidative injury while modulating lipid metabolism (Tripathy and

Mitra, 2010; Kallianpur et al., 2020; Rezaei et al., 2024).

Experimental purinergic receptor antagonists such as NF449 and

suramin illustrate how interference with ATP-driven inflammatory

signaling might be coupled with antiviral effect (Swartz et al., 2015;

Soare et al., 2020). These candidates point toward an emerging

paradigm in which antiretroviral therapy is complemented by

agents that preserve mitochondrial integrity and recalibrate

immune function. Several direct NLRP3 inhibitors are under

active investigation, including MCC950, dapansutrile, and related

sulfonylurea derivatives, which block inflammasome assembly and

downstream IL-1b release. Although not yet tested extensively in

PLWH, these compounds have shown efficacy in preclinical models

of inflammatory and metabolic disease, highlighting their potential

to attenuate chronic HIV-associated inflammation (Bracey et al.,

2013; Kelley et al., 2019). Emerging drug delivery strategies,

including nanoparticle-based formulations, are being explored to

improve mitochondrial targeting and antioxidant bioavailability.

Such approaches may enhance the efficacy of compounds like

metformin, esculetin, and mitochondria-targeted antioxidants

already under investigation (Pulipaka et al., 2023; Rezaei

et al., 2024).
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6 Discussion

6.1 Future directions

The next phase of research must integrate mechanistic precision

with clinical ambition. Longitudinal studies employing advanced

imaging and multi-omic profiling can chart the trajectory of

mitochondrial injury in diverse tissues over the course of treated

infection (Tripathy and Mitra, 2010; Kallianpur et al., 2020).

Therapeutic development should focus on molecules with the

capacity to penetrate sanctuary sites, modulate mitochondrial

metabolism, and suppress inflammasome activity without

impairing host defense (Pulipaka et al., 2023; Rezaei et al., 2024).

Future clinical trials should incorporate composite endpoints that

extend beyond viral suppression to include restoration of

mitochondrial function (e.g., respirometry in sorted immune

cells), reduction of inflammasome biomarkers (plasma IL-1b,
extracellular ATP, cell-free mtDNA), and prevention of end-

organ disease. Candidate interventions—ranging from

mitochondria-targeted antioxidants (MitoQ, SkQ1) to selective

NLRP3 inhibitors (dapansutrile) and purinergic antagonists—

should be evaluated for both efficacy and ability to penetrate

sanctuary sites such as the CNS. The intersection of

mitochondrial stress and immunosenescence in aging PLWH

warrants particular focus, as this population is disproportionately

affected by multimorbidity (Parikh et al., 2015; Teer and

Essop, 2018).
6.2 Conclusions

Mitochondria have emerged from the periphery of HIV

research to occupy a central position in the understanding of

persistent immune activation and its clinical sequelae (Valle-

Casuso et al., 2019; Guo et al., 2021). Their role extends beyond

bioenergetics into the orchestration of inflammatory responses and

the shaping of tissue resilience. Therapeutic strategies that protect

and restore mitochondrial function hold the promise of

transforming HIV care in the era of effective antiretroviral

therapy (Swartz et al., 2015; Soare et al., 2020; Rezaei et al., 2024).

By addressing the root causes of chronic inflammation and immune

dysfunction, these approaches offer the possibility of extending both

the health span and quality of life for people living with HIV.
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