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Objective:On time administration of carbapenem is important, but there are few

data concerning the prevalence of timeliness and its impact on pharmacokinetic/

pharmacodynamic (PK/PD) target achievement in hospitalized patients.

Methods: This was a multicenter retrospective study. Inpatients who received

imipenem or meropenem for more than 3 consecutive days were included

according to preset criteria. Patient information and dosing information were

collected. The actual administration intervals were compared to the scheduled

intervals, and those within a 1-hour error interval were defined as standard time

window administration (STWA); otherwise, they were defined as noncompliant

time window administration (NTWA). The 100% fT>MIC and 100% fT>4×MIC targets

were applied for PK/PD target attainment analysis. A multivariable logistic

regression model was used to identify independent risk factors associated with

timely administration and the PK/PD target attainment rate.

Results: A total of 474 patients and 1,372 actual administration intervals were

included in this study. Among these patients, 82 had drug concentration data and

were analyzed for PK/PD target attainment. A total of 427 dosing intervals (31.12%)

complied with the standard time window and were STWA, whereas 945 (68.88%)

were NTWA. Weekend, night shift, and scheduled dosing intervals were found to

be independent influencing factors for STWA. STWA was an independent

influencing factor for the 100% fT>MIC and 100% fT>4×MIC target attainment rates.

Conclusion: Our results indicate a low rate of on time carbapenem

administration. The on time carbapenem administration was a risk factor for

PK/PD target attainment and should be well controlled in clinical practice.
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1 Introduction

Carbapenems, mainly meropenem and imipenem–cilastatin,

exert rapid bactericidal effects by binding to penicillin-binding

proteins (PBPs) and inhibiting bacterial cytoderm synthesis. They

have good activity against gram-positive bacteria, gram-negative

bacteria, and multidrug-resistant (MDR) pathogens (e.g., extended-

spectrum b-lactamase-producing gram-negative bacteria) (Mehta

et al., 2021; Gerges et al., 2023). According to pharmacokinetic/

pharmacodynamic (PK/PD) principles, carbapenems are classified

as time-dependent antibiotics, with clinical efficacy strongly

correlated with the time fraction of the free drug concentration

exceeding the bacterial minimum inhibitory concentration (MIC)

during the dosing interval, expressed as fT>MIC (Gatti et al., 2021;

Maguigan et al., 2021; Cizmarova et al., 2024). Evidence indicates

that achieving fT>MIC ≥ 40% serves as the baseline efficacy

threshold, whereas critically ill patients require intensified targets

of 100% fT>1-4×MIC to optimize therapeutic outcomes and mitigate

resistance development (Heffernan et al., 2018; Guilhaumou et al.,

2019; Beganovic et al., 2021; Eslami et al., 2025). Thus, PK/PD target

attainment is crucial for clinical effectiveness. Several previous

articles have revealed that continuous infusion of carbapenem, a

dosing strategy that can increase the PK/PD index, can significantly

improve the clinical outcomes of critically ill patients but has no

effect on the outcomes of noncritically ill patients (Phe et al., 2020;

Liebchen et al., 2021; Wu et al., 2021; Angelini et al., 2023).

Antibiotic dosing intervals are typically designed on the basis of

drug half-life and PK/PD models to maintain the required plasma

concentrations or drug exposures (Rodrıǵuez-Gascón et al., 2021).

Standard time window administration (STWA) is consistent with

absolute deviations between actual and scheduled dosing intervals ≤

1 hour. The administration time being in accordance with the

STWA is considered timely (Loput et al., 2022). Non-timely

administered drugs may increase fluctuations in the plasma drug

concentration and may lower PK/PD target attainment. However,

deviations from scheduled dosing intervals frequently occur in

clinical practice because of fluctuations in the nursing workload

and individual differences (Blignaut et al., 2017; Schutijser et al.,

2018; Martyn et al., 2019; Stolic et al., 2022; Allison Rout et al.,

2023). However, this issue is often overlooked, and there are few

data concerning the prevalence of on time administration of

carbapenem, as well as its impact on PK/PD target attainment.

Therefore, we performed this multicenter retrospective study to

assess the patterns of administration timeliness for carbapenems,

identify risk factors associated with STWA, and further investigate

whether on time administration is an independent risk factor for

PK/PD target achievement.
2 Methods

2.1 Study design and ethical approval

This multicenter retrospective study was performed in 3 tertiary

hospitals in China. The study protocol was approved by the ethics
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committee of Sir Run Run Shaw Hospital, School of Medicine,

Zhejiang University (reference number 2025-0136). Informed

consent was waived as part of the approval.
2.2 Patient inclusion

Patients who were hospitalized at 3 research centers from

August 2021 to March 2025 and used carbapenem drugs were

randomly selected for inclusion. The exclusion criteria were as

follows: (a) aged under 18 years; (b) received carbapenem therapy

for ≤ 3 consecutive days; (c) had fewer than two consecutive records

of dosing timestamps; (d) received carbapenem for urinary

infections; and (e) incomplete or missing key clinical data.
2.3 Data collection

The following clinical data of the included patients were

extracted from the hospital information system: (a) Demographic

data, including patient sex, age, weight (kg), Body Mass Index (BMI,

kg/m²), and admission department (ICU or non-ICU). (b) Disease

severity indicators: vasoactive agent use. (c) Infection information:

infection site and pathogen culture results, if available. (d)

Carbapenem treatment regimens: drugs (including imipenem–

cilastatin and meropenem), dosages, scheduled dosing intervals

and treatment durations. (e) Actual administration time: for

patients without carbapenem TDM, the actual administration

times of carbapenem on the third day of treatment and the time

of the last dose of the previous day were recorded. Thus, two to five

consecutive dosing intervals can be calculated. For patients with

TDM, the dosing intervals of the day TDM was performed were

recorded. To analyze the influence of working time on timely

administration, weekends and night shifts (as long as the dosing

interval included one administration from 10:00 pm to 8:00 am, it

was recorded as a night shift) were also recorded.

For patients with carbapenem TDM, additional information

was collected: (a) Paired actual administration timestamps. (b)

Continuous renal replacement therapy (CRRT) implementation

status. (c) Laboratory biomarkers: trough concentration of target

drug, red blood corpuscles (RBCs), total protein (TP), albumin

(ALB), total bilirubin (TBil), blood urea nitrogen (BUN), creatinine

(Cr), high-sensitivity C-reactive protein (hs-CRP), and

procalcitonin (PCT).
2.4 Data analysis

The administration time deviation was operationally defined as

the absolute deviation between the actual and scheduled dosing

intervals. Deviations ≤ 1 hour were categorized as STWA, whereas

those exceeding this threshold were classified as nonstandard time

window administration (NTWA).

In the analysis of the influence of timely administration on PK/

PD target attainment, only patients with delayed administration
frontiersin.org
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were classified into the NTWA group, and those with early

administration were excluded from the analysis. Through

comprehensive data integration of patient demographics,

carbapenem regimens, and measured drug concentrations, we

evaluated the impact of timely administration on target (100%

fT>MIC and 100% fT>4×MIC) attainment rates. For the convenience

of statistical analysis, an MIC breakpoint of 2 mg/L was used

(Bonnin et al., 2022; Fratoni et al., 2024; Beijer et al., 2025; Luo

et al., 2025).

Categorical variables are described as counts and percentages

and were tested by the Pearson c2 test or Fisher’s exact test.

Normally distributed variables are described as the means with

SDs and were compared via the independent t-test or 1-way analysis

of variance, whereas other continuous variables are described as

medians with quartiles and were tested via the Wilcoxon Mann–

Whitney U test or the Kruskal–Wallis test. To determine factors

independently associated with the timeliness of drug

administration, variables with P < 0.1 in the univariate analysis

were analyzed by multivariable logistic regression, and a P value <

0.05 was considered significant. Relative risk was estimated via odds

ratios (ORs) with corresponding 95% confidence intervals. All the

statistical tests were performed via SPSS software (version 23.0).
3 Results

3.1 Clinical characteristics

A total of 633 patients who received carbapenem drug

treatment were identified for screening. The inclusion and

exclusion processes are shown in Figure 1. Finally, 474 patients

were eligible for the final analysis and included. The demographic

characteristics of the included patients are shown in Table 1.
3.2 Overall distribution of administration
timeliness and independent risk factors

As delineated in Table 2, the timestamp analysis of 474 patients

yielded 1,372 actual administration interval records. The overall

rate of on time carbapenem administration was 31.12%. Among all

the dosing intervals, 427 intervals (31.12%) complied with the

STWA, whereas 945 (68.88%) were noncompliant (NTWA). The

details of the STWA and NTWA groups are also shown in Table 2.

The ICU patients demonstrated a significantly higher STWA

compliance rate (35.02%) than did the NTWA patients (P =

0.007). Conversely, Escherichia coli-infected patients exhibited

markedly lower compliance, with compliance rates of only

24.43% in STWA patients and 75.57% in NTWA patients. The 6-

hour dosing regimen demonstrated optimal compliance (55.79%),

followed by the 12-hour (39.86%) and 4-hour (37.5%) schedules.

The 8-hour regimen showed minimal compliance (25.39%).

Interestingly, weekend administrations accounted for 37.05% of

STWA events versus 62.95% of NTWA events. The same trends
Frontiers in Cellular and Infection Microbiology 03
were also found for night shifts, which were also different

from expectations.

The multivariate regression results are also shown in Table 2.

The analysis revealed that both weekends (OR = 1.47, 95% CI =

1.11–1.95, P = 0.007) and night shifts (OR = 3.14, 95% CI = 2.39–

4.12, P < 0.001) were significantly associated with an increased

likelihood of STWA. Furthermore, compared with the 8-hour

dosing interval, both the 6-hour dosing interval (OR = 3.55, 95%

CI = 2.52–5.01, P < 0.001) and the 12-hour dosing interval (OR =

3.33, 95% CI = 2.15–5.17, P < 0.001) were also significantly

associated with a greater likelihood of STWA (Table 3).
3.3 PK/PD target attainment rate and
independent risk factors

Finally, 82 patients with TDM results were analyzed for PK/PD

target attainment. The distributions of meropenem and imipenem

concentrations are shown in Figure 2. Among these patients, 42

(51.2%) achieved the PK/PD target of 100% fT>MIC, whereas 16

(19.5%) attained the stricter target of 100% fT>4×MIC (Table 3;

Supplementary Table S1). Univariate analysis revealed that patients

who achieved 100% fT>MIC were significantly older than

unachievers (75.52 ± 14.13 vs. 62.58 ± 18.47 years, P < 0.05) and

presented higher median BUN levels [9.93 (IQR 6.47–14.01) vs.

6.75 (IQR 4.83–9.44), P < 0.01]. Notably, compliance with the

STWA was significantly greater in the 100% fT>MIC group than in

the unachieved group (65.71% vs. 34.29%, P = 0.025). However, the

STWA compliance rates are markedly lower for the 100% fT>4×MIC

target (34.29% vs. 65.71%, P = 0.006).

Multivariate logistic regression incorporating age, BUN,

Acinetobacter baumannii infection, vasoactive agent, STWA, and

CRRT. The results indicated that age (OR = 1.06, 95% CI = 1.02–

1.10, P = 0.004), Acinetobacter baumannii infection (OR = 6.11,

95% CI = 1.04–35.88, P = 0.045), and STWA (OR = 3.66, 95% CI =

1.20–11.16, P = 0.023) were independent risk factors associated with

100% fT>MIC target attainment (Table 3). Notably, STWA was also

posit ively correlated with 100% fT>4×MIC attainment

(Supplementary Table S1).
4 Discussion

To the best of our knowledge, this is the first multicenter study

that evaluated the prevalence of on time administration of

carbapenems and its impact on PK/PD target attainment in

hospitalized patients. A total of 474 patients and 1,372 dosing

intervals from three tertiary hospitals were included in this study,

which made the results representative. Notably, the prevalence of

STWA is low. Scheduled dosing intervals were identified as

independent risk factors for STWA, which should be well

controlled in clinical practice. Furthermore, STWA was an

independent risk factor associated with PK/PD target attainment,

which emphasized the importance of on time administration.
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Our study evaluated the timeliness of carbapenem

administration in hospitalized patients. Notably, only 31.12% of

the carbapenems were administered within the STWA, which was

lower than the available prevalence rates. Tolley and Poon reported

that the probabilities of timing errors occurring in hospitals were

11.5% and 4.77%, respectively (Poon et al., 2010; Tolley et al., 2022).

For time-critical medications, the incidence of timing errors in

administration is greater. Craig et al. reported a 68.88% adherence

rate to the STWA for time-critical medications (Furnish et al.,

2021). Our study demonstrated a significantly lower rate of timely
Frontiers in Cellular and Infection Microbiology 04
carbapenem administration. This discrepancy likely reflects the

confluence of several factors, notably the inherently time-

consuming preparation process specific to carbapenems and

potential inefficiencies within the hospital’s medication

management workflow (encompassing physician order entry,

pharmacy dispensing, and nursing execution) (Yu et al., 2023).

Multivariate regression analysis revealed that administration during

weekends and night shifts was positively correlated with STWA

attainment. This counterintuitive observation may be attributed to

reduced competing clinical demands (e.g., fewer scheduled surgeries
FIGURE 1

Flowchart of patient exclusion and inclusion.
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or physician rounds) during these periods, potentially enabling

nursing staff to prioritize medication administration tasks.

Compared with the 8-hour dosing interval, both the 6-hour and

12-hour intervals were significantly associated with a greater

likelihood of STWA. This association may be attributed to the

better alignment of the 6-hour dosing interval with routine nursing

workflows and shift handovers, facilitating integration into planned

care activities. The 12-hour intervals, typically administered at fixed

times (e.g., 8:00 am and 8:00 pm), benefit from a simpler, twice-

daily regimen that is less prone to omission or confusion.

Importantly, the 8-hour dosing interval constituted the

predominant group in this study cohort, whereas data for the 6-

hour dosing interval and 12-hour dosing interval were

comparatively limited. This imbalance in sample sizes may

introduce potential bias into the observed associations.

These findings highlight systemic inefficiencies in routine

clinical workflows and emphasize the urgent need for staffing

optimization during weekdays and daytime shifts. In addition,
Frontiers in Cellular and Infection Microbiology 05
previous studies indicate that communication between medical

teams may be an important factor in patient care, and

the assessment ability of healthcare workers and awareness of

time-critical drugs should be improved (Vijayan et al., 2021;

Amano et al., 2023; Wu et al., 2025). To increase carbapenem

stewardship, hospitals should implement targeted interventions: (1)

standardize workflow protocols to minimize interruptions during

peak hours; (2) integrate automated alerts for high-priority

antimicrobials into electronic health records; and (3) conduct

regular staff training to reinforce the clinical significance of timely

carbapenem administration.

While pre-clinical investigations have historically informed PK/

PD targets for beta-lactam antibiotics, the applicability of these

thresholds requires careful contextualization. This value originated

largely from animal infection models, where carbapenems

demonstrated efficacy at 40% fT>MIC owing to their prolonged

post-antibiotic effect (Assefa et al., 2024). However, such

thresholds may not directly translate to clinical practice, especially
TABLE 1 Demographic characteristics of the included patients.

Variable Total (n = 474) Imipenem-cilastatin (n = 268) Meropenem (n = 206)

Age, Mean ± SD 64.04 ± 17.09 62.60 ± 16.40 65.91 ± 17.82

BMI, Mean ± SD 22.01 ± 4.25 22.13 ± 4.06 21.85 ± 4.50

Sex, n (%)

Male 335 (70.68) 191 (57.01) 144 (42.99)

Female 139 (29.32) 77 (55.40) 62 (44.60)

Department, n (%)

Non-ICU 201 (42.41) 137 (68.16) 64 (31.84)

ICU 273 (57.59) 131 (47.99) 142 (52.01)

Vasoactive agent, n (%) 142 (29.96) 54 (38.03) 88 (61.97)

Pulmonary infection, n (%) 174 (36.71) 85 (48.85) 89 (51.15)

Abdominal infection, n (%) 177 (37.34) 123 (69.49) 54 (30.51)

Bloodstream infection, n (%) 56 (11.81) 29 (51.79) 27 (48.21)

Pathogen, n (%)

Empiric Therapy 236 (49.79) 126 (53.39) 110 (46.61)

Escherichia coli 54 (11.39) 34 (62.96) 20 (37.04)

Klebsiella pneumoniae 70 (14.77) 33 (47.14) 37 (52.86)

Pseudomonas aeruginosa 43 (9.07) 30 (69.77) 13 (30.23)

Acinetobacter baumannii 33 (6.96) 19 (57.58) 14 (42.42)

Scheduled dosing intervals, n (%)

4 hours 2 (0.42) 0 (0.00) 2 (100.00)

6 hours 64 (13.50) 44 (68.75) 20 (31.25)

8 hours 348 (73.42) 207 (59.48) 141 (40.52)

12 hours 60 (12.66) 17 (28.33) 43 (71.67)

Weekend, n (%) 132 (27.85) 66 (50.00) 66 (50.00)
BMI, Body Mass Index; SD, standard deviation; Non-ICU, non-intensive care unit; ICU, intensive care unit.
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in critically ill patients who exhibit altered pharmacokinetics due to

underlying illness, comorbidities, or life-saving treatment

modalities. In these populations, targeting higher thresholds such

as 100% fT>MIC or even 100% fT>4×MIC is increasingly adopted (De

Waele et al., 2013; Abdulla et al., 2020; Peng et al., 2025; Tseng et al.,

2025). These more aggressive targets aim to compensate for

pharmacokinetic variability and ensure adequate drug exposure

throughout the dosing interval, particularly when treating

pathogens with elevated MICs or in immunocompromised hosts.

In the present study, TDM results were available for 82 patients.

The target of 100% fT>MIC was achieved in 51.2% of patients,

whereas 19.5% attained 100% fT>4×MIC. In a study investigating the

relationship between % fT>MIC and the clinical efficacy of

meropenem, the number of sepsis patients treated with

meropenem reached 40% fT>MIC and 100% fT>MIC, which were

92.9% and 71.4%, respectively (Vijayan et al., 2021). Kim et al.
Frontiers in Cellular and Infection Microbiology 06
achieved a 30% compliance rate of 100% fT> 4×MIC by administering

2 g of meropenem every 6 hours as a 3 h extended infusion (Kim

et al. , 2024). This discrepancy may be attributable to

methodological differences between the studies. Specifically, Kim

et al. applied a lower MIC threshold (1 mg/L for meropenem), in

contrast to the 2 mg/L threshold used in our study. Areskog et al.

demonstrated that 88% of meropenem-treated patients achieved

100% fT>MIC and that 53% reached 100% fT>4×MIC (Areskog

Lejbman et al., 2024). Notably, their protocol employed a

standardized regimen of 1 g every 8 hours, whereas our study

included individualized dosing regimens (0.5 g or 1 g administered

every 6, 8, or 12 hours), which likely contributed to the observed

pharmacokinetic variability.

Timely administration critically influences the PK profiles of

time-dependent antimicrobial agents. A systematic analysis of ICU

patients receiving carbapenems revealed PK/PD target attainment
TABLE 2 Prevalence of carbapenem timely administration and multivariate logistic analysis.

Variable Total (n = 1372)
NTWA

(n = 945, 68.88%)
STWA

(n = 427, 31.12%)
P1 P2 OR (95%CI)

Age, Mean ± SD 62.37 ± 17.09 62.14 ± 16.95 62.89 ± 17.42 0.449

BMI, Mean ± SD 21.96 ± 4.07 21.82 ± 3.90 22.28 ± 4.43 0.057 0.268

Sex, n(%)

Male 959 (69.90) 654 (68.20) 305 (31.80) 0.406

Female 413 (30.10) 291 (70.46) 122 (29.54) 0.406

ICU, n(%) 594 (43.29) 386 (64.98) 208 (35.02) 0.007 0.378

Vasoactive agent, n(%) 233 (16.98) 157 (67.38) 76 (32.62) 0.588

Pulmonary infection, n(%) 510 (37.17) 348 (68.24) 162 (31.76) 0.693

Abdominal infection, n(%) 503 (36.66) 340 (67.59) 163 (32.41) 0.435

Bloodstream infection, n(%) 100 (7.29) 70 (70.00) 30 (30.00) 0.801

Pathogen, n(%)

Empiric Therapy 724 (52.77) 493 (68.09) 231 (31.91) 0.508

Escherichia coli 176 (12.83) 133 (75.57) 43 (24.43) 0.041 0.060

Klebsiella pneumoniae 177 (12.90) 119 (67.23) 58 (32.77) 0.612

Pseudomonas aeruginosa 117 (8.53) 83 (70.94) 34 (29.06) 0.615

Acinetobacter baumannii 65 (4.74) 42 (64.62) 23 (35.38) 0.448

Imipenem-cilastatin, n(%) 830 (60.50) 570 (68.67) 260 (31.33) 0.841

Meropenem, n(%) 542 (39.50) 375 (69.19) 167 (30.81) 0.841

Scheduled dosing intervals, n(%)

4 hours 8 (0.58) 5 (62.50) 3 (37.50) 0.697 0.217 2.62 (0.57 ~ 12.09)

6 hours 190 (13.85) 84 (44.21) 106 (55.79) <.001 <.001 3.55 (2.52 ~ 5.01)

8 hours 1036 (75.51) 773 (74.61) 263 (25.39) <.001 – 1.00 (Reference)

12 hours 138 (10.06) 83 (60.14) 55 (39.86) 0.02 <.001 3.33 (2.15 ~ 5.17)

Weekend, n(%) 359 (26.17) 226 (62.95) 133 (37.05) 0.005 0.007 1.47 (1.11 ~ 1.95)

Night shift, n(%) 637 (46.43) 376 (59.03) 261 (40.97) <.001 <.001 3.14 (2.39 ~ 4.12)
BMI, Body Mass Index; SD, standard deviation; ICU, intensive care unit; STWA, standard time window administration; NTWA, non-standard time window administration; OR, Odds Ratio; CI,
Confidence Interval; P1, Univariate analysis P-value; P2, Multivariate analysis P-value. The bold P-values indicate statistical significant difference.
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rates, with 100% fT>MIC achieved in 65.71% of cases and 100%

fT>4×MIC achieved in 34.29% of cases. Multivariate regression

analysis demonstrated that timely administration significantly

improved both the 100% fT>MIC and 100% fT>4×MIC attainment

rates. Carbapenems exhibit time-dependent bactericidal activity,

where clinical efficacy is maximized when fT>MIC exceeds a certain

threshold. For carbapenems, maintaining fT>MIC ≥ 40% of the

dosing interval is critical; achieving 100% fT>MIC further

optimizes bacterial eradication and suppresses resistance (Tilanus

and Drusano, 2023; Pokorná et al., 2024). For short-half-life b-
Frontiers in Cellular and Infection Microbiology 07
lactams (e.g., meropenem, imipenem–cilastatin), delays cause a

rapid decline in serum concentrations, which would be below the

MIC threshold. Timely administration ensures consistent

concentration–time curve (AUC) overlap, sustaining drug levels

above the MIC throughout the interval. Pathogens such as

Pseudomonas aeruginosa exhibit adaptive resistance when

exposed to subinhibitory antibiotic concentrations. Delayed

dosing creates sub-MIC windows, allowing bacterial regrowth and

increasing the risk of resistance mutations (Chen et al., 2021; Sanz-

Garcıá et al., 2022). Most previous studies have focused on the rate
TABLE 3 Distribution of 100% fT>MIC achievement and multivariate logistic analysis.

Variable Total (n = 82)
Unachieved

(n = 40, 48.8%)
Achieved

(n = 42, 51.2%)
P1 P2 OR (95%CI)

Age, Mean ± SD 69.21 ± 17.54 62.58 ± 18.47 75.52 ± 14.13 0.002 0.004 1.06 (1.02 ~ 1.10)

BMI, Mean ± SD 21.82 ± 4.81 21.85 ± 4.22 21.79 ± 5.40 0.956

TP, M (Q1, Q3) 52.10 (47.50, 55.60) 53.05 (48.03, 56.17) 51.30 (47.48, 54.00) 0.238

ALB, M (Q1, Q3) 28.80 (27.10, 31.35) 29.35 (27.57, 32.95) 28.30 (27.00, 30.50) 0.178

RBC, M (Q1, Q3) 2.90 (2.46, 3.43) 3.12 (2.57, 3.45) 2.88 (2.39, 3.25) 0.192

TBil, M (Q1, Q3) 20.35 (11.07, 51.58) 19.90 (9.52, 34.70) 23.60 (12.28, 60.62) 0.319

BUN, M (Q1, Q3) 7.91 (5.61, 12.08) 6.75 (4.83, 9.44) 9.93 (6.47, 14.01) 0.03 0.415

Cr, M (Q1, Q3) 74.00 (51.00, 106.50) 63.50 (43.75, 82.25) 91.00 (60.75, 125.75) 0.139

hs-CRP, M (Q1, Q3) 136.70 (57.10, 190.45) 122.05 (48.07, 158.73) 155.35 (71.22, 215.88) 0.1

PCT, M (Q1, Q3) 2.76 (0.38, 22.53) 2.17 (0.44, 17.75) 3.85 (0.36, 34.46) 0.194

Sex, n (%)

Male 60 (73.17) 29 (48.33) 31 (51.67) 0.894

Female 22 (26.83) 11 (50.00) 11 (50.00) 0.894

Vasoactive agent, n(%) 64 (78.05) 28 (43.75) 36 (56.25) 0.092 0.079

Pulmonary infection, n(%) 31 (37.80) 15 (48.39) 16 (51.61) 0.956

Abdominal infection, n(%) 25 (30.49) 14 (56.00) 11 (44.00) 0.388

Bloodstream infection, n(%) 20 (24.39) 8 (40.00) 12 (60.00) 0.368

Pathogen, n (%)

Empiric Therapy 28 (34.15) 14 (50.00) 14 (50.00) 0.874

Escherichia coli 7 (8.54) 5 (71.43) 2 (28.57) 0.227

Klebsiella pneumoniae 24 (29.27) 13 (54.17) 11 (45.83) 0.531

Pseudomonas aeruginosa 14 (17.07) 6 (42.86) 8 (57.14) 0.627

Acinetobacter baumannii 11 (13.41) 2 (18.18) 9 (81.82) 0.044 0.045 6.11 (1.04 ~ 35.88)

Scheduled dosing intervals, n (%)

6 hours 14 (17.07) 7 (50.00) 7 (50.00) 0.92

8 hours 54 (65.85) 29 (53.70) 25 (46.30) 0.47

12 hours 14 (17.07) 4 (28.57) 10 (71.43) 0.106

STWA, n(%) 35 (42.68) 12 (34.29) 23 (65.71) 0.025 0.023 3.66 (1.20 ~ 11.16)

CRRT, n(%) 13 (15.85) 3 (23.08) 10 (76.92) 0.054 0.232
BMI, Body Mass Index; SD, standard deviation; STWA, standard time window administration; NTWA, non-standard time window administration; TP, total protein; ALB, albumin; RBC, red
blood corpuscles; TBil, total bilirubin; BUN, blood urea nitrogen; Cr, creatinine; hs-CRP, high-sensitivity C-reactive protein; PCT, procalcitonin; CRRT, continuous renal replacement therapy;
OR, Odds Ratio; CI, Confidence Interval; P1, Univariate analysis P-value; P2, Multivariate analysis P-value. The bold P-values indicate statistical significant difference.
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of attaining PK/PD targets for carbapenems with continuous and

intermittent infusions (Wunderink et al., 2021; Monti et al., 2023;

Johnson et al., 2024). Our findings underscore that strict

compliance with scheduled dosing intervals ensures sustained

drug concentrations above the MIC and 4×MIC thresholds,

thereby maximizing bactericidal efficacy and mitigating

resistance selection.

The clinical imperative for on time administration is magnified

in critically ill patients. ICU patients frequently exhibit altered

pharmacokinetics due to pathophysiological changes or

extracorporeal therapies, leading to unpredictable drug exposure

(Morales Castro et al., 2023). Timely administration mitigates

concentration fluctuations, preventing transient trough

concentrations below the MIC (even for 1–2 hours), so that it

blocks the selective proliferation of drug-resistant mutants. To

operationalize precision dosing for time-critical medications,

hospitals must implement workflow innovations . For

carbapenems, strategies such as premixed formulations, smart

infusion pumps, and rapid bedside administration systems can

minimize delays between prescription and drug delivery.

This study has several limitations inherent to its retrospective

design, which may introduce selection bias and unmeasured

confounding factors. The analysis did not directly assess the

associations between administration timeliness and clinical

outcomes such as mortality or resistance emergence. Future

prospective cohort studies are warranted to establish causality

between timely administration and therapeutic efficacy. Despite

the overall large sample size of this study, only 82 patients (17.3%)

had TDM data available for PK/PD analysis. This may introduce

selection bias, as patients with more complex conditions are more

likely to undergo TDM monitoring. Therefore, the findings still
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require further validation with larger datasets. An international

survey revealed considerable variation in TDM practices for b-
lactam antibiotics in intensive care units (Wong et al., 2014).

Although carbapenem TDM has been reported in clinical settings,

most studies focus on meropenem (Joynt et al., 2023). Moreover, a

literature search using the keywords “China” AND “carbapenem”

AND “TDM” yielded very few results, indicating that carbapenem

TDM has not yet been routinely implemented in clinical practice in

China. This limitation underscores the need for more prospective

studies on carbapenem TDM in the future.

Additionally, further research should address critical knowledge

gaps: (1) the development of dose-compensation protocols for

delayed administration and (2) the clinical validation of novel

delivery technologies such as nanoparticle-based controlled-

release systems to bridge the gap between theoretical PK/PD

targets and real-world effectiveness.
5 Conclusions

This multicenter retrospective study investigated the prevalence

of on time carbapenem administration, and the results indicated

that the timeliness of carbapenem administration was poor. Several

factors, including scheduled dosing intervals, weekend days and

night shifts, were significantly associated with improved timely

administration. Furthermore, on time administration was found

to be associated with PK/PD target attainment rates (100% fT>MIC

and 100% fT>4×MIC), which indicated that timely administration

might be important in optimizing the efficacy of antibiotics. In the

future, systematic improvement and interdisciplinary collaboration

are needed to improve the timeliness of drug administration.
FIGURE 2

Plasma concentration distributions of imipenem and meropenem.
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