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The mature neocortex contains many different classes of GABAergic inhibitory interneu-
rons, distributed, with some degree of selectivity, through six layers, and through many
different regions. Some of the events in the early lives of these neurones that may deter-
mine their ultimate destination, their maturation and their selective innervation of targets
appropriate for each subtype, are discussed. Both time and place of birth influence the class
of interneuron that an early post-mitotic interneuronal precursor will become, driven by the
selective expression of different combinations of transcription factors in different regions
of their birth places in the ganglionic eminence and ventricular zone. The long distance
migration of these precursors along tangential routes in marginal, subventricular, and inter-
mediate zones and their final radial movement, into the developing cortex, is regulated by
chemical cues, both attractant and repellent. Once they arrive at their final destination, they
must integrate into the developing circuitry. As they mature within the cortex, their axons
grow and branch in highly specific patterns that may be partially determined by the genetic
blueprint for each interneuronal class and partly by the environment in which they find
themselves. Finally, as each interneuron class begins to form synapses with only certain
postsynaptic targets, cell–cell recognition, most probably via protein–protein interactions
across the synaptic cleft, facilitate the formation of appropriate synapses.
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WHAT CAN MATURE NEURONAL STRUCTURE SUGGEST
ABOUT DEVELOPMENT?
Anyone who has spent hours at the microscope, reconstructing
cortical axons at high power, will be aware of the immense com-
plexity of these axonal arbors and their huge diversity. A number of
anatomical properties become apparent very rapidly. Firstly that
pyramidal cell axons (with the exception of the drum stick like
branches of layer 6 cortico-thalamic pyramidal axons in layer 4,
Zhang and Deschênes, 1997), run almost straight through the neu-
ropil, deviating significantly only as they encounter large obstacles,
like blood vessels. They may have a gross structure that is peculiar
to just one particular class of pyramidal cell, innervating only cer-
tain layers for example, but whatever the pattern of their branches,
they run more or less straight through the cortex. They do not
therefore give the impression of axons in search of a target. Pyra-
midal dendrites, on the other hand, are far from straight. Not only
are they studded with spines of different lengths and shapes, which
project in all possible directions from the shaft, but the dendritic
shafts themselves take tortuous routes through the neuropil. The
impression gained is that each class of pyramidal cell may have
a preordained shape, in terms of the number, length, and diame-
ter of its dendrites, whether or not it has well developed oblique
dendrites, or an apical tuft, but that within these constraints, the
dendritic spines and even the shafts modify this basic plan to seek
appropriate excitatory axonal contacts.

In striking contrast, the axons of many classes of interneu-
rons are often extremely convoluted, as though they were seeking
targets, rather than waiting to be found. Moreover, each class
of inhibitory interneuron has its own branching pattern, some

having branches that exit almost at right angles, some branching
at acute-, and others branching at oblique-angles. The follow-
ing section explores the possibility that these differences result in
part from the order in which different types of neurones arrive
in the neocortex; spiny excitatory cells typically arriving before
the GABAergic inhibitory interneurons that are assigned, at their
birth, to the same layer (Miller, 1986a,b; Rymar and Sadikot, 2007).

ORIGINS AND FATES OF CORTICAL NEURONES
ORIGINS AND FATES OF SPINY EXCITATORY NEURONES
The spiny glutamatergic cells of the cortex (pyramidal and spiny
stellate cells) are born in the ventricular zone. After their last cell
division in the ventral zone, pyramidal neurones migrate to the
cortical plate (the future cortex) along a common radial glial
fascicle (Rakic, 1972). The radial unit model (Rakic, 1988) pro-
poses that the position of a neuron’s precursor in the ventral zone
determines its final horizontal coordinates, while its birth date
determines its radial position, i.e., the layer, or sublayer, it is des-
tined to occupy. This is the anatomical basis for the columnar
structure of cortex first proposed by Mountcastle et al. (1957).
Later born spiny cells that are destined for more superficial layers,
must pass through the layers of older neurones, as they migrate
radially to their final positions. The cortex develops “inside out,”
laying down the pyramidal cells of the deepest layers first. The
secreted signal, Reelin, its receptors and their downstream sig-
naling pathways are thought to control/promote first this radial
migration, then its termination (Huang, 2009a; Rakic, 2009; Vitalis
and Rossier, 2011, for reviews). Recent studies using in utero intra-
ventricular injection of EGFP-expressing retroviruses, confirm this
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hypothesis, by demonstrating that sister neurones take up radi-
ally aligned positions in the cortex, across layers. Moreover, sister
cells have a stronger propensity to form chemical synapses with
each other, than with neighboring cells of differing lineage (Yu
et al., 2009; Costa and Hedin-Pereira, 2010). That these sister
cells end up in different layers and will therefore develop different
morphological and physiological characteristics and make synap-
tic connections with different cortical and sub-cortical targets,
demonstrates that the impact of lineage, while crucial, is modified
by birth date and environment.

ORIGINS AND FATES OF INHIBITORY INTERNEURONS
The extent to which interneuronal properties are modified after
their arrival in the cortex has been less studied to date. The vast
majority of cortical interneurons are not born in the ventricular
zone, but in the medial and caudal ganglionic eminence in the
ventral forebrain and, in primates, in the subventricular zone (see
also Inta et al., 2008).

INFLUENCE OF BIRTH PLACE
Most of the well characterized types of inhibitory interneurons
are born within the ventral telencephalone (subpallium), a region
comprising distinct morphological zones referred to as lateral,
medial, caudal, and septal ganglionic eminence (LGE, MGE, CGE,
and SGE, respectively, Figure 1; Wonders and Anderson, 2006;
Batista-Brito and Fishell, 2009; Vitalis and Rossier, 2011). In
addition, interneurons can originate from the endopeduncular
and preoptic area (Gelman et al., 2009), and from the cortical
subventricular zone (Inta et al., 2008).

The identity of newborn interneurons is regulated by the over-
lapping expression of specific transcription factors which is coor-
dinated both spatially and temporally. The initial commitment
to the GABAergic lineage is determined by the activity of Dlx1/2
transcription factors. The expression of these factors is however
under control of a proneural gene Mash1 (Casarosa et al., 1999;
Stuhmer et al., 2002). These genes are expressed widely through-
out the subpallium, and they play a crucial role in development of
cortical and olfactory bulb interneurons (Anderson et al., 1997a;
Bulfone et al., 1998), and the striatum (Anderson et al., 1997b).

Parvalbumin-positive interneurons originate from the ventral
area of the MGE (Wonders and Anderson, 2006) and their develop-
ment relies on the activity of the Lhx6 transcription factor which
is itself controlled by the Nkx2.1 transcription factor in this region
(Figure 1; Liodis et al., 2007; Du et al., 2008). Although under
the control of the same transcription factors, the dorsal area of
the MGE is somehow specialized to give rise to a different class of
interneurons, those that will express somatostatin/calretinin. Cell
proliferation in both regions is under the regulation of β-catenin-
dependent Wnt signaling pathway (Gulacsi and Anderson, 2008)
and under the influence of sonic hedgehog (Shh) signaling which
shows a gradual decrease in expression from dorsal to ventral MGE
(Wonders et al., 2008; Xu et al., 2010).

In contrast, the cortical interneurons that express calretinin
in combination with vasoactive intestinal polypeptide (VIP), VIP
alone, or VIP, and cholecystokinine (CCK; Yozu et al., 2004; Butt
et al., 2005; Fogarty et al., 2007) are generated in the CGE areas
where the Lhx6 transcription factor is not expressed (Figure 1;

FIGURE 1 | Cartoon (lower right) summarizing the origins of cortical

interneurons and the tangential migratory paths they follow to the

developing neocortex (cortical plate and subplate at this stage of

development). At first, early born interneurons follow a more ventral route
before migrating along the marginal zone overlying the developing cortex.
Once the cortical plate has developed, cells in this pathway also migrate
along the intermediate zone. Later born neurones follow a more dorsal
route and then migrate along the subventricular zone. See insert (top) for
layers. On the left, expression patterns of some of the transcription factors
that appear to play a role in differentiation and migration are indicated (see
color key). The expression of two important extracellular signals,
Semaphorin (3A and 3F) and Neuregulin-1 are also indicated. The birth
places of somatostatin-containing (SOM), parvalbumin- containing (PV),
calretinin- (CR), and calretinin- plus somatostatin-containing (CR + SOM)
interneurons are also indicated. Coronal section through the brain of an
embryonic mouse (approximately E14). Figure modified from
Hernández-Miranda et al. (2010), Heng et al. (2007), Huang (2009b).

Flames and Marin, 2005). Their lineage is postulated to be reg-
ulated by Nkx6.2 and CoupTF1/2, transcription factors that are
widely, but not selectively expressed in this region (Sousa et al.,
2009). It is currently unknown whether the LGE gives rise to any
specific class of cortical interneurons (Wichterle et al., 1999). This
region is, however, the main source of GABAergic striatal projec-
tion neurones (Anderson et al., 1997b), which originate from the
ventral area, and of olfactory bulb interneurons (Waclaw et al.,
2006), which originate from the dorsal area of LGE. Interneuronal
progenitors in the endopeduncular and preoptic area give rise
to NPY-containing interneurons including neurogliaform cells,
under the guidance of the transcription factor Nkx5.1 (Figure 1;
Gelman et al., 2009). In addition, a small population of calretinin-
positive interneurons, destined for deeper cortical layers, originate
from the cortical subventricular zone at postnatal stages (Inta
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et al., 2008). The functional and spatial overlap in the expres-
sion levels of specific transcription factors and gradients of these
factors across the ganglionic eminence, are likely to play cru-
cial roles in determining the lineage of different types of cortical
interneurons.

INFLUENCE OF BIRTH DATE
In addition to the place of birth, the temporal order of interneu-
ronal specification is critical. It is now well established that dif-
ferent classes of interneurons are born at different times within
the ganglionic eminence. According to the current model of neu-
rogenic divisions in the MGE, neural progenitor division in the
ventricular zone is mostly asymmetric, giving rise either to radial
glia cells or to intermediate progenitor cells and neurones. The
progression through the cell cycle in this zone is known to be
regulated by the cyclin D1/cdk4/6 enzyme complex which is gener-
ally expressed in proliferating progenitors but also in post-mitotic
neurones (Glickstein et al., 2007a).

In contrast, the intermediate progenitor cells located within
the subventricular zone of the MGE are under the guidance
of the cyclin D2/cdk4/6 complex and divide symmetrically to
give rise to two neurones or two glia cells, which at this stage
acquire the ability to migrate to the cerebral cortex or striatum
(Ross, 2011). Following the temporal order of events, the first
classes of interneurons born in this region between E9.5 and
E15 are parvalbumin-positive and somatostatin-positive interneu-
rons, followed by calretinin-positive interneurons which are born
significantly later (between E12.4 and E15.5; Butt et al., 2007).
Among these three interneuronal types however, only the future
parvalbumin-positive interneurons in this region appear to be
under selective regulation by the cyclin D2 complex. The dele-
tion of cyclin D2 gene leads not only to a prominent reduction in
the abundance of parvalbumin-positive interneurons in the more
mature cortex, but also to a microcephalic phenotype with general
impairments in cortical development (Glickstein et al., 2007b).
This distinct phenotype appears to be a consequence of a decrease
in the proliferation potential of cells within the subventricular
zone of the MGE, leading to an increase in the number of cells
exiting the cell cycle prematurely. This phenotype also suggests
that the cell fate of future parvalbumin-positive interneurons is
already specified at the stage of their proliferating intermediate
precursors. Thus, regulation of the cell cycle of progenitors in
the MGE is critical for determining the final numbers of spe-
cific interneuronal types in the cortex and may influence their
final fate.

DOES GABA SIGNALING INFLUENCE THE FATE OF
INTERNEURONS?
A role for GABAergic signaling in the control of proliferation of
interneuronal precursors within the regions of ganglionic emi-
nence has not been demonstrated. However, evidence from other
brain regions indicates that GABA plays a potent role in determin-
ing the proliferating potential of neuronal progenitors in general.
GABAergic signaling mediated by GABAA receptors was shown to
inhibit proliferation of neural crest stem cells early in development
(Andang et al., 2008). Proliferation of neocortical progenitors in
the ventricular and subventricular zones of the developing cortex

is down-regulated by GABA and glutamate, both of which can
lead to depolarization of the plasma membrane and an increase
in intracellular calcium. The number of progenitor cells able to
synthesize DNA was reported to be reduced as a consequence
of this increase in calcium (LoTurco et al., 1995). Subsequently,
similar effects of GABA and glutamate on cell proliferation were
reported for the subventricular zone progenitors, while the oppo-
site was observed in the ventricular zone (Haydar et al., 2000).
The effects of GABA and glutamate were mimicked by specific
agonists for GABAA and NMDA/AMPA receptors, respectively,
and blocked by specific receptor antagonists in both studies. Fur-
thermore, neuronal progenitors isolated from the ventricular and
subventricular zones were shown to express GABAA receptors
with different functional properties; the former showing a higher
affinity for GABA, slow desensitization, small currents and no
evidence of any synaptic activity. In contrast to this, the later post-
mitotic neurones in the subventricular zone showed spontaneous
synaptic activity mediated by GABAA receptors, which was depen-
dent on action potentials and arising from the local interneurons
(Owens et al., 1999).

The extracellular concentrations of GABA in the ganglionic
eminence regions may be as high as 0.5 ± 0.1 μM (Cuzon et al.,
2006). Early interneuronal precursors and progenitors appear to
be the main cellular source of this GABA, since GABA (Bellion
and Metin, 2005) and GABA-synthesizing enzymes are demon-
strable by immunolocalisation in the ganglionic eminence regions.
At the same time, these cells may be regulated by GABA via
an autocrine feed-back mechanism. By analogy with immature
pyramidal neurones (Demarque et al., 2002), interneuronal pre-
cursors may be able to release GABA tonically in a calcium- and
soluble NSF-attachment protein receptor (SNARE)-independent
fashion, possibly from their growth cones, since the anatomically
defined presynaptic elements are not yet established at this early
stage (Bourgeois and Rakic, 1993; Balslev et al., 1996). It is of
interest however to note that these cells express some proteins
known to regulate the neurotransmitter release machinery such as
NXPH1 (Batista-Brito and Fishell, 2009), a peptide that binds to
α-neurexins (see below).

Interneuronal precursors express functional GABAA receptors,
predominantly containing the α4/β1/γ1 or γ2 subunits, GABA
transporters VIAAT and GAT1, as well as chloride transporters
NKCC1 and KCC2 (Laurie et al., 1992; Ma and Barker, 1995;
Batista-Brito and Fishell, 2009). GABAergic markers GAD65/67
and GABAB receptors are also expressed at the earliest stages of
neuronal lineage progression, and the autocrine activity of GABA
appears to regulate the neurite outgrowth in cells cultured from
these regions (Maric et al., 2001). Although GABA transporters
are expressed they are suggested to be non-functional at this stage
(Demarque et al., 2002), as the excitatory GABAergic currents
recorded are slow tonic currents, unaffected by the presence of
GABA transporter inhibitors.

Thus, interneuronal precursors within the proliferating zones
of the ganglionic eminence not only synthesize and probably
release GABA, but also express all the components of the mol-
ecular machinery necessary to respond to the secreted GABA. By
analogy with the well established regulation of both embryonic
(LoTurco et al., 1995; Haydar et al., 2000) and adult neuronal
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progenitors (Ge et al., 2007), a modulatory role for GABAergic
signaling at the early stages of interneuron proliferation can be
proposed. Additional direct evidence is, however, required.

MIGRATION OF INTERNEURONS
Following their birth and early specialization in the ganglionic
eminence, post-mitotic cortical interneuronal precursors embark
on a long journey to their final destinations within the cortex.
With a remarkable precision, they first follow tangential routes
along the cortical marginal, subventricular, or intermediate zones
(Figure 1). They then migrate into the growing cortical plate in
a radial direction (Huang, 2009b). Their progression along these
defined routes is regulated by a number of chemical cues which, in
a highly coordinated fashion, either attract or repel the migrating
interneurons. One such cue is semaphorine (Sema 3A and 3F), a
factor expressed in the lateral ganglionic eminence which inhibits
the entry of the migrating interneurons into this region (Marín
et al., 2001). Another example of factors influencing the direction-
ality of migrating interneurons are Slit proteins and their Robo
(Roundabout) receptors expressed throughout the ventricular and
subventricular zone of the ganglionic eminence. Although the
exact function of these proteins is unclear, knock out mice studies
have revealed miss-localization of calbindin-positive interneurons
in the striatum and the embryonic cortex, and altered morphology
of these cells (Andrews et al., 2008).

Ephrin EphA5/EphA4 receptors are expressed in the ventric-
ular zone and are chemo-repellent for MGE-derived neurones
(Zimmer et al., 2008). The other powerful cues include attrac-
tant neuregulin-1 (Yau et al., 2003; Flames et al., 2004), hepatocyte
growth factor/scatter factor (Powell et al., 2001), and chemokine
stromal-derived factor 1 (SDF-1; also known as CXCL12) which
was shown to influence tangential migration in the subventricu-
lar/intermediate zone and integration of interneurons into their
appropriate cortical layers (Stumm et al., 2003; Tiveron et al.,
2006; Li et al., 2008; Lopez-Bendito et al., 2008). The migra-
tion is strongly enhanced by neurotrophins (BDNF and NT4;
Polleux et al., 2002), glia-derived neurotrophic factor (GDNF;
Pozas and Ibanez, 2005), and glutamate acting on AMPA receptors
(Poluch et al., 2003). BDNF was also found to regulate the distri-
bution of Cajal–Retzius cells in the medial zone and migration of
interneurons within the cortex (Alcantara et al., 2006).

Cortical entry of tangentially migrating interneuronal precur-
sors arriving from the medial ganglionic eminence is enhanced
by GABA via GABAA receptors. As these cells progress toward the
cortex, they also show increased sensitivity to GABA (Cuzon et al.,
2006), in parallel with increased levels of expression of α1, α2, α5,
γ2, and γ3 subunits of GABAA receptors (Cuzon Carlson and Yeh,
2011). Enhanced motility of interneurons is dependent on GABAA

receptor-mediated depolarisation and downstream activation of
L-type calcium channels (Bortone and Polleux, 2009). However,
soon after interneurons enter the cortex their spontaneous intra-
cellular calcium oscillations and their migration terminate. This
was shown to be caused by an increase in the expression of KCC2
transporter which reduces the intracellular chloride concentration
and terminates depolarizing activity of GABAA receptors (Bor-
tone and Polleux, 2009). Possibly guided by intrinsic genetic cues
or extrinsic environmental cues such as GABA itself (Ganguly

et al., 2001; Kriegstein and Owens, 2001; Ludwig et al., 2003; Titz
et al., 2003; Toyoda et al., 2003; Rivera et al., 2004; Leitch et al.,
2005; Bortone and Polleux, 2009) or BDNF (Rivera et al., 2002,
2004), this change in the functional outcome of GABAA receptors
expressed by migrating interneurons was suggested to play a key
role in their correct positioning within the cortical layers. Once at
the right place, further development of specific characteristics of
some interneuronal classes, for example, those that express NPY,
may also be modified by activation of GABAA receptors, as well as
by BDNF released from their target neurones (Marty et al., 1996).

A DELAY IN THE MARGINAL ZONE
Thus, interneurons migrate tangentially from the regions in which
they are born, through the marginal zone and along the sub-
ventricular and intermediate zones, reaching their final positions
by radial migration within the cortex (Ang et al., 2003; Marín
and Rubenstein, 2001, for review). There is, however, a delay en
route. Interneurons are held in the marginal zone for a few days
before entering the cortical plate (Tanaka et al., 2006). Interactions
between the chemokine SDF-1 (CXCL12) and receptors expressed
by the interneurons (CXCR4) delay interneuron entry into the
cortex (Stumm et al., 2003; Tiveron et al., 2006; Li et al., 2008;
Lopez-Bendito et al., 2008). It is proposed that changes in respon-
siveness to CXCL12 are responsible for controlling the timing of
interneuron invasion of the cortical plate and that delayed entry
is essential for the proper integration of interneurons into the
cortical circuitry (Huang, 2009b, for review).

Since both pyramidal cells and at least some of the interneu-
rons that are destined for the same layer are born at the same
time (Miller, 1986a,b; Rymar and Sadikot, 2007), the delay in
the marginal zone would ensure that interneurons enter each
layer after the projection neurones have populated it (Pla et al.,
2006). From their birthdays it would appear that parvalbumin,
somatostatin, and somatostatin/calretinin-containing interneu-
rons from the dorsal and ventral medial ganglionic eminence
respectively (Butt et al., 2005; Wonders and Anderson, 2006; Won-
ders et al., 2008 for review) might be the first interneurons to
enter the cortex, following an inside-out pattern similar to that
of the pyramidal cells. Later, the VIP, calretinin/VIP, calbindin,
VIP/Chat (Choline acetyltransferase) containing interneurons and
NPY (neuropeptide Y) containing neurogliaform cells from the
caudal ganglionic eminence (Yozu et al., 2004; Vucurovic et al.,
2010; see also Batista-Brito et al., 2008; Gelman et al., 2009; Vitalis
and Rossier, 2011, for review) would enter, but may not follow
the conventional inside out pattern of destination. Since other
interneurons may be the preferred targets of some of these later
born VIP and calretinin-containing interneurons (by analogy with
the CA1 region of the hippocampus, Freund and Buzsáki, 1996;
Somogyi and Klausberger, 2005 for reviews), it seems reasonable
to propose that interneurons like to “make an entrance,” entering
their final layer destination only after their preferred targets have
arrived.

Interneurons do not therefore have, as it were, a blank corti-
cal canvas upon which to organize themselves. The complexity
of their axonal arbors most probably reflects their need to pro-
vide many opportunities for the formation of synaptic contacts
with appropriate targets. An important recent study (Wierenga
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et al., 2008, discussed in more detail below) confirms predictions
that might be made from detailed examination of mature axonal
and dendritic structures (see above), that inhibitory synapses
do not exploit exploratory postsynaptic filopodia as many cor-
tical excitatory synapses do, but must rely upon close physical
associations between presynaptic axons and postsynaptic den-
dritic shafts. Whether and where such close associations occur
and therefore where inhibitory synapses have opportunities to
form, will be dependent upon the interneuronal axon arborisa-
tion within the context of the local target distribution (see also
Stepanyants et al., 2004).

INPUTS TO INTERNEURONAL DENDRITES
Before leaving the question of target versus input selection, it is
of interest to note that interneuronal dendrites do not typically
exhibit the convoluted trajectories seen in pyramidal cells, nor
are mature interneurons more than very sparsely spiny. With the
exception of neurogliaform cells, each class, in each layer, appears
to develop a stereotypical dendritic branching pattern, with rela-
tively straight trajectories and few, if any spines. If (as suggested
above) the excitatory axons are not seeking targets, but position-
ing themselves to receive the “correct” postsynaptic contacts and
since the interneuronal dendrites are not convoluted or spiny,
there is perhaps an anatomical explanation for the less finely tuned
response properties of interneurons in primary sensory regions.
Naturally, whether a synapse forms and even more importantly
during development, whether it is maintained and strengthened,
depends on additional factors, such as coincident activity. How-
ever, the opportunities available to interneuronal dendrites to
“select” inputs, may be more limited by their own structure than
those available to pyramidal dendrites.

WHERE DO INHIBITORY SYNAPSES FORM?
In postnatal hippocampal cultures, the formation of synapses can
be observed over hours. Excitatory, glutamatergic connections
that formed between exploratory dendritic filopodia and axons
often became stable and exhibited structural and immunocyto-
chemical properties of mature synapses after a few hours. This
was not, however, the case for GABAergic synapses. Contacts
did form between dendritic filopodia and inhibitory axons, but
these contacts were always short-lived. Only those that formed
between an axon and a dendritic shaft, where these elements were
in close proximity, i.e., at cross-over points, developed into sta-
ble, mature synapses. Within 1 h, the new presynaptic bouton had
accumulated VGAT, though accumulation of postsynaptic scaffold
proteins such as gephyrin did not occur within this time frame
(Wierenga et al., 2008).

That there is a strong recognition signal between the pre and
postsynaptic components of a potential future synapse and that
excitatory and inhibitory cortical synapses employ different mech-
anisms and signals, is demonstrated by a calcium imaging study in
early postnatal hippocampal cultures. Calcium activity was much
higher in dendrites whose filopodia had made successful contacts
with excitatory axons. It was independent of glutamate receptor
activation suggesting that other, probably protein–protein inter-
actions across the future synaptic cleft mediate this response.

Moreover, this activity occurred within the first minute of the con-
tact forming and was higher in those contacts that subsequently
became stable. Activity in dendrites whose filopodia had failed
to make contacts was much lower and contact with GABAer-
gic axons produced no calcium signal (Lohmann and Bonhoef-
fer, 2008). Exploratory filopodia therefore recognize appropri-
ate excitatory axons and respond to contact with them with a
strong calcium signal, which is proposed to contribute to their
stabilization.

A large body of work, some of which is summarized below,
has studied GABAergic synapse formation in neuronal cultures
and co-cultures. These studies have provided extremely impor-
tant insight, but differences between in vivo and in vitro should
not be overlooked. One interesting point is the weeks it can take
for innervation to mature during development in vivo, compared
with the minutes to hours needed to form a functional (if not fully
mature) synapse in culture (Ahmari et al., 2000; Bresler et al., 2004;
see also Kirov et al., 1999). In addition to the many factors that
promote synaptogenesis, there must be some very strong controls
exerted to ensure that uncontrolled aberrant synaptogenesis does
not occur, either in the temporal, or in the spatial domain (see
L1CAM, PSA–NCAM below).

CELL ADHESION MOLECULES
The first critical step in the formation of a mature inhibitory
synapse in cortical structures appears, therefore, to be close prox-
imity of pre and postsynaptic elements and does not involve
postsynaptic filopodia. It has yet to be determined whether these
opportunities occur near randomly and are successful only at
“appropriate” cross-over points, i.e., when the class of interneu-
ron coincides with the appropriate postsynaptic compartment, or
whether each class of axonal arborisation forms these cross-over
points preferentially with appropriate potential targets. Further, if
the latter is true, is it the fine structure of the axonal arbor pre-
determined genetically, or is it the environment in which it finds
itself, that dominates, or it is a combination of the two?

THE L1 FAMILY OF IMMUNOGLOBULIN CELL ADHESION MOLECULES
Cell adhesion molecules can play an important role in determin-
ing the direction of inhibitory axon outgrowth (Panicker et al.,
2003, for review). This has been demonstrated in the develop-
ing cerebellum. Basket cell axons first make contact with Purk-
inje cell somata. Whether they then extend processes along the
axon initial segment to form pinceau synapses there, or make
aberrant synapses elsewhere, depends on a subcellular gradi-
ent of neurofascin186 (NF186). This is a member of the L1
family of immunoglobulin cell adhesion molecules (L1CAM),
which is recruited to the initial segment by ankyrin G, a mem-
brane adaptor protein that is restricted to the axon initial seg-
ment (Ango et al., 2004). More recently, interactions between
L1CAM and ankyrin have also been shown to be important for
the elaboration and branching of GABAergic basket cell axons
around postsynaptic somata in the prefrontal and cingulate cortex
(Guan and Maness, 2010).

The L1 family of immunoglobulin cell adhesion molecules
phosphorylation (on Tyr-1229) which is very high at P0, decreases
postnatally, to become nearly undetectable in the adult (at P60).
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This decrease in phosphorylation is correlated with increased
L1CAM-ankyrin binding and coincides with periods of synaptoge-
nesis and synapse remodeling (Guan and Maness, 2010). Another
cell adhesion molecule, CHL1 (Close Homolog of L1) which is
localized to cerebellar Bergmann glial cells and to stellate neurones
while their axons are developing, plays a critical role in the target-
ing of stellate axons to Purkinje cell dendrites. Without CHL1, the
axons show atypical branching and orientation, synaptogenesis is
reduced and synapses are not maintained (Ango et al., 2008). A
role for CHL1 in organizing the chaperoning of the presynaptic
SNARE complex, through interactions between the intracellu-
lar domain of CHL1 and Hsc70, has also been demonstrated
(Andreyeva et al., 2010).

NEURONAL CELL ADHESION MOLECULES
Neuronal cell adhesion molecules (NCAMs) have also been
shown to influence neurite outgrowth, axon branching, and
GABAergic synaptogenesis. Cell densities were not altered in
a mouse schizophrenia model in which the shedding of sol-
uble extracellular domains (ectodomains) of NCAM (NCAM-
EC) is enhanced. There were, however, abnormalities in cortical
GABAergic interneurons and reduced puncta immuno-positive
for the presynaptic GABAergic markers, GAD65, GAD67 and
GAT1 (GABA transporter 1), suggesting that fewer GABAergic
synapses had formed (Pillai-Nair et al., 2005). In a study that
focused on cortical basket cells, over-expression of NCAM-EC
(which would block interactions with membrane-bound NCAM)
disrupted neurite arborisation at the time when maximum growth
is expected. This resulted in a reduction in the numbers of periso-
matic synapses in vivo, while in cortical neurone cultures, soluble
NCAM-EC acted as a dominant inhibitor of NCAM-dependent
neurite branching and outgrowth (Brennaman and Maness, 2008).
In support of the suggestion that NCAM promotes neurite devel-
opment and synaptogenesis, while its soluble ectodomain inhibits
these processes, inhibition of the shedding of NCAM-EC in corti-
cal neurone cultures promoted neurite outgrowth and branching
(Hinkle et al., 2006).

Polysialic acid (PSA) masks NCAM function; a control that
appears critical for normal brain development (Weinhold et al.,
2005). Disruption of this control results in a severe phenotype,
including progressive hydrocephalus, postnatal growth retarda-
tion, and precocious death, despite the presence of NCAM. In
addition, wiring defects included accumulation of cells in the
anterior subventricular zone and rostral migratory stream. PSA
concentrations fall just after eye opening in the rodent, a decline
that does not occur if the eyes remain closed. This change in PSA-
masking of NCAM is therefore proposed to be activity-dependent
and to promote perisomatic inhibitory synaptogenesis and the
onset of ocular dominance plasticity. It is therefore proposed that
a major function of PSA is to down regulate NCAM function at
specific stages of development (Di Cristo et al., 2007).

GABA
Widespread remodeling of cortical circuitry during certain criti-
cal periods, such as that which follows eye opening in carnivores
and rodents, is essential for the establishment of mature function.

Activity in the circuit, driven by sensory input, is an essential con-
tributor to this developmental plasticity. For example, although
the targeting of specific postsynaptic subcellular compartments by
different classes of interneurons occurs in the absence of sensory
input (Di Cristo et al., 2004), visual deprivation retards the mat-
uration of perisomatic inhibitory innervation of pyramidal cells
(Chattopadhyaya et al., 2004) and the normal threefold increase in
GABAergic input, during the critical period, is prevented (Morales
et al., 2002). Moreover, this is a two way process. Evidence is grow-
ing that the functional maturation of inhibitory synapses triggers
activity-dependent changes during critical periods and that devel-
opment of perisomatic inhibition by parvalbumin-containing bas-
ket cells acting through α1-GABAA receptors drives these changes
(Hensch, 2005, for review).

Knock out of one isoform of glutamic acid decarboxylase
(GAD65) prevented the loss of visual responsiveness that is the
normal consequence of eye closure during the critical period. This
function was restored by infusion of the positive GABAA recep-
tor modulator Diazepam into the visual cortex (Hensch et al.,
1998). GABA itself, or its interactions with GABAA receptors also
appear to influence axonal branching and synapse formation. In
adolescent visual cortex, conditional knock down of GAD67 (but
not of GAD65) in parvalbumin-containing interneurons, resulted
in axonal branching defects in these neurones and a reduction
in inhibitory innervation of pyramidal somata. Maintenance of
those synapses that did form was not, however affected. Over-
expression of GAD67 in these cells accelerated the maturation of
somatic innervation. Since the knock down affected only PV-cells
and since a less severe modification (deletion of only one GAD1
allele), also resulted in reduced somatic innervation, it appears that
“spill-over” of GABA from neighboring synapses is insufficient to
promote axonal branching and synaptogenesis. It does, however
appear, that GABA itself is an essential component of the signal,
since somatic innervation could be rescued by blocking GABA-
uptake or by adding Diazepam. Moreover, activation of GABAB

receptors also appears to contribute, since addition of baclofen
rescued somatic innervation, at least in part, although terminal
branching remained reduced (Chattopadhyaya et al., 2007).

IMPORTANCE OF GABAA RECEPTORS IN SYNAPSE
FORMATION AND STABILIZATION
There is a general consensus that cortical synaptic GABAA recep-
tors contain two α-subunits, two β-subunits, and one γ-subunit.
While the β-subunits are required for transport of the pentomeric
receptors to the cell surface and may confer dendritic versus
somatic targeting of GABAA receptors and α-subunits may deter-
mine their localisation at specific synaptic subtypes (Thomson
and Jovanovic, 2010, for review), the γ-subunit is thought to be
essential for synaptic versus extrasynaptic localisation. When the
expression of γ-subunits is suppressed, the clustering of GABAA

receptors becomes disrupted and the GABAergic innervation of
neurones lacking γ2-receptors is profoundly reduced (Schweizer
et al., 2003; Li et al., 2005). That it is the clustering of GABAA

receptors at potential synaptic sites that is important for establish-
ing GABAergic innervation, was also indicated by experiments in
which neurones were transfected with dominant negative GODZ
[Golgi-specific DHHC (Asp-His-His-Cys) zinc finger protein], a
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member of the DHHC palmitoyl acyltransferase family. With-
out the palmitoylation of the γ2 subunit by GODZ, trafficking of
GABAA receptors to the cell surface is disrupted and GABAergic
innervation of transfected cells is reduced (Fang et al., 2006).

Clusters of GABAA receptors appear, therefore, to promote the
stabilization and maturation of presynaptic GABAergic terminals.
The converse is also true. Extrasynaptic GABAA receptors exhibit
much greater lateral mobility in the plasma membrane than synap-
tic receptors. The presence of a presynaptic terminal reduces lateral
mobility, enhancing the stabilization of GABAA receptor clusters
at synapses. Although it is unclear whether gephyrin controls the
formation or the stability of receptor clusters, or in some way reg-
ulates the numbers expressed on the cell surface, an important role
for gephyrin in facilitating the accumulation of GABAA receptors
at inhibitory synapses was indicated by the reduction in receptor
clusters and greater mobility of those that existed when gephyrin
was knocked down (Jacob et al., 2005).

INTERACTIONS BETWEEN NEUROLIGIN (NL) AND NEUREXIN
(NX)
Clearly, interactions between the presynaptic axon and postsynap-
tic cell are required for GABAergic synapses to form, mature and
survive. There has recently been intense interest in the interactions
between presynaptic neurexins (Nx) and postsynaptic neuroligins
(NL); interactions that are thought to be fundamental to the for-
mation of synapses. Of the four neuroligins, NL1, NL3, and NL4
are found primarily at excitatory and NL2 at inhibitory synapses
(Graf et al., 2004; Chih et al., 2005). In immature neurones, NL2
aggregates with GABAA receptors that do not (yet) face a GABAer-
gic nerve terminal, suggesting a role for NL2 in determining the
future locations of GABAergic synapses (Varoqueaux et al., 2004;
see also Ziv and Garner, 2004; Gerrow et al., 2006).

In sufficiently reduced systems, NL2 appears to play a near
essential role in the formation of functional GABAergic synapse-
like contacts. In neurone-HEK293 cell co-cultures, the transfected
HEK293 cells that express NL2 and GABAA receptors acquired
functional GABAergic axonal contacts, while those expressing only
GABAA receptors, or NL1 and GABAARs, did not (Dong et al.,
2007). Indeed, NL2 alone, expressed in non-neuronal cells, or
attached to beads (Graf et al., 2004), appears able to promote the
formation of presynaptic boutons. NL2 does not, however, appear
to be an absolute requirement for GABAergic synapse-formation
in vivo (Varoqueaux et al., 2006; Chubykin et al., 2007). In triple
NL-knock out mice (NL1, NL2, NL3), the number of synapses
appeared normal, but mismatches between pre and postsynaptic
proteins developed. For example, VGlut was found co-localized
with gephyrin and VIAAT with PSD95. Moreover, a range of exci-
tatory, and inhibitory synaptic vesicle markers were reduced in
these triple knock outs, e.g., the soluble SNARE regulators com-
plexin 2 and (SNAP, as well as KCC2 were reduced. However, the
presynaptic active zone proteins Munc13-1 and RIM1/2, SNAP-25,
and calbindin appeared unchanged, as did postsynaptic gephyrin,
β-dystroglycan and α1, and β2/3 GABAAR subunits (Varoqueaux
et al., 2006).

Neurorexins appear to recruit a number of important pro-
teins to the active zone, including presynaptic Ca2+-channels
(O’Connor et al., 1993). Indeed, in the non-viable triple

α-neurexin knock out, N and P/Q Ca2+-channels do not cluster
at active zones and action potential-triggered release fails (Missler
et al., 2003; Zhang et al., 2005). The stabilization of Nxs, particu-
larly Nx-1β, at the active zone is also regulated by its interactions
with postsynaptic proteins (like NLs) and the rate at which these
proteins turnover is reduced by neuronal activity and by presynap-
tic GABAB receptors (Fu and Huang, 2010). NLs interact with and
possibly localize and stabilize Nxs, these cross-cleft interactions
may therefore promote and modify a range of synaptic proper-
ties. Again, a role for specifying the location and types of synapse
and more subtle aspects of their function, rather than an absolute
requirement for their presence or absence, is suggested for the
NL–Nx interactions.

ALTERNATIVE SPLICING AND SYNAPSE SPECIFICITY
Presynaptic Neurexins (1α, 2α, 3α, 1β, 2β, 3β) exhibit extensive
alternative splicing (>2000 potential variants, Missler and Sudhof,
1998; Tabuchi and Sudhof, 2002) particularly within their laminin
neurexin sex (LNS) hormone binding protein domains. Six LNS
domains in α-neurexin and one in β-neurexin exhibit Ca2+-
dependent binding to extracellular domains of NLs, dystroglycan,
and neurexophilin and provide a high affinity α-latrotoxin binding
site (Craig and Kang, 2007, for review). By altering Ca2+-binding
affinity, splice insertions at these sites alter their interactions with
other proteins (Sheckler et al., 2006).

Alternative splicing of NLs is less extensive, but powerfully
influences their interactions with other proteins. Commensurate
with its localisation at GABAergic synapses, NL2 is not normally
alternatively spliced at splice site B. Splice insertion at this site
restricts the activity of neuroligins to glutamatergic synapses and
negates binding to the β-neurexin isoform that contains an inser-
tion in site 4 [Nx-1β4(+)]. The selectivity imposed by the B
insertion requires the N-glycosylation site in B (Boucard et al.,
2005). Neuroligin lacking the B-site insert also interacts with Nx-
1α, with or without a neurexin-site 4 (S4) insertion (Chih et al.,
2005). When expressed in COS cells, Nx-1β4(+) and Nx-1α4(−)
induced the inclusion of gephyrin and NL2, but not of PSD95
in postsynaptic densities in co-cultured neurones. Recombinant
Nx-1β4(+)-Fc, designed to block extracellular interactions with
NL, selectively reduced the density of VGAT-positive terminals
with no effect on the density of vGlut1-positive puncta (Chih
et al., 2006). Thus the S4 insert in Nx-1β permits binding to NL2,
which typically does not include the B-site insert, and promotes
clustering of postsynaptic GABAergic proteins. The S4 insert in
Nx-1β also decreases the ability of Nx-1β to cluster NL1, NL3, and
NL4 and postsynaptic glutamatergic scaffold proteins (Graf et al.,
2006). A developmental and possibly activity-driven decrease in
the inclusion of the S4 insert correlates with glutamatergic versus
GABAergic synaptogenesis (Kang et al., 2008).

Finally, the impact of deleting NL2 in the adult appears to
vary with the type of synapse involved. In adult CA1, gephyrin-
and GABAA receptor-positive puncta were significantly reduced
in stratum pyramidale (primarily basket cell synapses on pyra-
midal somata), but not in stratum radiatum (innervation from a
range of dendrite-preferring interneuronal subtypes). This was
despite the continuing presence of VIAAT immuno-labeling,
suggesting that inhibitory innervation of stratum pyramidale

Frontiers in Cellular Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 14 | 7

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Jovanovic and Thomson Development of cortical GABAergic innervation

was maintained, but with reduced postsynaptic specialization
(Poulopoulos et al., 2009).

FINAL REMARKS
From the early proliferating precursors within the ganglionic emi-
nence to morphologically and functionally diverse, and synap-
tically connected interneurons within the cortex, interneurons
undergo a process of remarkable transformation in time and space
guided by the activity of transcription factors, but shaped by con-
tinuous signaling to and from their surrounding environment
mediated by specific protein–protein interactions at the cell sur-
face. Although the main outline of this journey is increasingly
clear, a number of key steps toward the final complex pheno-
type of interneurons remain uncharacterized. One of the least
known, yet perhaps the most critical of these, is the outgrowth

and the coordination of developing axonal and dendritic arbors of
interneurons once they have reached their final destinations in the
cortex. This step remains challenging to tackle experimentally and
will require systematic in vivo structural and functional analysis.
The step that follows this, during which interneurons approach
their synaptic partners with a remarkable selectivity and form
morphologically and functionally highly specialized synapses is
equally challenging. A number of cell adhesion proteins discussed
here have been implicated in this step. However, the molecular key
to the synaptic specificity remains to be uncovered.
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