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Genetically encoded Ca2+ indicators (GECIs) are promising tools for cell type-specific and
chronic recording of neuronal activity. In the mammalian central nervous system, however,
GECIs have been tested almost exclusively in cortical and hippocampal pyramidal cells,
and the usefulness of recently developed GECIs has not been systematically examined in
other cell types. Here we expressed the latest series of GECIs, yellow cameleon (YC) 2.60,
YC3.60, YC-Nano15, and GCaMP3, in mouse cortical pyramidal cells as well as cerebellar
Purkinje cells using in utero injection of recombinant adenoviral vectors. We characterized
the performance of the GECIs by simultaneous two-photon imaging and whole-cell patch-
clamp recording in acute brain slices at 33 ± 2˚C. The fluorescent responses of GECIs
to action potentials (APs) evoked by somatic current injection or to synaptic stimulation
were examined using rapid dendritic imaging. In cortical pyramidal cells, YC2.60 showed
the largest responses to single APs, but its decay kinetics were slower than YC3.60 and
GCaMP3, while GCaMP3 showed the largest responses to 20 APs evoked at 20 Hz. In cere-
bellar Purkinje cells, onlyYC2.60 andYC-Nano15 could reliably report single complex spikes
(CSs), and neither showed signal saturation over the entire stimulus range tested (1–10 CSs
at 10 Hz).The expression and response ofYC2.60 in Purkinje cells remained detectable and
comparable for at least over 100 days. These results provide useful information for select-
ing an optimal GECI depending on the experimental requirements: in cortical pyramidal
cells, YC2.60 is suitable for detecting sparse firing of APs, whereas GCaMP3 is suitable
for detecting burst firing of APs; in cerebellar Purkinje cells, YC2.60 as well as YC-Nano15
is suitable for detecting CSs.

Keywords: genetically encoded Ca2+ indicators, adenovirus, two-photon imaging, patch-clamp recording, cortical

pyramidal cell, cerebellar Purkinje cell, acute brain slice

INTRODUCTION
Understanding the spatio-temporal patterns of neuronal activ-
ity underlying brain function is one of the fundamental goals in
neuroscience research, and requires techniques for the large-scale
recording in living animals. The repertoire of in vivo multi-cell
recording techniques has been enriched by the recent establish-
ment of in vivo Ca2+ imaging, a combination of multi-photon
imaging and bolus loading of synthetic Ca2+ dyes (Stosiek et al.,
2003). In vivo Ca2+ imaging allows not only multi-cell record-
ing based on fast Ca2+ transients generated by action potentials
(APs; Markram et al., 1995; Schiller et al., 1995; Helmchen et al.,
1996), but also the precise localization of recorded cells. It has
thus contributed to unveiling the functional micro-architecture of

many brain regions (Ohki et al., 2005, 2006; Kerr et al., 2005, 2007;
Sullivan et al., 2005; Rothschild et al., 2010; Smith and Häusser,
2010),which was difficult to achieve using classical electrode-based
techniques. However, the lack of cell type specificity, the unre-
peatability, and the short-lived nature (typically less than 1 day) of
imaging using synthetic Ca2+ dyes has remained an obstacle for
further applications.

Genetically encoded Ca2+ indicators (GECIs; for review,
Miyawaki, 2005; Mank and Griesbeck, 2008), which are Ca2+-
sensitive fluorescent proteins (FPs), can in principle offer an
excellent solution to these problems, since they can be stably
and specifically expressed in a targeted cell type by the use of
appropriate promoters and transfection methods. [Ca2+]i changes
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cause structural changes of the Ca2+-sensing domains in GECIs,
which further cause changes in either (1) fluorescence resonance
energy transfer (FRET) efficiency between two FPs or (2) the
fluorescent intensity of a single circularly permutated (cp) FP,
depending on the design of GECIs. GECIs have been success-
fully applied in many model organisms including Caenorhabditis
elegans (Kerr et al., 2000), Drosophila melanogaster (Fiala et al.,
2002), and Danio rerio (Higashijima et al., 2003), where elec-
trode penetration and exogenous dye application are technically
challenging. In the mammalian central nervous system (CNS),
initial attempts using prototypical GECIs were somewhat disap-
pointing (Hasan et al., 2004; Pologruto et al., 2004), but recently
developed GECIs have been shown to display improved perfor-
mance (Heim et al., 2007; Mank et al., 2008; Wallace et al., 2008;
Tian et al., 2009; Horikawa et al., 2010; Lütcke et al., 2010) and
have been used to address biologically relevant questions (e.g.,
Dombeck et al., 2010). Nevertheless, most applications of GECIs
in the mammalian CNS have been limited to cortical and hip-
pocampal pyramidal cells, and how GECIs perform in other cell
types has remained largely unknown. There are a few exceptions
where GCaMP2 has been tested in cerebellar granule cells as well
as Purkinje cells (Díez-García et al., 2005, 2007; Akemann et al.,
2009), but the relationship between fluorescent changes and intra-
cellular electrical responses of imaged cells was not investigated,
nor was the performance of multiple GECIs compared under the
same experimental conditions. The application of novel GECIs
to broader contexts should be facilitated by quantitative compar-
ison of their performance in reference to intracellular electrical
signals.

In the present study, we selected the latest series of FRET-
based GECIs (Figure 1A): yellow cameleon (YC) 2.60, YC3.60
(Nagai et al., 2004), YC-Nano15 (Horikawa et al., 2010), and
the latest cpGFP-based GECI, GCaMP3 (Tian et al., 2009). We
expressed each of them in mouse cortical pyramidal cells as well
as in cerebellar Purkinje cells by in utero injection of recombinant
adenoviral vectors (Hashimoto and Mikoshiba, 2003, 2004). All
the YCs above utilize calmodulin (CaM) and M13 (Ca2+/CaM-
binding peptide derived from skeletal muscle myosin light chain
kinase) as Ca2+-sensing domain, but their in vitro affinities are
modified by molecular engineering: YC3.60 carries a mutation in
EF-hand motif of CaM (E104Q) resulting in a larger dissociation
constant (K d) value (∼250 nM) than that of YC2.60 (∼95 nM),
while YC-Nano15 has an elongated linker between CaM and M13
(GGGGS) than that used in YC2.60 and YC3.60 (GGS), result-
ing in an extremely smaller K d value (∼15 nM). GCaMP3, which
also utilizes CaM and M13 as Ca2+-sensing domain, was con-
structed by mutagenesis of GCaMP2, resulting in slightly lower K d

value (660 nM; GCaMP2, 840 nM), improved baseline brightness,
and expanded dynamic range. Using simultaneous patch-clamp
recording and two-photon imaging in acute brain slices at physi-
ologically relevant temperatures (33 ± 2˚C), we characterized the
performance of these GECIs, and investigated which GECIs could
be optimal for applications in each cell type.

MATERIALS AND METHODS
All experimental procedures were performed in accordance with
the guidelines of the Animal Experiment Committee of the

FIGURE 1 | Adenovirus-mediated expression of GECIs. (A) The domain
structure of GECIs. ECFPΔC11, enhanced CFP with C-terminal 11 amino
acids deleted; CaM, calmodulin; M13, Ca2+/CaM-binding peptide from
skeletal muscle myosin light chain kinase; cp173Venus, circularly permuted
Venus; cpEGFP, circularly permutated enhanced green fluorescent protein.
(B) The structure of recombinant adenovirus vector for expression of GECIs.
CAG pro, cytomegalovirus enhancer and β-actin promoter; WPRE,
woodchuck hepatitis virus post-transcriptional regulatory element; BGHpA,
bovine growth hormone polyadenylation signal. (C) Confocal image of a
parasagittal section from an E14:P20 YC2.60 mouse. Each cortical layer (L)
position is indicated in white. (D) Confocal image of the neocortex
immunostained with anti-CaMKII antibody, a marker for excitatory
pyramidal cells. (E) Confocal image of a parasagittal section from an
E11:P21 YC2.60 mouse. ML, molecular layer; GCL, granule cell layer. (F)

Confocal image of the cerebellum immunostained with anti-IP3R1 antibody,
a marker for Purkinje cells.

RIKEN Brain Science Institute and with the UK Animal (Scientific
Procedures) Act 1986.

EXPRESSION OF GECIs
cDNAs encoding YC2.60, YC3.60, YC-Nano15, and GCaMP3
(Figure 1A) were subcloned into a cosmid vector carrying the
cytomegalovirus enhancer and β-actin (CAG) promoter, wood-
chuck hepatitis virus post-transcriptional regulatory element
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(WPRE), and bovine growth hormone (BGH) polyadenylation
signal (Figure 1B). Recombinant adenovirus was generated either
by full-length DNA transfer method (Takara) or by COS–TPC
method (Miyake et al., 1996) using HEK293 cells (kindly provided
by the Cell Resource Center for Biomedical Research, Institute of
Development, Aging and Cancer, Tohoku University). Viral clones
were screened by restriction mapping of their genomic DNA, and
appropriate clones were amplified and then purified by double
cesium chloride step gradient ultracentrifugation (Kanegae et al.,
1994). The titer of purified virus was measured by plaque form-
ing assay with HEK293 cells. Purified viral solution (total 0.2
to 6 × 107 plaque forming units) was pressure-injected (IM-300,
Narishige) into the lateral ventricle of ICR mice on embryonic day
(E) 11 or E12 for expression in cerebellar Purkinje cells or E14 for
cortical layer 2/3 pyramidal cells, respectively. In the following, a
mouse virus-injected at E14 and sacrificed at P20, for instance, is
described as “E14:P20.”

IMMUNOHISTOCHEMISTRY
Mice were transcardially perfused with phosphate buffer saline
(PBS) followed by 4% paraformaldehyde in 0.1 M phosphate
buffer (pH 7.4) under ether anesthesia. The brain was dissected
out, cryoprotected by serial equilibration in 10, 15, and 20% (w/v)
sucrose in PBS at 4˚C and frozen in O.C.T compound (Sakura
Fineteh). Parasagittal sections (14–20 μm) were prepared on a
cryostat (CM1850, Leica), attached to MAS-coated glass slides
(Matsunami) and subjected to immunohistochemistry as follows.
Cryosections were washed three times with PBS, blocked with 10%
normal goat serum (NGS) in PBS containing 0.2% TritonX-100
(PBS-T) for 1 h at room temperature, incubated with primary
antibodies diluted by 1% NGS in PBS-T overnight at 4˚C, washed
three times with PBS, incubated with species-specific secondary
antibodies (anti-rabbit or anti-mouse IgG) conjugated with Alexa-
488 or 594 (Invitrogen) diluted by 1% NGS in PBS-T (1:500) for
1 h at room temperature and washed three times with PBS. The
sections were then coverslipped with VECTASHIELD (Vector) or
ProLong Gold (Invitrogen).

The primary antibodies used were as follows: anti-GFP (rabbit,
1:1000; mouse, 1:200, both from MBL), anti-calcium/calmodulin-
dependent protein kinase (CaMKII; rabbit, 1:500, Epitomics), and
anti-inositol 1,4,5-triphosphate receptor type1 (IP3R1; mouse,
1:1000, generated in our laboratory). The sections were imaged
by an inverted confocal laser-scanning microscope (IX-81 and FV-
1000, Olympus) equipped with a 10 × (UPlanApo NA 0.40, Olym-
pus) or 40 × objective (UPlanApo NA 1.00, Olympus). Alexa-488
was excited by 473 nm laser and its emission between 490 and
550 nm was collected; Alexa-594 was excited by 559 nm laser and
its emission between 600 and 700 nm was collected.

ELECTROPHYSIOLOGY AND TWO-PHOTON IMAGING IN ACUTE BRAIN
SLICE
Mice were decapitated under ether anesthesia, and parasagittal
slices (250–300 μm) were prepared using a vibratome (VT1000S,
Leica) on postnatal day (P) 15–57 (except data in Figure 4; Table 5,
where mice between P113 and 114 were used), as described pre-
viously (Davie et al., 2006). Brain dissection and slice preparation
were performed in ice-cold cutting solution containing 120 mM

Choline-Cl, 3 mM KCl, 8 mM MgCl2, 1.25 mM NaH2PO4, 26 mM
NaHCO3, 20 mM d-glucose, and transferred to artificial cere-
bral spinal fluid (ACSF) containing 125 mM NaCl, 2.5 mM KCl,
25 mM NaHCO3, 25 mM d-glucose, 1.25 mM NaH2PO4, 2 mM
CaCl2, and 1 mM MgCl2, incubated at 34˚C for 30–60 min and
preserved at room temperature until use. Slices were perfused at
approximately 2 ml/min with ACSF, which was constantly bubbled
with carbogen and warmed up to 33 ± 2˚C by an in-line heater
(TC-324B, Warner Instruments). GECI-expressing cells with non-
fluorescent nuclei (Tian et al., 2009) were identified by epifluo-
rescence and targeted for patch-clamp recording under infra-red
differential interference contrast microscopy (Olympus). Electro-
physiological signals were low-pass filtered at 2–10 kHz by four-
pole Bessel filter and acquired at 20–50 kHz using a combination
of MultiClamp 700B (Molecular Devices) and ITC-16 or ITC-18
(Instrutech) controlled by AxoGraphX software (AxoGraph Sci-
entific). For whole-cell current-clamp recording, borosilicate glass
pipettes (4–7 MΩ) were filled with the internal solution containing
140 mM K-gluconate, 4 mM NaCl, 10 mM HEPES, 4 mM Mg-ATP,
0.3 mM Na-GTP, and 5 mM Na2-phosphocreatine (pH 7.3 titrated
with KOH, 285–295 mmol/kg). APs were elicited by brief somatic
current pulses (1–3 nA, 2 ms) delivered through recording patch
pipettes. Synaptic responses were elicited by extracellular electrical
stimulation (1–50 V, 200 μs) by pipettes filled with the HEPES-
buffered solution containing 150 mM NaCl, 2.5 mM KCl, 10 mM
HEPES, 2 mM CaCl2, 1 mM MgCl2 (pH 7.3 titrated with NaOH).
For pyramidal cell recording, no holding current was injected;
for Purkinje cell recording, holding current up to −500 pA was
injected to suppress spontaneous firing.

Fluorescent signals were acquired in line-scan mode (approx-
imately 200 Hz) with an upright two-photon laser-scanning
microscope (BX-61WI and FV300, Olympus) equipped with a
60 × water-immersion objective (LUMPlan Fl/IR NA 0.90, Olym-
pus). The Ti:sapphire laser (Maitai VF-TIM, Spectra-Physics) for
excitation was tuned to 840 nm for YCs or 920 nm for GCaMP.
Emitted fluorescence was short-pass filtered (650 nm, Olym-
pus), split with a dichroic mirror (for YC, 510 nm, Chroma; for
GCaMP3, 570 nm, Olympus), band-pass filtered (for YC, 460–500
and 520–550 nm for cyan and yellow fluorescence, respectively,
Chroma; for GCaMP3, 495–540 nm, Olympus), and detected by
photomultipliers (R3896, Hamamatsu).

The electrophysiological recording and two-photon imaging
were synchronized by a trigger pulse generated upon laser-
scanning.

DATA ANALYSIS
After subtraction of dark noise on the photomultipliers, the base-
line ratio of yellow to cyan fluorescence (R0, YCs) or baseline
fluorescence (F0, GCaMP3) was calculated as the mean ratio or
mean fluorescence, respectively, of the approximately 1-s win-
dow immediately before stimulus onset (baseline period). Sub-
sequently, the fractional change of the ratio (ΔR/R0, YCs) or the
fractional change of the fluorescence (ΔF/F0, GCaMP3) was calcu-
lated. Peak amplitude was calculated from ΔR/R0 or ΔF/F0 trace
filtered with a 35-ms moving window and defined as the maximum
value between the stimulus onset and 500 ms after the stimulus ces-
sation. The signal-to-noise ratio (SNR) was calculated as the peak

Frontiers in Cellular Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 18 | 3

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Yamada et al. GECIs in mouse brain slice

amplitude divided by the baseline noise (the SD of the raw trace
during the baseline period). Both peak amplitude and SNR were
calculated from individual trials and averaged over three trials for
each stimulus condition (Table 2, 4, and 5). Responses were judged
to be suprathreshold when SNR exceeds 2. Half rise time and
half decay time were calculated from the 3-trial-averaged and fil-
tered traces for 10 APs (pyramidal cells) or 5 complex spikes (CSs;
Purkinje cells) only when responses were suprathreshold. Statis-
tical difference was assessed using one-way ANOVA (p = 0.05)
followed by Tukey’s post-hoc tests unless otherwise noted. Data
analysis was performed with AxoGraphX, Igor Pro 6 (WaveMet-
rics), NeuroMatic (http://www.neuromatic.thinkrandom.com/),
Fluoview (Olympus), ImageJ (US National Institutes of Health),
Excel (Microsoft), and GraphPad Prism4 (GraphPad software). All
values are presented as mean ± SD unless otherwise noted.

RESULTS
ADENOVIRUS-MEDIATED EXPRESSION OF GECIs IN CORTICAL
PYRAMIDAL CELLS AND CEREBELLAR PURKINJE CELLS
In order to express GECIs in the mouse brain, we per-
formed in utero injection of adenoviral vectors (Hashimoto and
Mikoshiba, 2003, 2004). This allows “neuronal birthday-specific”
introduction of a foreign gene, since adenoviral infection is tem-
porarily short (up to 4 h) and the adenoviral gene is transferred
exclusively to the neuronally committed-daughter cells divided
from stem cells on the ventricular surface of embryonic brain.
We previously used LacZ-carrying adenovirus and demonstrated
that injection at E14 led to expression in cortical superficial layer
and that injection at E11 or E12 led to expression in cortical deep
layer as well as cerebellar Purkinje cells. We performed immuno-
histochemical analysis to test if this specific expression pattern is
reproducible with adenoviral vectors carrying GECIs (Figure 1).
The injection of YC2.60-carrying adenovirus at E14 resulted in
expression in the superficial layer of neocortex (Figure 1C). The
majority (97%; n = 119 of 123 cells) of expressing cells were
immunopositive for CaMKII (Figure 1D), indicating that they
were pyramidal cells. The injection of YC2.60-carrying adenovirus
at E11 or E12 resulted in expression in cortical deep layer (data not
shown) as well as cerebellum (Figure 1E). All (n = 76 of 76 cells)
of the expressing cells in cerebellum were immunopositive for
IP3R1, indicating that they were Purkinje cells. These results show
that in utero injection of recombinant adenoviral vectors carrying
GECIs could lead to their specific expression in cortical pyramidal
cells as well as cerebellar Purkinje cells, successfully reproducing
our previous results.

COMPARISON OF GECIs IN CORTICAL LAYER 2/3 PYRAMIDAL CELLS
We characterized the performance of GECIs expressed in the corti-
cal layer 2/3 pyramidal cells by simultaneous two-photon imaging
and whole-cell patch-clamp recording in acute brain slice prepa-
rations (Figure 2A). The expression of GECIs did not have any
significant effects on the electrophysiological properties of pyra-
midal cells (Table 1). We evoked APs by somatic current injection
and recorded fluorescent changes by line-scan imaging at api-
cal dendritic segments (Figures 2B,C). Responses to 1, 2, 5, 10,
and 20 APs at 20 Hz were analyzed (Figures 2D,E; Table 2). In
response to single APs, YC2.60 as well as YC-Nano15 showed

signal changes well over the threshold (SNR = 2), YC3.60 showed
barely suprathreshold changes, but GCaMP3 did not; YC2.60
showed the largest SNR among all, and YC-Nano15 showed sig-
nificantly larger SNR than GCaMP3 (Figure 2F; Table 2; YC2.60,
4.3 ± 1.7, n = 19; YC3.60, 2.1 ± 0.4, n = 11; YC-Nano15, 3.1 ± 1.0,
n = 14; GCaMP3, 1.3 ± 0.6, n = 7). Responses to single APs were
suprathreshold in 89% (n = 17 of 19) of YC2.60-expressing cells
and 93% (n = 13 of 14) of YC-Nano15-expressing cells, but only
in 55% (n = 6 of 11) of YC3.60-expressing cells and 14% (n = 1
of 7) of GCaMP3-expressing cells. YC2.60, YC3.60, and GCaMP3
showed nearly linear increase of SNR up to 20 APs in majority of
cells, while YC-Nano15 showed signal saturation to a large num-
ber of APs, as expected from its extremely high affinity to Ca2+
(Figures 2D,E). In response to 20 APs, GCaMP3 showed the largest
SNR among all (YC2.60, 23 ± 12, n = 10; YC3.60, 19 ± 2.3, n = 8;
YC-Nano15, 8.0 ± 3.9, n = 7; GCaMP3, 41 ± 15, n = 6). Half rise
time values (Figure 2G) of YC2.60 (185 ± 55 ms, n = 10) and
YC-Nano15 (159 ± 28 ms, n = 7) were significantly smaller than
those of YC3.60 (214 ± 28 ms, n = 8) and GCaMP3 (288 ± 18 ms,
n = 6), whereas half decay time values (Figure 2H) of YC2.60
(2.31 ± 0.95 s, n = 10) and YC-Nano15 (2.38 ± 0.92 s, n = 7) were
significantly larger than those of YC3.60 (0.40 ± 0.06 s, n = 8) and
GCaMP3 (0.22 ± 0.06 s, n = 6).

These results show that in cortical pyramidal cells, YC2.60
would be suitable for reliable detection of sparse firing of APs,
while GCaMP3 would be suitable for detecting large number of
APs due to its large SNR and fast signal decay.

COMPARISON OF GECIs IN CEREBELLAR PURKINJE CELLS
We next characterized the performance of GECIs expressed in
cerebellar Purkinje cells by simultaneous two-photon imaging and
whole-cell patch-clamp recording in acute brain slice preparations
(Figure 3A). The expression of GECIs did not have any signifi-
cant effects on the electrophysiological properties of Purkinje cells
(Table 3). Since Purkinje cells generate very small amplitude of
Ca2+ transients in response to simple spikes upon somatic cur-
rent injection (Lev-Ram et al., 1992), we evoked CSs to examine
the performance of GECIs in Purkinje cells. CSs were evoked
by extracellular stimulation in the granule cell layer and flu-
orescent changes were recorded by line-scan imaging of distal
dendritic segments (Figures 3A,B), where maximal Ca2+ changes
were previously reported (Konnerth et al., 1992; Miyakawa et al.,
1992). Responses to 1, 2, 5, and 10 CSs at 10 Hz were analyzed
(Figures 3C,D; Table 4). In response to single CSs,YC2.60, andYC-
Nano15 showed suprathreshold signal changes, whereas YC3.60
and GCaMP3 did not; SNR of YC2.60 and YC-Nano15 were sig-
nificantly larger than those of YC3.60 and GCaMP3 (Figure 3E;
Table 4; YC2.60, 2.3 ± 0.8, n = 17; YC3.60, 1.1 ± 0.3, n = 11; YC-
Nano15, 3.3 ± 1.6, n = 12; GCaMP3, 1.0 ± 0.4, n = 8). Responses
to single CSs were suprathreshold in 59% (n = 10 of 17) of YC2.60-
expressing cells and 83% (n = 10 of 12) of YC-Nano15-expressing
cells, but in none of YC3.60-expressing cells (n = 0 of 12) or
GCaMP3-expressing cells (n = 0 of 8). YC2.60 and YC-Nano15
showed larger SNR than YC3.60 and GCaMP3 over the entire
stimulus range tested, both displaying little sign of saturation.
Half rise time values (Figure 3F) were not significantly different
among GECIs (YC2.60, 356 ± 171 ms, n = 8; YC3.60, 300 ± 41 ms,
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FIGURE 2 | Quantitative comparison of GECIs in cortical layer 2/3

pyramidal cells. (A) Maximum intensity projection images of an E14:P19
YC2.60-expressing pyramidal cells (left), and expanded single z -section
images within the white boxes (right). A patch pipette is drawn with dotted
lines. Line-scan imaging was performed along the proximal apical dendrite as
indicated by the red line. (B) Line-scan images of a YC2.60-expressing
pyramidal cell in response to 20 action potentials (APs) at 20 Hz evoked during
the period indicated. Vertical scale bar, 5 μm. (C) Traces calculated from
line-scan images in (B) were averaged across three trials and smoothed by
35 ms moving window. ΔR/R0, FRET signal change; V m, membrane potential.
The scale bar in V m inset, 200 ms. (D) ΔR/R0 (YC) or ΔF/F0 (GC3) traces in
response to 1 (black), 2 (blue), 5 (green), 10 (orange), and 20 (red) APs evoked

at 20 Hz. Each trace is the mean across cells (n = 10 cells for YC2.60, 8 for
YC3.60, 7 for YC-Nano15, and 6 for GCaMP3). (E) Signal-to-noise ratio (SNR)
plotted against the number of APs, calculated for individual pyramidal cells
(gray) and the mean across cells (black). For 1 AP, n = 19 for YC2.60, n = 11 for
YC3.60, n = 14 for YC-Nano15 and n = 7 for GCaMP3; For 2, 5, 10, and 20 APs,
n = 10 for YC2.60, n = 8 for YC3.60, n = 7 for YC-Nano15, and n = 6 for
GCaMP3. (F) SNR in response to single APs taken from (E). Each dot
represents a value taken from an individual cell, and the bar represents the
mean across cells. (G,H) Mean half rise time (G) and mean half decay time
(H) of smoothed trial-averaged traces in response to 10 APs at 20 Hz. Error
bars show SD. *p < 0.05, **p < 0.01 in Tukey’s post-hoc test following
one-way ANOVA.
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Table 1 | Electrophysiological properties of layer 2/3 pyramidal cells expressing GECIs.

Electrophysiological property YC2.60 YC3.60 YC-Nano15 GCaMP3 no expression p-value

(n = 22) (n = 16) (n = 14) (n = 7) (n = 11)

V m
a (mV) −83 ± 5.4 −82 ± 7.4 −81 ± 6.5 −89 ± 4.1 −82 ± 8.7 0.14

Rm
b (MΩ) 203 ± 78 191 ± 53 209 ± 59 208 ± 81 139 ± 42 0.061

AP amplitudec (mV) 105 ± 10 98 ± 12 100 ± 6.8 108 ± 8.2 107 ± 19 0.18

AP thresholdd (mV) −47 ± 3.3 −45 ± 5.4 −46 ± 5.4 −50 ± 3.1 −47 ± 7.4 0.37

AP half widthe (ms) 2.3 ± 0.8 2.7 ± 1.7 2.5 ± 0.6 1.6 ± 0.5 1.7 ± 0.5 0.055

All values are corrected for liquid junction potential (12 mV).
aResting membrane potential.
bInput resistance.
cAmplitude of action potential measured from the resting membrane potential.
dThreshold voltage for action potential generation defined as the point where the first temporal derivative of the voltage first exceeds 50 mV/ms.
eFull width of action potential measured at half the amplitude.

Table 2 | Responses of GECIs in cortical layer 2/3 pyramidal cells.

Number of action

potentials

YC2.60 (A; n = 10) YC3.60 (B; n = 8) YC-Nano15 (C; n = 7) GCaMP3 (D; n = 6) ANOVA for SNR

SNR (Peak amplitude, %) p-value of ANOVA/Tukey’s post-hoc test

1 4.3 ± 1.7 (18 ± 11) 2.1 ± 0.4 (7.3 ± 2.2) 3.1 ± 1.0 (14 ± 4.2) 1.3 ± 0.6 (5.2 ± 1.9) p < 0.0001 / A > B, C, D; C > D

2 7.3 ± 3.9 (34 ± 20) 3.3 ± 0.5 (12 ± 4.2) 3.9 ± 0.8 (19 ± 4.1) 2.6 ± 0.7 (8.6 ± 1.8) p = 0.0011 / A > B, C, D

5 12 ± 6.4 (58 ± 32) 6.9 ± 0.9 (27 ± 10) 6.1 ± 1.9 (28 ± 8.0) 9.2 ± 3.7 (32 ± 12) p = 0.027 / A > C

10 17 ± 10 (82 ± 48) 12 ± 1.4 (49 ± 17) 7.2 ± 3.2 (34 ± 12) 23 ± 9.1 (84 ± 36) p = 0.0041 / D > C

20 23 ± 12 (113 ± 56) 19 ± 2.3 (77 ± 25) 8.0 ± 3.9 (39 ± 15) 41 ± 15 (142 ± 63) p < 0.0001 / A > C; D >A, B, C

Signal-to-noise ratio and peak amplitude in each stimulus condition; the former in each stimulus condition was statistically compared among GECIs. The numbers of

recorded cells in the table apply to 2, 5, 10, and 20 APs; for 1 AP, n = 19 for YC2.60, n = 11 for YC3.60, n = 14 for YC-Nano15, and n = 7 for GCaMP3. In the rightmost

corner, the combinations that showed significant differences in Tukey’s post-hoc tests (p < 0.05) are presented following p-value of ANOVA.

Table 3 | Electrophysiological properties of cerebellar Purkinje cells expressing GECIs.

Electrophysiological property YC2.60 YC3.60 YC-Nano15 GCaMP3 no expression p-value

(n = 18) (n = 11) (n = 12) (n = 8) (n = 11)

V m
a (mV) −79 ± 6.5 −80 ± 3.7 −77 ± 7.6 −79 ± 4.8 −79 ± 9.7 0.76

Rm
b (MΩ) 40 ± 30 38 ± 32 37 ± 17 36 ± 11 44 ± 18 0.95

AP amplitudec (mV) 75 ± 7.3 74 ± 8.7 74 ± 5.9 70 ± 12 74 ± 9.1 0.69

AP thresholdd (mV) −52 ± 6.3 −55 ± 6.0 −53 ± 5.2 −54 ± 3.9 −56 ± 7.7 0.50

AP half widthe (ms) 0.42 ± 0.11 0.37 ± 0.09 0.43 ± 0.18 0.39 ± 0.11 0.40 ± 0.07 0.79

Data presented as inTable 1.

Table 4 | Responses of GECIs in cerebellar Purkinje cells.

Number of complex

spikes

YC2.60 (A; n = 8) YC3.60 (B; n = 7) YC-Nano15 (C; n = 7) GCaMP3 (D; n = 8) ANOVA for SNR

SNR (Peak amplitude, %) p-value ofANOVA/Tukey’s

post-hoc test

1 2.3 ± 0.8 (18 ± 8.2) 1.1 ± 0.3 (6.8 ± 2.6) 3.3 ± 1.6 (17 ± 7.7) 1.0 ± 0.4 (3.2 ± 1.7) p < 0.0001 / A > B, D; C > B, D

2 4.2 ± 2.2 (34 ± 20) 2.1 ± 0.4 (9.4 ± 2.8) 6.5 ± 2.6 (33 ± 14) 1.3 ± 0.9 (4.0 ± 3.3) p < 0.0001 / A > D; C > B, D

5 9.8 ± 5.6 (75 ± 43) 3.8 ± 1.7 (17 ± 8.2) 15 ± 7.3 (70 ± 27) 3.3 ± 4.2 (12 ± 18) p = 0.0006 / C > B, D

10 14 ± 9.1 (111 ± 63) 5.5 ± 3.6 (25 ± 16) 21 ± 12 (102 ± 39) 6.2 ± 9.2 (23 ± 39) p = 0.0086 / C > B, D

Data presented as inTable 2.The numbers of recorded cells in the table apply to 2, 5, and 10 CSs; for 1 CS, n = 17 forYC2.60, n = 11 forYC3.60, n = 12 forYC-Nano15,

and n = 8 for GCaMP3.

Frontiers in Cellular Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 18 | 6

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Yamada et al. GECIs in mouse brain slice

FIGURE 3 | Quantitative comparison of GECIs in cerebellar Purkinje cells.

(A) Maximum intensity projection image (Venus emission) of an E12:P56
YC2.60-expressing Purkinje cell (left), and an expanded single z -section image
within the blue box (right). Line-scan imaging was performed along the distal
dendrite as indicated by the red line. Rec, an eletrode for patch-clamp
recording; stim, an electrode for extracellular stimulation. (B) Smoothed
ΔR/R0 traces of YC2.60 in response to a single complex spike (CS) for
individual trials (gray) and the mean across trials (black). (C) ΔR/R0 (YC) or
ΔF/F0 (GC3) traces in response to 1 (black), 2 (blue), 5 (green), 10 (red) CSs
evoked at 10 Hz. Each trace is the mean across cells (n = 8 cells for YC2.60, 7

for YC3.60, 7 for YC-Nano15, and 8 for GCaMP3). (D) SNR plotted against the
number of CSs, calculated for individual Purkinje cells (gray) and the mean
across cells (black). For 1 CS, n = 17 for YC2.60, n = 11 for YC3.60, n = 12 for
YC-Nano15, and n = 8 for GCaMP3; for 2, 5, and 10 CS, n = 8 for YC2.60, n = 7
for YC3.60, n = 7 for YC-Nano15, and n = 8 for GCaMP3. (E) SNR in response
to single CSs taken from (D). Each dot represents a value taken from an
individual cell, and the bar represents the mean across cells. (F,G) Mean half
rise time (F) and mean half decay time (G) of trial-averaged traces in response
to 5 CSs at 10 Hz. Error bars show SD. *p < 0.05, **p < 0.01 in Tukey’s
post-hoc test following one-way ANOVA.
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n = 7; YC-Nano15, 299 ± 30 ms, n = 7; GCaMP3, 334 ± 61 ms,
n = 4), whereas half decay time values (Figure 3G) of YC2.60
(1.26 ± 0.58 s, n = 8) and YC-Nano15 (1.74 ± 0.54 s, n = 7) were
significantly larger than those of YC3.60 (0.25 ± 0.11 s, n = 7) and
GCaMP3 (0.16 ± 0.07 s, n = 4).

These results show that YC2.60 and YC-Nano15 are suitable for
detecting CSs in cerebellar Purkinje cells despite the slow decay
kinetics.

THE STABILITY OF GECI EXPRESSION AND RESPONSES
One of the major advantages of GECIs over synthetic Ca2+ dyes
should be its stable expression over time, allowing its application to
tracking long-term plasticity of neuronal activity. It was previously
demonstrated that the performance of GECIs could remain stable
for weeks to months after expression in cortical pyramidal cells
(Mank et al., 2008; Tian et al., 2009; Horikawa et al., 2010). To test
if this is also the case in Purkinje cells, we prepared acute cerebellar
slices from YC2.60-expressing mice older than P100. The expres-
sion of YC2.60 was stable (Figure 4A), and its responses to a train
of CSs were not significantly different from those in younger ani-
mals (P22–56; Figures 4B,C; Table 5; unpaired Student’s t -test).
These results confirm the idea that GECIs can be promising tools
for chronic recording of neuronal activity.

DISCUSSION
We tested the performance of YC2.60, YC3.60, YC-Nano15, and
GCaMP3 in mouse cortical pyramidal cells and cerebellar Purk-
inje cells. Our results suggest that (1) YC2.60 would be suitable for
reliable detection of sparse firing of APs in cortical pyramidal cells;
(2) GCaMP3 would be suitable for detecting burst firing of APs
in pyramidal cells; and (3) YC2.60 as well as YC-Nano15 would
be suitable for detecting CSs in cerebellar Purkinje cells. To our
knowledge, this is the first study that quantitatively compares the
performance of multiple GECIs in Purkinje cells, and thus should
provide useful implications for the broader application of GECIs
in mammalian CNS.

COMPARISON WITH PREVIOUS STUDIES USING THE SAME GECIs
In the present study, we performed the first quantitative charac-
terization of the performance of YC2.60 in multiple mammalian
neurons, and found that it exhibits good performance with lit-
tle sign of signal saturation both in cortical pyramidal cells and
cerebellar Purkinje cells.

In our previous work,YC-Nano15 showed much higher affinity
than YC2.60 in Ca2+ titration experiment using purified proteins
(K d of YC-Nano15, 15 nM; K d of YC2.60, 95 nM; Horikawa et al.,
2010). In the present study, we found (1) in pyramidal cells YC2.60
was as sensitive to single APs as YC-Nano15 and showed bet-
ter responses to larger number of APs without signal saturation
and (2) in Purkinje cells they showed comparable responses, YC-
Nano15 showing slightly (but not significantly) better SNR over
the entire stimulus range tested (1–10 CSs at 10 Hz). The fact that
YC-Nano15 was still responsive to stimulation without being sat-
urated by the resting [Ca2+]i (∼53 nM in cortical pyramidal cells
(Schiller et al., 1995) and ∼67 nM in Purkinje cells (Konnerth
et al., 1992) implies that its affinity may decrease when expressed
in neurons (see Hendel et al., 2008). YC-Nano15 still seems to have
a higher affinity than YC2.60 in cortical pyramidal cells, whereas
there seems to be little difference between YC-Nano15 and YC2.60
in Purkinje cells. This inconsistency between the two cell types will
be discussed in the next section.

The relatively low reliability of single AP detection with YC3.60
and GCaMP3 in cortical L2/3 pyramidal cells contrasts with pre-
vious in vitro results (Tian et al., 2009; Lütcke et al., 2010), but
is reminiscent of in vivo results in the same studies. This could
be explained in part by the difference in the recording temper-
atures: ∼33˚C in our study vs. room temperature (22–24˚C) for
their in vitro experiments. Higher temperature should make Ca2+
transients smaller and faster, probably due to more active Ca2+
extrusion mechanisms and narrower APs (Markram et al., 1995).
These factors should in turn decrease responses of GECIs, as pre-
dicted and demonstrated by the same group (Hires et al., 2008;
Mao et al., 2008). Indeed, we also found that SNR of GCaMP3 in

FIGURE 4 | Stability ofYC2.60 expression and responses.

(A) Maximum intensity projection image (Venus emission) of
an E12:P113 YC2.60-expressing Purkinje cell. (B) ΔR/R0 traces
in response to 1 (black), 2 (blue), 5 (green), 10 (red) CSs evoked at 10 Hz,

recorded from YC2.60-expressing Purkinje cells at P113–114. Each trace is the
mean across cells (n = 5). (C) SNR plotted against the number of CSs,
calculated for individual Purkinje cells (gray) and the mean across cells
(black, n = 5).
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Table 5 | Responses ofYC2.60 in cerebellar Purkinje cells from older

mice.

Number of

complex spikes

SNR [Peak amplitude (%)] Student’s t -test

for SNR

1 2.5 ± 0.7 (13 ± 4.7) p = 0.75

2 4.1 ± 0.9 (23 ± 7.9) p = 0.89

5 9.8 ± 3.6 (58 ± 27) p = 0.98

10 18 ± 8.8 (109 ± 60) p = 0.48

Data presented as in Table 2. SNR of YC2.60 in Purkinje cells from older mice

(P113–114; n = 5) was compared with that from younger mice (P22–56; see

Table 4) by unpaired two-tailed Student’s t-test in each stimulus condition.

response to single APs was larger at room temperature (2.2 ± 0.4,
n = 4) than at 31–35˚C (1.3 ± 0.6, n = 7; p < 0.05, unpaired two-
tailed Student’s t -test). Taken together, our results underscore the
importance of appropriately designed in vitro experiments for
accurate estimation of GECI performance in vivo.

DIFFERENCE IN GECI PERFORMANCE BETWEEN PYRAMIDAL CELLS
AND PURKINJE CELLS
Previous studies using synthetic Ca2+ dyes show that Ca2+
transients generated by single APs in cortical pyramidal cells
(262 ± 25 nM, Helmchen et al., 1996) and those by single CSs
in Purkinje cells (∼150 nM, Wang et al., 2000) are comparable
in vitro, and that both are detectable in vivo with comparably
high fidelity (up to ∼97% for L2/3 pyramidal cells (Kerr et al.,
2005) and ∼95% for Purkinje cells (Ozden et al., 2009). How-
ever, all the tested GECIs had a tendency to show remarkably
smaller responses in Purkinje cells than in pyramidal cells, as is
evident from the smaller SNR (for instance, SNR of YC2.60 in
response to single pulse of stimulation were 4.3 ± 1.7 in pyra-
midal cells and 2.3 ± 0.8 in Purkinje cells, respectively) and the
smaller percentage of cells with suprathreshold responses (for
instance, YC2.60 showed suprathreshold responses to single pulse
of stimulation in 89% of pyramidal cells and 59% of Purkinje
cells, respectively). The mechanism responsible for this strikingly
different performance of GECIs in these two cell types is unclear,
but it may be accounted for, at least in part, by the much higher
endogenous Ca2+ buffering capacity in Purkinje cells (Fierro and
Llano, 1996; Helmchen et al., 1996; Maeda et al., 1999), which
presumably reflects the total activity of Ca2+-binding proteins. We

speculate that a larger amount of Ca2+-binding proteins expressed
in Purkinje cells might have decreased the performance of all the
GECIs tested and also somehow masked the difference between
YC2.60 and YC-Nano15. In line with the notion above that GECI
performance could be dramatically altered in different cell types
expressing different amount of Ca2+-binding proteins, it was pre-
viously reported that the performance of YCs containing wild type
CaM could be interfered with CaM in a concentration-dependent
manner (Miyawaki et al., 1999; Palmer et al., 2004, 2006).

IMPLICATIONS FOR FUTURE IMPROVEMENT AND APPLICATION OF
GECIs
YC2.60 and YC-Nano15 reliably responded to single APs and CSs,
but their decay kinetics were slow, which could be a disadvan-
tage for detecting individual events at frequency higher than 1 Hz
(Horikawa et al., 2010). In contrast, YC3.60 and GCaMP3 showed
faster signal decay,but they did not reliably detect small numbers of
spikes. Resolving this tradeoff between sensitivity and on/off kinet-
ics should be the focus of future improvement or development of
GECIs.

Nevertheless, YC2.60 and YC-Nano15 might be fast enough for
detecting spontaneous AP firing of cortical L2/3 pyramidal cells
as well as spontaneous CS firing of Purkinje cells in vivo, which
are both known to occur at relatively low frequency, typically 1 Hz
or less (Thach, 1968; Margrie et al., 2002). It would thus be inter-
esting to apply these GECIs to monitoring long-term plasticity of
spontaneous activity in the context of learning, development and
disease.
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