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The neuronal potassium-chloride co-transporter 2 [indicated thereafter as KCC2 (for pro-
tein) and Kcc2 (for gene)] is thought to play an important role in the post natal excitatory to
inhibitory switch of GABA actions in the rodent hippocampus. Here, by studying hippocampi
of wild-type (Kcc2+/+) and Kcc2 deficient (Kcc2−/−) mouse embryos, we unexpectedly
found increased spontaneous neuronal network activity at E18.5, a developmental stage
when KCC2 is thought not to be functional in the hippocampus. Embryonic Kcc2−/− hip-
pocampi have also an augmented synapse density and a higher frequency of spontaneous
glutamatergic and GABA-ergic postsynaptic currents than naïve age matched neurons.
However, intracellular chloride concentration ([Cl−]i) and the reversal potential of GABA-
mediated currents (EGABA) were similar in embryonic Kcc2+/+ and Kcc2−/− CA3 neurons.
In addition, KCC2 immunolabeling was cytoplasmic in the majority of neurons suggesting
that the molecule is not functional as a plasma membrane chloride co-transporter. Collec-
tively, our results show that already at an embryonic stage, KCC2 controls the formation
of synapses and, when deleted, the hippocampus has a higher density of GABA-ergic and
glutamatergic synapses and generates spontaneous and evoked epileptiform activities.
These results may be explained either by a small population of orchestrating neurons in
which KCC2 operates early as a chloride exporter or by transporter independent actions of
KCC2 that are instrumental in synapse formation and networks construction.
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INTRODUCTION
Kcc2 is a potassium-chloride co-transporter that is exclusively
expressed in neurons of central nervous system (CNS; Payne
et al., 1996; Williams et al., 1999). It plays an important role in
regulating intracellular chloride concentrations ([Cl−]i), thereby
heavily impacting the magnitude of the inhibitory action of
GABA in physiological processes (Rivera et al., 1999). In a wide
range of animal species and brain structures, [Cl−]i is elevated
in immature neurons leading to depolarizing and often excita-
tory actions of GABA (Ben-Ari et al., 1989, 2007; Leinekugel
et al., 1997, 1999; Owens and Kriegstein, 2002; Caiati et al.,
2010). GABA acquires progressively its hyperpolarizing actions
in a time and brain structure dependent manner. In hippocam-
pus of rat and mice, it is roughly completed by the second
postnatal week. Extensive investigations suggest that this devel-
opmental sequence is determined by a progressive reduction of
the NKCC1 chloride importer and a parallel progressive enhanced
operation of the KCC2 chloride exporter (Rivera et al., 1999;
Gulyas et al., 2001; Stein et al., 2004). The expression of KCC2
is thought to lead to a reduction of [Cl−]i and a shift of the

actions of GABA from excitation to inhibition, although other
chloride regulators – channels and transporters – take part in
this sequence (Medina and Chudotvorova, 2006; Blaesse et al.,
2009).

Several observations suggest that KCC2 is less operational in
immature than adult neurons. Thus, in the hippocampus of mice
and rats KCC2 labeling is first detected at the end of embryonic
development, peaking during the second postnatal week (Stein
et al., 2004; Blaesse et al., 2006). KCC2 starts reducing [Cl−]i in
hippocampal pyramidal neurons 5 days after birth in rats (Khirug
et al., 2005; Nardou et al., 2011). In addition, at P0–P1, KCC2 is
in an inactive phosphorylated form (Rinehart et al., 2009) and
forms monomers (Blaesse et al., 2006), whereas in mature struc-
tures (>P20), KCC2 is dephosphorylated (Rinehart et al., 2009)
and is expressed as multimers (Blaesse et al., 2006). Collectively
these studies suggest that in cortical structures of mice and rats the
KCC2 is not functional as a transporter during embryonic devel-
opment, starting to contribute to the neuronal ion homeostasis
during the first postnatal week and becoming fully operational at
P10–P15.
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If KCC2 is not operative in embryos, its inactivation is expected
to bear little effects on the embryonic maturation of brain net-
works. We now report that already at E18.5, Kcc2−/− mice hip-
pocampal networks generate spontaneous epileptiform events
and neurons have more GABA-ergic and glutamatergic synapses
and currents than wild-type embryos (Kcc2+/+) suggesting a
requirement for the co-transporter in embryos. Yet, perforated
patch-clamp recordings revealed no significant difference of [Cl−]i

between embryonic Kcc2−/− and Kcc2+/+ hippocampal neurons
and KCC2 was primarily cytoplasmic in Kcc2+/+ suggesting that
the co-transporter does not control [Cl−]i in most embryonic
pyramidal neurons of the hippocampus. These results are com-
patible with either a transport-unrelated function of embryonic
KCC2 acting to control synapse formation and the emergence
of networks and/or a cell autonomous action of KCC2 regulat-
ing [Cl−]i in a small population of instructive neurons that play
major roles in neuronal growth, synapse formation and network
activity.

MATERIALS AND METHODS
ANIMALS AND GENOTYPING
The study was performed on E18.5 embryos of Kcc2+/+ and
Kcc2−/− mice as characterized previously (Hubner et al., 2001).
The animal care and handling was performed in accordance with
the guidelines of the European Union Council and the INSERM
regulations on the use of laboratory animals.

HIPPOCAMPAL PREPARATION
Intact hippocampi were prepared as described previously
(Khalilov et al., 1997). After cervical dislocation, the brain was
removed quickly and submerged in ice-cold oxygenated (95%
O2/5% CO2), choline-containing artificial CSF (ACSF) cutting
solution, (in mM): 110 choline chloride, 2.5 KCl, 1.25 NaH2PO4,
0.5 CaCl2, 7 MgCl2, 25 NaHCO3, 7 d-glucose, pH 7.4. The
hemispheres were separated, and after removing the cerebellum,
the frontal part of the neocortex, and surrounding structures,
intact hippocampi were dissected from the septohippocampal
complex and transferred into a beaker containing oxygenated
ACSF containing (in mM):126 NaCl, 3.5 KCl, 2.0 CaCl2, 1.3
MgCl2, 25 NaHCO3, 1.2 NaH2PO4, and 11 d-glucose (pH 7.4)
and incubated at least 1 h before use. The intact hippocampi
were placed into the conventional fully submerged chamber
and superfused with oxygenated ACSF (30–32˚C, 5–6 ml/min).
The hippocampi were fixed by entomological needles to the
sylgard-covered bottom.

Extracellular field potentials and multi unit activities (MUA)
were recorded in the intact in vitro hippocampal preparations
using tungsten wire electrodes (diameter: 50 μm, California Fine
Wire, Grover Beach, CA, USA) and a low-noise multichannel
DAM-8A amplifiers (WPI, GB; low filter: 0.1 Hz; high filter: 3 kHz;
×1000). Electrical stimulations were performed with a bipolar
electrode (10–20 V, 40 μs). The signals were digitized using an
analog-to-digital converter (Digidata 1440A, Axon Instruments,
USA). pCLAMP 10.0.1.10 and Clampfit 10.1 (Axon Instruments,
USA), MiniAnalysis 6.03 (Synaptosoft, Decatur, CA, USA) and
Origin 7.5 (Microcal Software, USA) programs were used for the
acquisition and analysis of Extracellular field potentials and MUA.

ACUTE HIPPOCAMPAL SLICES
Hippocampal transverse slices (300 μm) from the middle portion
of each hippocampus were cut with a vibrating microtome (Leica
VT 1000S, Germany) in ice-cold oxygenated (95% O2/5% CO2),
choline-replaced ACSF and were incubated at room temperature
in ACSF. Slices were allowed to recover for at least 90 min before
recording.

Whole-cell recordings were performed from CA3 area in volt-
age clamp mode at different holding potential using Axopatch
200B (Axon Instruments, USA). The whole-cell patch pipettes
had a resistance of 6–8 MΩ when filled with solution con-
taining (in mM): 110 cesium methanesulfonate, 20 CsCl, 10
HEPES, 2 MgCl2, 1 EGTA, 10 Na-phosphocreatine, 4 ATP–Mg,
and 0.4 GTP–Na. The pH of the intracellular solutions was
adjusted to 7.2 and the osmolarity to 280–290 mOsmol l−1. The
access resistance (15–30 MΩ) and input resistance (1–2 GΩ) were
continuously monitored throughout the experiment. Occasional
recordings with higher access resistance, lower input resistance,
or those that displayed more than 20% changes in access and
input resistances were discarded from analysis. External stim-
uli were applied using bipolar electrodes placed in the stratum
radiatum (CA3 region). Stimulation intensity was adjusted dur-
ing the first min of whole-cell recording to evoke 10–20 pA
responses.

Gramicidin-perforated patch-clamp recordings were per-
formed as described previously (Tyzio et al., 2003).

Drugs used were purchased from Sigma, (4-aminopyridine,
4-AP) or Tocris (bicuculline, CNQX, D-APV).

IMMUNOHISTOCHEMISTRY
The expression of KCC2 was studied by immunohistochemistry.
Brains from E18.5 mice were fixed in paraformaldehyde 4% for
24 h, then embedded in optical cutting temperature (OCT) com-
pound (Tissue-Tek, Sakura Finetek Inc., NL, USA) before serially
cut, in 15 μm sections, with a cryostat. Selected sections were
processed for immunocytochemistry. They were first incubated
for 2 h, at room temperature, with a mixture of 5% normal goat
serum (NGS) in PBS with 0.3% Triton X100. They were then,
incubated overnight at 4˚C with the primary antibody diluted
in PBS with 1% NGS and 0.1% Triton X100. After rinsing in
PBS, sections were incubated with the fluorescent-labeled sec-
ondary antibody (1/1000, Chemicon, France) for 1 h at room
temperature. The primary antibodies were an anti-KCC2 antibody
(rabbit; dilution 1/1000; US Biological, Euromedex, France) or an
anti-synaptophysin antibody (mouse, dilution 1/150, Chemicon,
France).

Images were taken using a Zeiss confocal microscope (Wet-
zlar, Germany). The quantitative analysis of the fluorescence was
performed in blind using Metamorphe software (Roper Scientific,
USA). For analysis, on each image we manually drew regions com-
prising stained tissue and excluding nuclei and casual irregularities
(empty spaces). The threshold of the detection of fluorescence
clusters was set as Mean + 3 SD of the fluorescence level in Kcc2−/−
sections. The classification of the KCC2-positive neurons to groups
“cytoplasm” or “membrane region” was done manually relying on
the detectable fluorescence band on the periphery or center of the
cell. All acquisitions and analysis were done blind.
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RESULTS
EPILEPTIFORM EVENTS IN EMBRYONIC Kcc2 −/− HIPPOCAMPUS
Field recordings of ongoing neuronal activity in intact hippocampi
isolated from E18.5 Kcc2+/+ and Kcc2−/− embryos revealed major
differences between genotypes. In accordance with earlier studies,
wild-type hippocampi generated the characteristic network recur-
rent population events that were reminiscent of giant depolarizing
potentials (GDPs; Ben-Ari et al., 1989, 2007; Khalilov et al., 1999).
In striking contrast, in Kcc2−/− hippocampi, the spontaneous net-
work events were significantly more frequent, longer-lasting, had
higher amplitudes, and contained more spikes (Figures 1A,B).
Another difference was that while in wild-type hippocampi 98.3%
of spontaneous events had characteristic bi-phasic form (exam-
ples in Figures 1A and 2A, six experiments, 10 analyzed events
per experiment), in Kcc2−/− hippocampi the majority of spon-
taneous events (72.7%, n = 5, 30 events per experiment) had
sharp tri-phasic form (see example in Figure 2B). These elec-
trical activities were similar to epileptiform events observed in
epileptic tissue (Cohen et al., 2002; Khalilov et al., 2003; Nardou
et al., 2009, 2011; Wittner et al., 2009). Consistent with different
spontaneous activities, evoked field potentials in Kcc2−/− hip-
pocampi differed clearly from those evoked in Kcc2+/+ structures
(Figures 1A,B).

To characterize the contribution of GABA-ergic and gluta-
matergic neurotransmission into generation of the spontaneous
network activities we first exposed acute hippocampi to a CNQX,
a blocker of AMPA receptors, and found that it fully abolished
spontaneous events in both Kcc2+/+ and Kcc2−/− hippocampi

(not shown, n = 5 per condition). By contrast, the application
of Bicuculline, a GABAA receptor antagonist, exerted different
effects on Kcc2+/+ and Kcc2−/− hippocampi. In wild-type struc-
ture it produced a transient (4–5 min) inhibition of the spon-
taneous GDPs (Figure 2A). During first 4 min of the exposure
to bicuculline the frequency decreased more than fourfold from
(3.5 ± 0.5) × 10−3 Hz to (0.6 ± 0.1) × 10−3 Hz, n = 6. This is in
keeping with the important contribution of depolarizing GABA
in their generation (see Ben-Ari et al., 1989; Khalilov et al., 1999;
Ben-Ari et al., 2007; Cherubini et al., 2011). However, within
longer time, the bicuculline led to the generation of interictal-
like events (IILE) [(6.8 ± 0.7) × 10−3 Hz, n = 6] reflecting the
dual action of GABA, a depolarization, and a shunting action
that, when blocked, enhances neuronal excitability (Khalilov et al.,
1999). In contrast to naïve hippocampi, the ongoing spontaneous
network activities recorded in Kcc2−/− hippocampi were fully
blocked by bicuculline even during long-lasting applications. As
shown in Figure 2B, ongoing activity did not re-appear even after
>20 min of application (n = 5). To unravel synchronized activi-
ties, we applied the K+ channel blocker 4-aminopyridine (4-AP,
100 μM, n = 6) that triggered IILEs similar to those observed
spontaneously prior to the application of bicuculline (Figure 2B).
Thus, embryonic Kcc2−/− hippocampi generate spontaneous
events that require depolarizing/excitatory actions of GABA as
they are fully blocked by GABA receptor antagonists. Yet, the
properties of these events are reminiscent of events recorded in
epileptic tissues (Cohen et al., 2002; Khalilov et al., 2003). Under-
standing of the cellular and molecular perturbations leading to

FIGURE 1 | Ongoing neuronal network activities in hippocampi (E18.5)

from wild-type (Kcc2 +/+) and Kcc2 knock-out (Kcc2 −/−) mice. (A)

Examples of field potential recordings from intact hippocampi of Kcc2+/+ (left)

and Kcc2−/− (right) mice. (B) Mean ± SEM data characterizing spontaneous
events in experiments similar to those illustrated in (A), n = 9. * = P < 0.01,
t -test.
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FIGURE 2 | Differential effects of the bicuculline on the spontaneous

network activity in Kcc2+/+ (A) and Kcc2−/− (B) acute hippocampi. Field
potential recordings from the CA3 region of E18.5 hippocampi. Notice that
in Kcc2+/+ hippocampi the application of the bicuculline produced transient
inhibition of spontaneous GDPs, whereas in Kcc2−/− hippocampi it
produced long-lasting inhibition of spontaneous epileptiform activity.

change of the network properties in embryonic Kcc2−/− hip-
pocampi and in epileptic tissue is an important subject for separate
study.

PREMATURE FUNCTIONAL EXPRESSION OF GLUTAMATERGIC PSCs IN
Kcc2 −/− NEURONS
To determine the alterations of GABA and glutamatergic postsy-
naptic currents (PSCs) in Kcc2−/− in comparison to naïve neurons,
we used whole-cell recordings from CA3 pyramidal neurons. We
showed previously that in immature rat hippocampus most of
CA1 pyramidal neurons are silent (Tyzio et al., 1999). In agree-
ment with this, 14 out of 19 neurons recorded in E18.5 Kcc2+/+
mice hippocampi were fully silent, generating neither sponta-
neous nor evoked PSCs (Figure 3A1), four neurons showed GABA
PSCs (Figure 3A3,4), one neuron generated both GABA and glu-
tamate PSCs but none had only glutamate PSCs as summarized
in Figure 3D. In striking contrast, in Kcc2−/− slices most neurons
were already active at the same age; only 5 out of 22 recorded
neurons were silent, 17 neurons showed spontaneous GABA-ergic
and/or glutamatergic PSCs (Figures 3B,D). Also, electrical stimuli
generated long-lasting multisynaptic responses in Kcc2−/− slices
that were never observed in Kcc2+/+ slices (n = 19; Figure 3C).

FIGURE 3 | Increased synaptic activity of CA3 pyramidal neurons in

Kcc2−/− hippocampus. (A) Representative recordings of spontaneous
synaptic activity in slices from Kcc2+/+ mouse hippocampus. Most neurons
were synaptically silent (A1) although spikes could be induced by the
application of positive voltage step (A2). Only few neurons showed
spontaneous synaptic activity (A3). In the illustrated neuron all postsynaptic
currents were GABA-mediated (GABA PSCs) as they had long-lasting
kinetic, reversed at −30 mV and were inhibited by bicuculline (A4). (B)

Spontaneous postsynaptic currents in Kcc2−/− neurons (B1). Application of
bicuculline revealed the presence of spontaneous glutamatergic
postsynaptic currents (glutamate PSCs) at V h = −70 mV (B2). The amplitude
and kinetic of electrically isolated spontaneous GABA PSCs (V h = 0 mV) did
not differ in Kcc2+/+ and Kcc2−/− neurons (statistics not shown). (C) Evoked
postsynaptic responses in Kcc2−/− neurons lasting from hundreds of
milliseconds (C1) to few seconds (C2). (D) Relative proportion of silent
neurons and neurons generating spontaneous GABA PSCs and/or
glutamate PSCs in CA3 region of Kcc2+/+ (19 neurons, six experiments) and
Kcc2−/− (22 neurons, six experiments) hippocampal slices.

Consistent with the electrophysiology data, immunolabeling
with anti-synaptophysin antibody revealed significant differences
between Kcc2−/− and Kcc2+/+ hippocampal sections (Figure 4).
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FIGURE 4 | Immunofluorescence of synaptophysin in CA3 hippocampal

neurons. (A) Synaptophysin and DAPI fluorescence in CA3 pyramidal and
radiatum cell layers of Kcc2+/+ and Kcc2−/− hippocampi as indicated.
Immunofluorescence of synaptophysin was pseudocolored (see scale on
the right) for better cluster visualization. Immunofluorescence of DAPI is
shown in blue. (B) Normalized density and brightness of synaptophysin
positive clusters in CA3 pyramidal layer and CA3 radiatum layer of Kcc2+/+

and Kcc2−/− hippocampi. Mean ± SEM, n = 3; * = P < 0.05, t -test.

Blind analysis revealed that Kcc2 silencing induced a sixfold
increase in the density of synaptophysin-positive clusters in CA3
pyramidal layer and twofold increase in CA3 stratum radiatum
layer (Figure 4B, left panel). Moreover, in addition to increase
of cluster density, there was also a significant increase of clus-
ter brightness in Kcc2−/− sections (2.8-fold in pyramidal layer
and 1.6-fold in radiatum layer; Figure 4B, right panel) indicating
an enhanced synapse formation in Kcc2−/− versus Kcc2+/+ mice.
Thus, KCC2 controls the development of synaptic connections in
the embryonic mice hippocampi.

EMBRYONIC KCC2 IMMUNOLABELING IS CYTOPLASMIC IN MOST
NEURONS
As shown in Figure 5A, KCC2 was clearly detectable in CA3 pyra-
midal region of Kcc2+/+ already 1 day before birth (E18.5), but not

in Kcc2−/− hippocampi. In E18.5 sections the average intensity of
KCC2 immunofluorescence in both CA3 pyramidal and radiatum
layers was at least twofold higher than the background fluorescence
measured in Kcc2−/− sections and constituted approximately 50%
of the KCC2 immunofluorescence measured in sections obtained
from older (P7) Kcc2+/+ animals (Figure 5B). At E18.5 the
KCC2-positive immunofluorescence was detected in 13.1 ± 1.9%
(n = 3) of CA3 pyramidal neurons (Figure 5C). In the remaining
86.9 ± 1.9%, the level of KCC2 immunofluorescence was within
the range of background variability (<mean + 3 SD; Figure 5C).
Among KCC2-positive neurons, in the majority of cells the labeling
was localized in the cytoplasm (Figure 5A, insert i1). Only 17.8%
of KCC2-positive neurons (corresponding to 2.3 ± 0.5% of all ana-
lyzed neurons) included KCC2 in membrane region (Figure 5A,
insert i2). Consistent with previous reports (Rivera et al., 1999;
Stein et al., 2004), the expression of the KCC2 increased during
development: at P7 82.7 ± 0.9% neurons were KCC2-positive and
79.3% of these neurons expressed KCC2 in their membrane region
(Figure 5A, insert i4 and Figure 5C).

Thus, already during embryonic hippocampal development,
there is an expression of the KCC2 in individual neurons of CA3
pyramidal layer that is mainly localized in the cytoplasm. Some
neurons at this stage of development start to express KCC2 in
membrane region.

EGABA IS DEPOLARIZING IN Kcc2 +/+ AND Kcc2 −/− MICE
Earlier studies using perforated patch-clamp recordings [at P1–P3
(Stein et al., 2004)] or single channel analysis (Tyzio et al., 2007)
have shown that EGABA was strongly depolarizing in embryonic
CA3 and CA1 pyramidal neurons, respectively. Using gramicidine-
perforated patch-clamp recordings, we did not find a significant
difference between EGABA recorded from CA3 neurons of Kcc2+/+
and Kcc2−/− embryonic hippocampi (P = 0.87, Figure 5D) con-
firming that [Cl−]i is not regulated at this early developmental
stage by KCC2. It is however possible that in naïve neurons KCC2
plays an important role in a small subpopulation of neurons (see
Discussion).

DISCUSSION
The most conspicuous result of our study is that the ongoing
neuronal activity is dramatically increased in hippocampi iso-
lated from Kcc2−/− embryos when compared to age matched
naïve structures. Kcc2−/− embryonic CA3 neurons express more
GABA-ergic and glutamatergic PSCs, possess higher density of
synaptic connections and show generation of epileptiform activ-
ities. Clearly, abolishing KCC2 accelerates synapse formation and
enhances neuronal and network activity, suggesting that KCC2
modulates neuronal maturation, synapse formation and network
operation at embryonic stage. The generation of epileptiform
activities by networks deprived of KCC2 may impact the con-
struction of functional networks illustrating the importance of
this co-transporter for proper murine hippocampus develop-
ment already in utero. This finding is not readily compatible with
the suggested lack of embryonic function of the co-transporter
(see Medina and Chudotvorova, 2006; Blaesse et al., 2009 for
review). We show that although KCC2 does not appear to regulate
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FIGURE 5 | Expression of the KCC2 in CA3 hippocampal neurons. (A)

Immunoreactivity of KCC2 (red) in CA3 pyramidal neurons of Kcc2+/+ and
Kcc2−/− mouse as indicated. Notice the absence of the KCC2-positive
immunoreactivity in Kcc2−/− samples characterizing high specificity of the
antibody. The arrowhead in insert i1 illustrates typical KCC2-positive CA3
neuron in E18.5 Kcc2+/+ hippocampi with immunoreactivity localized in
cytoplasm. Asterisks in insert i2 indicate KCC2-negative neurons, whereas
arrow indicates a rare neuron with KCC2 immunoreactivity localized in
membrane region. For comparison, insert i4 illustrates a typical KCC2
immunoreactivity distribution in CA3 neurons of P7 Kcc2+/+ mouse that is
localized in most of neurons in membrane region (shown by arrows).
n = nucleus. (B) Quantification of the KCC2 immunoreactivity in CA3
pyramidal and radiatum layers of Kcc2−/− (E18.5) and Kcc2+/+ (E18.5 and P7)
hippocampi. Mean ± SEM, n = 3. The difference between any two values in
both plots is highly significant (P < 0.01, t -test). (C) Age-dependent
distribution of neurons’ populations expressing KCC2 in membrane region
(“membrane”), in the cytoplasm only (“cytoplasm”), and without
detectable KCC2 immunoreactivity (“no signal”). Normalized values
obtained after analysis of 50–100 neurons per animal, n = 3 Kcc2+/+ mice
per age. The background (no signal) level of fluorescence was determined
after analysis of the immunofluorescence of sections prepared from E18.5
Kcc2−/− mice (n = 3; see Materials and Methods for details on fluorescence
analysis). (D) Reversal potential of isoguvacine-induced responses in CA3
hippocampal neurons measured using gramicidin-perforated patch-clamp
recording. Mean ± SEM, n = 6 mice per condition, two to four neurons per
mouse. Dots show values in individual measurements. There was no
difference in mean values of EGABA.

intracellular chloride levels (but see below), its inactivation leads
to change of neuronal network and, thus, raises important issues

concerning its embryonic roles. Interestingly, genetic ablation of
the NKcc1 chloride importer delays brain development with less
functional synapses (Pfeffer et al., 2009; Marissal, Ben-Ari, unpub-
lished data), but also see Sipila et al. (2006) suggesting that the
two co-transporters act in opposite directions on these parameters
as well.

CHLORIDE INDEPENDENT ACTIONS OF KCC2 ON EMBRYOS
There is a general consensus that the expression of the KCC2
starts during postnatal stages of the development of hippocampi
in rat and mice (Stein et al., 2004; Blaesse et al., 2006; Zhu et al.,
2008). This also implies a progressive externalization of the co-
transporter possibly mediated by a developmental sequence of the
phosphorylation mechanisms recently reported (Rinehart et al.,
2009; Lee et al., 2010). Our observations of a similar EGABA in
Kcc2−/− and Kcc2+/+ is in keeping with this suggestion and with
the largely depolarizing action of GABA at early stages (Ben-Ari
et al., 2007). A recent study elegantly showed that a regula-
tory action of KCC2 in immature neurons might indeed develop
through an ion transport-independent mechanism, as the overex-
pression of inactive N-terminus KCC2 deleted construct produced
similar to wild-type KCC2 effects (Horn et al., 2010). Similar
results, but different conclusions concerning the mechanisms of
KCC2 action, were obtained by Cancedda et al. (2007) who showed
that viral overexpression of the KCC2 in immature cortical neu-
rons slows-down neuronal maturation. Our work is the first study
showing that endogenous KCC2 and not only artificially expressed
KCC2, regulate maturation in immature neurons.

ALTERNATIVE POSSIBILITIES OF REGULATORY ACTIONS OF KCC2 IN
EMBRYONIC HIPPOCAMPUS
Can we completely exclude the contribution of chloride shifts in
the effects of KCC2 ablation? The finding that a GABA receptor
antagonist generates epileptiform activities in naïve neurons – after
long-lasting applications – but block fully ongoing activities gener-
ated by Kcc2−/− embryos is intriguing as it suggests that excitatory
actions of GABA are enhanced in the Kcc2 deficient in compar-
ison to control mice. This stands in apparent contradiction with
the similar EGABA in Kcc2−/− and Kcc2+/+. However, there are
many observations showing that chloride levels play important
roles at embryonic stages in selective cell populations. Thus, in
developing neocortex, while the majority of pyramidal cells and
interneurons are KCC2-negative, some interneurons express high
amount of KCC2 and the activity of this transporter orchestrates
interneuron migration (Bortone and Polleux, 2009). In keeping
with this, bicuculline alters neuronal migration in vitro (Manent
et al., 2005). In the present work we report an existence of small
population of neurons with KCC2 expressed in membrane region
(Figure 5). Thus, one chloride-based alternative possibility is that
the loss of the co-transporter affects a subpopulation of neu-
rons impacting the entire network. One more possibility could
be that naïve KCC2-positive neurons exhibit difference in [Cl−]i

homeostasis on the level of dendrites, but not soma. Studies show
the existence of KCC2-dependent somato-dendritic gradient of
chloride in mature hippocampal neurons (Khirug et al., 2008; Pel-
legrino et al., 2011). Testing these hypotheses would require the
development of appropriate models allowing [Cl−]i measurement
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in different neuronal compartments as well as suppression of
the KCC2 in different neuron subpopulations during embryonic
development.

AGE RESTRICTED REGULATORY ACTIONS OF KCC2
Our results show clearly that ablation of KCC2 enhances synap-
togenesis in the immature hippocampus, i.e., endogenous KCC2
inhibits formation of the synaptic connections and neuronal net-
work activity. This finding is in a good agreement with previous
reports by Cancedda et al. (2007) and Horn et al. (2010) illus-
trating that in vivo overexpression of KCC2 in immature neurons
slows-down neuronal development. Interestingly, all these results
are in apparent contradiction with previous reports performed on
primary neuronal cultures and showing that KCC2 is required for
formation of GABA and glutamate synaptic connections. Particu-
larly, we found that overexpression of KCC2 in immature neurons
potentiated formation of GABA-ergic synapses (Chudotvorova
et al., 2005) whereas knocking-out or knocking-down of KCC2
from cultured hippocampal neurons produced opposite effects
(Medina et al., 2011). Another set of data show that the knocking-
out (Li et al., 2007) or knocking-down (Gauvain et al., 2011) of
the KCC2 in mature primary neuronal hippocampal cultures lead
to structural modification in spines formation and decrease gluta-
matergic synaptic transmission. The overexpression of the KCC2
in these cultures rescued (i.e., potentiated) formation of gluta-
mate synapses. An important task for future studies would be to
determine the reason of this differential KCC2-dependent control
of synaptogenesis in immature hippocampal neurons in vivo and
mature hippocampal neurons in vitro.

In conclusion, we show that there is a prominent difference in
neuronal network activity and formation of the functional GABA
and glutamate synapses in immature CA3 hippocampal neurons

of wild-type and Kcc2 deficient mice embryos. This finding pro-
vides a novel point of view on the functional importance of KCC2
during early stages of neuronal network development when GABA
is still depolarizing and opens new attractive directions in study of
the mechanisms of KCC2 functioning.
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