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Amblyopia is the most common form of impairment of visual function affecting one eye,
with a prevalence of about 1–5% of the total world population.This pathology is caused by
early abnormal visual experience with a functional imbalance between the two eyes owing
to anisometropia, strabismus, or congenital cataract, resulting in a dramatic loss of visual
acuity in an apparently healthy eye and various other perceptual abnormalities, including
deficits in contrast sensitivity and in stereopsis. It is currently accepted that, due to a lack of
sufficient plasticity within the brain, amblyopia is untreatable in adulthood. However, recent
results obtained both in clinical trials and in animal models have challenged this traditional
view, unmasking a previously unsuspected potential for promoting recovery after the end
of the critical period for visual cortex plasticity. These studies point toward the intracortical
inhibitory transmission as a crucial brake for therapeutic rehabilitation and recovery from
amblyopia in the adult brain.
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The development of brain circuitry is the result of a complex
interaction between genetic programs defining the gross cerebral
architecture and activity-driven processes of synaptic fine tuning.
In the visual system of primates, a significant portion of neuronal
pathways’ maturation is accomplished during prenatal develop-
ment, allowing vision to start at birth. Initially, however, visual
function abilities are still highly immature and they undertake
strong improvements during the successive months of life, when
sensory experience exerts a dramatic influence in driving the sub-
tle wiring of neural circuitries (Weliky, 2000; Lewis and Maurer,
2009).

The essential role of experience is particularly evident within
restricted time windows in early postnatal life, the so-called criti-
cal periods (CPs; Berardi et al., 2000), during which brain circuits
display a high sensitivity to acquire instructive and adaptive sig-
nals from the external environment. Accordingly, early disruption
of proper environmental inputs caused by conditions of visual
deprivation or ocular abnormalities can result in long-term or even
permanent brain diseases (Brémond-Gignac et al., 2011). Among
them, amblyopia (lazy eye) is a severe disorder that, aside from
refractive error, is the most common cause of vision loss during
infancy, with an estimated prevalence of 1–5% in the population
(Holmes and Clarke, 2006). Amblyopia emerges from untreated
conditions of early abnormal visual experience in which a func-
tional imbalance between the two eyes is predominant owing to
anisometropia (unequal refractive power in the two eyes), stra-
bismus (abnormal alignment of ocular axes with each other), or
congenital cataract (clouding in the crystalline lens obstructing
light transmission; Mittelman, 2003).

Much of our current understanding of the neural mechanisms
underlying this disorder derives from studies on animal models,

revealing that the major pathological changes in amblyopia occur
at the cortical level. The seminal work performed by Hubel and
Wiesel in kittens showed that reducing input from one eye by lid
suture, a treatment usually referred to as monocular deprivation
(MD), severely affects the physiology and anatomy of the visual
cortex, with a delayed development of visual acuity and contrast
sensitivity for the deprived-eye accompanied by disruption of cor-
tical binocularity properties (Wiesel and Hubel, 1963). Similarly,
amblyopia in humans is characterized by a dysfunction of sensory
information neural processing, leading to a dramatic degradation
of visual acuity in absence of structural abnormalities at the ocular
examination and despite appropriate optical correction (Holmes
and Clarke, 2006). In addition, the clinical picture of amblyopia is
frequently complicated by the presence of a broad range of other
perceptual deficits, including contrast sensitivity and stereopsis
defects (Kiorpes, 2006; Levi, 2006).

The prevailing consensus is that amblyopia reversal is only pos-
sible early in life, before the closure of CP. Accordingly, precocious
diagnosis and correction of any visual deprivation source is crucial
for preventing visual impairments to become permanent (Holmes
and Clarke, 2006). The traditional amblyopia therapy consists in
patching or penalizing the fellow preferred eye, thus forcing the
brain to use the visual input carried by the amblyopic eye (Wu and
Hunter, 2006). The success rate of this treatment is dependent on
several factors, including seriousness of visual ability disruption,
type of amblyopia, occlusion dose, patient compliance, and age of
onset (Stewart et al., 2005).

Despite the dogma that amblyopia is an untreatable pathology
in adults, recent studies on animal models and clinical trials have
challenged this picture, providing exciting evidence that interven-
tion strategies boosting brain plasticity in adulthood may allow
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the reinstatement of visual functions in amblyopic subjects well
after the end of the CP.

RECOVERY FROM LONG-TERM VISUAL DEPRIVATION:
LESSONS FROM ANIMAL MODELS
Significant effort is being made in multiple laboratories to elabo-
rate new intervention procedures aimed at inducing juvenile-like
neural plasticity in the adult brain. In addition to the theoretical
relevance of these studies in a basis research perspective, they may
have a great impact also on clinical practice: promoting plasticity
in the adult nervous system, indeed, could pave the way for the
development of innovative therapies for brain disorders for which
a suitable treatment is still not available in adulthood (Bavelier
et al., 2010).

In animal models, the amblyopic condition can be induced
by long-term MD starting during the CP and protracted until
adulthood. New experimental protocols successfully employed as
strategies for enhancing adult brain plasticity can be classified
in two categories on the basis of the general approach followed
(Figure 1).

On the one hand, pharmacological manipulations of func-
tional and structural brakes limiting plasticity to the CP have been
shown to restore normal visual functions in adult amblyopic ani-
mals. Several studies pointed to intracortical inhibition as a key
factor for defining the boundaries of plasticity, suggesting that a
reduction of transmission in interneurons that release GABA (γ-
aminobutyric acid) could be a crucial step for the restoration of
plasticity processes in adulthood (for review, see Hensch, 2005 and
Baroncelli et al., 2011).

The most direct demonstration that inhibitory transmission
limits plasticity in the adult brain derives from a recent study
reporting that pharmacological reduction of intracortical inhibi-
tion is sufficient to reopen a window of plasticity in the visual
cortex well after the closure of the CP (Harauzov et al., 2010).
First studies in animal models of amblyopia reported that the
administration of anti-inhibitory compounds leads to a substan-
tial restoration of the input from the deprived eye to the visual cor-
tex (Duffy et al., 1976). Despite its theoretical appealing, reducing
inhibition levels with direct pharmacological treatments can raise
concerns about the effective clinical value, since some GABAer-
gic transmission antagonists are of very limited utility for their
pro-convulsive action, while others have not been approved by the
FDA.

Brainstem neuromodulatory systems, such as those containing
noradrenalin, serotonin, and acetylcholine, project to the cortex
targeting GABAergic interneuron and specifically affecting the
output of these cells (Bacci et al., 2005). Thus,an alternative way for
adjusting the balance between excitatory and inhibitory transmis-
sion to levels favorable for plasticity may be an artificial regulation
of the endogenous release of these transmitters. About 30 years
ago, it has been reported that an increase in the local availability
of noradrenalin enhances neuronal plasticity, accelerating cortical
recovery from the effects of prior MD (Kasamatsu, 1982). In agree-
ment with this previous finding, we recently demonstrated that
chronic administration of fluoxetine, a selective serotonin reup-
take inhibitor enhancing extracellular serotonin and noradrenalin
levels, reactivates cortical plasticity in adulthood promoting a full

recovery of visual functions in amblyopic animals through a reduc-
tion of inhibitory transmission (Maya Vetencourt et al., 2008).
Treating amblyopia with fluoxetine is a promising approach if one
considers that this substance is a FDA-approved drug widely pre-
scribed in the treatment of depression and for which a very good
knowledge of both beneficial and side effects is available. Inter-
estingly, the permissive action of neuromodulatory transmitters
on brain plasticity is developmentally regulated by increased levels
of molecules that limit cerebral circuit reorganization in adult-
hood. It has been shown, indeed, that the expression of Lynx1, an
endogenous prototoxin which directly binds to nicotinic receptors
reducing their sensitivity to acetylcholine, increases after the clo-
sure of the CP and that the genetic removal of the molecular brake
provided by this protein restores visual cortex plasticity in adult
animals (Morishita et al., 2010).

Another molecular factor recently linked to the control of cor-
tical plasticity levels is histone acetylation. Acetylation of histones
H3 and H4 is developmentally down-regulated by an experience-
dependent process related to the closure of the CP for visual cortex
plasticity (Putignano et al., 2007). A pharmacological epigenetic
treatment increasing histone acetylation (i.p. injection of valproic
acid, VPA) emerged to be effective in adult rats in reversing visual
acuity deficits induced by long-term MD (Silingardi et al., 2010).
To date, no effects on the inhibitory transmission have been do-
cumented following manipulations of the epigenetic machinery.
However, since prenatal exposure to inhibitors of histone deacety-
lases decreases the number of parvalbumin-positive inhibitory
neurons in the neocortex of adult mice, it has been proposed that
one mechanism of action for drugs targeting histone acetylation
may be an adjustment of the excitatory–inhibitory ratio in cerebral
circuitries (Gogolla et al., 2009).

Moving from the intracellular to the extracellular milieu, it has
been shown that infusion in the mature cortex of amblyopic rats of
an enzyme (chondroitinase ABC) that degrades chondroitin sul-
fate proteoglycans (CSPGs), an essential component of the brain
extracellular matrix (ECM), produces a marked reinstatement of
both visual acuity and binocularity. Since most CSPG-containing
nets are localized around the soma of inhibitory interneurons, the
permissive action of ECM degradation on cortical plasticity could
occur through a direct structural and functional remodeling of
inhibitory synapses (Pizzorusso et al., 2006).

On the other hand, pronounced improvements in visual func-
tions have been obtained by experimental paradigms based on
the manipulation of environmental stimulation levels. A recent
study reported that exposing adult animals to complete darkness
can induce vision recovery in amblyopic rats, providing evidence
that the enhanced cortical plasticity is related to a shift in the
balance between excitation and inhibition toward juvenile-like
levels (He et al., 2007). Clinical translation of this treatment, how-
ever, remains uncertain, since a long dark exposure is likely to be
disruptive for most people.

A more promising approach is environmental enrichment (EE).
The goal of EE is to improve the animals’quality of life by providing
them with a combination of multi-sensory/cognitive stimulation,
increased physical activity and enhanced social interactions. EE is
a gain-of-function paradigm allowing the study of the influence
elicited by increased levels of environmental stimulation on brain

Frontiers in Cellular Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 25 | 2

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Baroncelli et al. Amblyopia treatment in adulthood

FIGURE 1 | Pharmacological and environmental therapeutic strategies

for amblyopia in adulthood. Recent data have documented a previously
unsuspected high potential of neuronal plasticity in the adult visual cortex. In
animal models, plasticity can be elicited either by pharmacological treatment
with chronic administration of antidepressants (fluoxetine), valproic acid (an
inhibitor of histone deacetylases), or chondroitinase ABC (which degrades the
extracellular matrix chondroitin sulfate proteoglycans), and by exposure to

environmental enrichment, housing in complete darkness, or caloric
restriction. In humans, emerging clinical studies point to active visual
stimulation obtained with perceptual learning or playing video games as a
promising strategy for treating amblyopia in adulthood. An increased ratio
between excitation and inhibition owing to a reduced intracortical inhibitory
tone is thought to be a central hub triggering plasticity in the adult visual
cortex.

plasticity (van Praag et al., 2000; Sale et al., 2009; Baroncelli et al.,
2010). We showed that EE is highly effective for treating ambly-
opia in adulthood: a brief exposure of adult amblyopic rats to EE
promotes a complete recovery of both visual acuity and ocular

dominance. Recovery of plasticity in enriched animals is paral-
leled by a marked reduction of the visual cortex inhibitory tone,
for which we demonstrated a causal role in the enhancement of
plasticity induced by EE (Sale et al., 2007).
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An alternative approach for modulating physiological brain
function has been shown to be the regulation of caloric intake.
Nutrition is a fundamental component of the environment playing
a key role in prenatal and postnatal visual development (Brémond-
Gignac et al., 2011). It has been recently reported that a short-term
protocol of food restriction starting in adulthood is able to restore
neural plasticity in the visual system, renewing the capability of
recovery from amblyopia in long-term deprived animals. Also in
this case the effects on cortical plasticity were associated with
a marked reduction of GABAergic inhibition (Spolidoro et al.,
2011).

The picture emerging from this brief survey of the most recent
literature in animal models is that the ratio between excitation
and inhibition is a critical factor controlling the possibility to
induce recovery from amblyopia in the adult. Given the morpho-
logical and functional complexity of inhibitory circuitries in the
vertebrate brain, the precise role of GABAergic inhibition in lim-
iting plasticity in the adult cortex is still under debate. Neural
circuits, indeed, rely on inhibition mediated by diverse classes of
interneurons with distinct morphologies, physiological proper-
ties, and subcellular innervation patterns. Moreover, GABAergic
transmission fulfills multiple functions going from regulation of
synaptic integration and timing of action potential generation to
control of network oscillations (Huang et al., 2007). Parvalbumin-
positive basket cells innervating the soma of target neurons with
synapses containing the α1 subunit of GABAA receptors are cur-
rently considered critical for visual cortex plasticity regulation
(Hensch, 2005).

It has been suggested that reducing inhibition promotes adult
visual cortical plasticity by increasing the capability of the cortex
to relay incoming patterns of activity to the supragranular layers
(Kirkwood and Bear, 1994; Rozas et al., 2001). In agreement with
this hypothesis, infusion of MPA or picrotoxin in the adult visual
cortex enhances the possibility to induce activity-dependent long-
term potentiation (LTP) of synaptic efficacy, but not long-term
depression, both in layers II–III and IV (Harauzov et al., 2010).
Thus, a reduction of GABAergic activity would favor recovery
from amblyopia by facilitating a potentiation of the excitatory
inputs from the undeprived eye.

Even if the prevailing consensus is that the major functional
effects of vision deprivation in one eye result from plasticity
at excitatory connections in the visual cortex, recent research
has brought attention to the alternative possibility that intra-
cortical inhibition of deprived-eye inputs could also increase,
leading to a suppression of the visual responses evoked by the
deprived eye (for review, see Smith and Bear, 2010). How-
ever, dissecting the role of plasticity at both excitatory and
inhibitory synapses in the amblyopic condition deserves fur-
ther investigation. It is also worth stressing that, to our knowl-
edge, amblyopia has been never associated with a depolariz-
ing and excitatory action of GABA, which has been instead
reported for other pathological conditions, including epilepsy
(Cohen et al., 2002; Huberfeld et al., 2007), neuropathic pain
(Coull et al., 2005), inflammatory hyperalgesia and allodynia
(Funk et al., 2008), and Alzheimer’s disease (Lagostena et al.,
2010).

IMPACT OF ACTIVE VISUAL STIMULATION IN ADULT
AMBLYOPIC HUMAN SUBJECTS
At the clinical level, biological manipulations effective in restor-
ing neural plasticity in the mature brain should be translated into
feasible and safe interventions in order to represent a significant
advance in the field of amblyopia treatment. A growing number of
recent clinical studies pointed to perceptual learning (PL) as a very
promising strategy for treating amblyopia in adulthood (Figure 1).
PL refers to any change in perceptual ability as a result of practice
and can be observed in all sensory modalities. In the visual system,
practice with procedures of specific sensory enrichment improves
performance in a variety of tasks, such as grating, texture, hyper-
acuity, or stereoscopic discrimination (for review, see Fine and
Jacobs, 2002; Fahle, 2004, 2005). This form of neural plasticity
does not seem to be an exclusive prerogative of a physiologically
normal visual system, since it has been repeatedly observed also in
adult people with amblyopia.

As early as 1970s, Campbell et al. (1978) reported that passive
stimulation of the amblyopic eye with high-contrast square-wave
rotating gratings of different spatial frequencies induced a sub-
stantial improvement in high-frequency contrast sensitivity and
grating acuity in children. The method used in this seminal work,
usually referred to as the Cambridge stimulator or CAM treatment,
can be considered as a first example of a very simple PL procedure
applied to the treatment of amblyopia. After a successive period of
criticism in which the validity of this concept has been challenged
by a number of negative results, in the last 15 years numerous
papers have started to document various and robust beneficial
effects on visual functions elicited by PL in adult amblyopes whose
age was always higher than the 7-years cut-off classically con-
sidered the limit for a successful intervention. Importantly, no
correlation between population age and functional outcome of
the treatment has been ever reported in these studies (e.g., Polat
et al., 2004; Chen et al., 2008). Moreover, a comparative inspection
of the obtained results has allowed noticing that the age of the
subjects enrolled in the various tested experimental procedures is
not the main factor accounting for the variance across studies (see
Levi and Li, 2009a).

While it is undisputed that PL involves changes on high cog-
nitive levels of visual information processing, it also relies at least
partly on modifications on earlier levels (Fahle, 2004). It has been
reported, indeed, that PL has the ability to elicit plastic changes
in the visual cortex, as shown by Yotsumoto et al. (2008) who
observed a change in blood-oxygen-level dependence (BOLD) sig-
nal in human primary visual cortex (V1) following visual PL.
In the same line, we recently observed that visual PL is accom-
panied by LTP of thalamo-cortical and cortico–cortical synaptic
responses in the rat V1 (Sale et al., 2011), a direct demonstration
that PL results in V1 neural plasticity. Accordingly, Cooke and Bear
(2010) reported that repeated presentation of a sinusoidal grating
stimulus over days induces LTP in the V1 of awake mice. Since
it is currently believed that alterations in neural responses in the
early visual cortex are the primary cause of vision dysfunction
in amblyopia (Kiorpes, 2006; Levi, 2006), the possibility to pro-
mote V1 plasticity in a totally non-invasive manner with PL is very
promising in the context of amblyopia treatment.
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On the other side, since PL also occurs at early stages of visual
processing, it may show a striking selectivity for the stimulus para-
meters. This raises one caveat to its therapeutic value in the treat-
ment of amblyopia, because the achievable improvements might
be limited to the selected trained stimulus, condition, or task (Levi
and Li, 2009b). However, differently from what found in healthy
subjects, the available results reported until nowadays do not show
such a narrow specificity for the trained task in amblyopic patients.
Indeed, even if the published studies adopted training tasks as var-
ious as practicing Vernier acuity (Levi and Polat, 1996; Levi et al.,
1997), position discrimination (Li and Levi, 2004; Li et al., 2005,
2007, 2008), contrast detection (Polat et al., 2004; Zhou et al.,
2006), and letter identification (Levi, 2005; Chung et al., 2008), a
certain degree of transfer to improvements in Snellen acuity glob-
ally emerges. This property is essential for amblyopia treatment,
because the main deficit in amblyopia is reduced visual acuity and
a substantial improvement in this basic visual function is required
for a real advance of the patient quality of life.

It has been suggested that one reason why PL is so effective
in reversing amblyopia in adult people might be that it requires
subjects to make fine visual discriminations using their amblyopic
eye under conditions of “active” visual system stimulation (Levi,
2005). Thus, visual attention may be a fundamental component of
the therapeutic potential of PL. A recent study in non-amblyopic
subjects provided indirect support to the important role of visual
attention in driving visual cortex plasticity, showing that normal-
sighted people trained with action-based video games have robust
improvements in basic visual functions (Li et al., 2009). The same
effect was not observed after playing non-action video games that
were equally engaging and visually complex, but operated at a
slower pace and did not require precise visually guided actions.
The effectiveness of this approach has promoted further research
aimed at testing the value of active visual stimulation in ambly-
opic subjects. A substantial improvement in a wide range of visual
functions including visual acuity, positional acuity, and stereopsis

were also found in adults with amblyopia after a period of playing
an action video game (Li et al., 2011; Figure 1). In this case, vision
recovery was also triggered by playing a non-action version of the
games, leading to the interpretation that the threshold to elicit
plasticity in a defective amblyopic visual eye might be lower than
that required to achieve further improvement under conditions of
normal vision (Bavelier et al., 2010).

As reviewed in the previous section, experiments made on
rodent models of amblyopia have underscored a pivotal role of
cortical GABAergic inhibition in limiting plasticity and amblyopia
recovery in adulthood. Interestingly, the balance between exci-
tation and inhibition has been suggested to be impaired during
development also in amblyopic human subjects and cortical over-
inhibition could underlie the degradation of spatial vision abilities
(Polat, 1999; Levi et al., 2002; Wong et al., 2005). In agreement
with this hypothesis, repetitive transcranial magnetic stimulation
(rTMS), which increases cortical excitability, transiently improves
contrast sensitivity in adult amblyopes, likely acting on the exci-
tation/inhibition balance (Thompson et al., 2008). A reduction of
intracortical inhibition after rTMS has been also demonstrated in
the motor cortex for both 1 and 10 Hz stimulations (Pascual-Leone
et al., 1994; Modugno et al., 2003).

At the moment, it remains unknown whether the beneficial
effects elicited by PL on amblyopia recovery are linked to changes
in levels of brain inhibition. Preliminary experiments in our labo-
ratory suggest a decrease of GABAergic inhibition in adult ambly-
opic rats that recover their visual functions in an active visual PL
task. It is possible that the attention level required to perform PL
tasks or to play video games might finally engage neuromodulatory
systems of the brainstem, which may favor plasticity by increasing
the excitatory/inhibitory ratio (Kasamatsu, 1991; Maya Vetencourt
et al., 2008; Bavelier et al., 2010). Future studies should help fur-
ther elucidate whether the molecular and cellular factors triggering
brain plasticity in animal models are also crucial for a successful
recovery of visual functions in human amblyopic subjects.
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