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Human pluripotent stem cells have the capacity for directed differentiation into a wide
variety of neuronal subtypes that may be useful for brain repair. While a substantial body
of research has lead to a detailed understanding of the ability of neurons in fetal tissue
grafts to structurally and functionally integrate after intra-cerebral transplantation, we are
only just beginning to understand the in vivo properties of neurons derived from human
pluripotent stem cells. Here we have utilized the human embryonic stem (ES) cell line Envy,
which constitutively expresses green fluorescent protein (GFP), in order to study the in vivo
properties of neurons derived from human ES cells. Rapid and efficient neural induction,
followed by differentiation as neurospheres resulted in a GFP+ neural precursor population
with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation
into neonatal rats, GFP+ fiber patterns revealed extensive axonal growth in the host brain,
particularly along host white matter tracts, although innervation of adjacent nuclei was
limited. The grafts were composed of a mix of neural cell types including differentiated
neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating
an incomplete state of maturation at 10 weeks.This was reflected in patch-clamp recordings
showing stereotypical properties appropriate for mature functional neurons, including the
ability to generate action potentials, as well profiles consistent for more immature neurons.
These findings illustrate the intrinsic capacity for neurons derived from human ES cells to
integrate at a structural and functional level following transplantation.
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INTRODUCTION
Substantial advances in pluripotent stem cell biology have fueled
optimism for the development of stem cell-based procedures for
brain repair. The concept of circuit reconstruction in the damaged
brain through cell replacement has been pursued extensively in
the Parkinson’s disease (PD) field. Clinical trials using fetal donor
tissue in PD patients have in fact provided proof-of-principle that
new neurons, transplanted directly into the brain of the patient,
can replace damaged circuitry with appropriate structural and
functional features in order to significantly restore the distur-
bances in motor function associated with PD (Lindvall and Hagell,
2000; Lindvall and Bjorklund, 2004). Practical and ethical limita-
tions associated with the use of fetal tissue as donor material has
placed a significant emphasis on stem cells as a potentially superior
cell source.

In the context of brain repair, pluripotent stem cells possess
attractive features including a capacity for large-scale expansion as
a cell source for neural transplantation procedures and potential
for differentiation into a range of potentially therapeutic cell types
relevant for specific neurological conditions (Barberi et al., 2003).

The rational development of stem cell-based transplantation pro-
cedures for brain repair requires a detailed understanding of the
in vivo properties of stem cell-derived neurons, including their
capacity for structural and functional incorporation into host
circuitry.

Transplantation studies using fetal donor tissue from trans-
genic reporter mice have provided valuable insight into the growth
properties of transplanted neurons in the host brain, including the
important relationship between target connectivity and functional
impact in certain cases (for review see Thompson et al., 2009;
Gaillard and Jaber, 2011). The growth and connectivity of neu-
rons derived from pluripotent stem cells have been less extensively
explored in neural transplantation studies, with the exception
of two recent studies using preparations generated from mouse
embryonic stem (ES) cells grafted into neonatal mice (Ideguchi
et al., 2010) and human ES cells grafted into adult athymic mice
or immunosuppressed rats (Steinbeck et al., 2012).

Here we have made use of the human ES cell line Envy,
which constitutively expresses green fluorescent protein (GFP)
under the human β-actin promoter (Costa et al., 2005), in
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order to more rigorously investigate the integration properties
of neurons generated from human ES cells after transplanta-
tion into the neonatal rat brain. The GFP provided a useful
surrogate marker of grafted tissue against which to measure
important parameters such as graft volume and cellular com-
position. Importantly, immunohistochemical detection of GFP
using the chromogen 3,3′-diaminobenzidine (DAB) combined
with darkfield microscopy allowed for the mapping of graft-
derived patterns of long-distance fiber growth from transplanted
human ES cell-derived neurons at an unprecedented level of detail.
The results show that grafted neurons are capable of extend-
ing long-distance projections within the host brain, particularly
along white matter tracts of the internal and external capsules.
At a functional level, the grafted neurons also displayed stereo-
typical electrophysiological properties and evidence of synaptic
integration.

MATERIALS AND METHODS
hESC CULTURE
The ENVY-HES-3 cell line (BioTime) was cultured as previously
described (Reubinoff et al., 2000; Conley et al., 2005). Briefly,
hESCs were grown on mitomycin-C treated mouse embryonic
fibroblasts (MEFs) in hESC medium consisting of high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) without sodium
pyruvate, supplemented with 1% insulin/transferrin/selenium,
0.1 mM β-mercaptoethanol, 1% non-essential amino acids
(NEAA), 2 mM glutamine, 25 U/ml penicillin, 25 μg/ml strep-
tomycin (all from Invitrogen), and 20% fetal calf serum (Hyclone)
or on mitomycin-C treated human foreskin fibroblasts (HFF)
in knockout serum replacement (KSR) media consisting of
DMEM/nutrient mixture F-12, supplemented with 0.1 mM β-
mercaptoethanol, 1% NEAA, 2 mM glutamine, 25 U/ml penicillin,
25 μg/ml streptomycin, and 20% KSR (all from Invitrogen). All
cells were cultured at 37◦C 5% CO2. Colonies were mechanically
dissected every 7 days and transferred to freshly prepared MEFs or
HFFs. Media was changed every second day.

PA6 NEURAL INDUCTION
hESCs were mechanically dissected into pieces approximately
0.5 mm in diameter and transferred to an organ culture plate of
PA6 cells (Riken) in co-culture medium containing Glasgow min-
imum essential medium, supplemented with 8% KSR, 1% NEAA,
2 mM L-glutamine, 1 mM sodium pyruvate, β-mercaptoethanol
0.1 mM, penicillin 25 U/ml, streptomycin 25 μg/ml. Cells were
differentiated on PA6 stromal cells for 10 days with Noggin
(500 ng/ml, R&D systems) added to the media for the first
4 days. Following PA6 co-culture neural rosettes were dissected
into 0.5-mm fragments and further cultured as neurospheres
in suspension in low-attachment 96-well plates (Corning) in
N2B27 medium containing a 1:1 mix of neurobasal medium
with DMEM: nutrient mixture F-12 medium, supplemented with
1% insulin/transferrin/selenium, 1% N2, 1% B27, 0.3% glu-
cose, 25 U/ml penicillin, and 25 μg/ml streptomycin (all from
Invitrogen), with basic fibroblast growth factor (bFGF) and epi-
dermal growth factor (EGF; 20 ng/ml each, R&D systems). After
7 days in suspension, neurospheres were dissociated into single
cells with triple express medium (Invitrogen) and re-suspended

at 100,000 cells/μl for transplantation in HBSS without Ca2+ or
Mg2+ supplemented with 0.05% DNase. The 7-day differentiation
period was chosen based on the onset of neuronal differentia-
tion, where the first detectable βIII-tubulin+ cells appear around
5–7 days.

ANIMALS AND TRANSPLANTATION
The use of animals in this study conformed to the Australian
National Health and Medical Research Council’s published Code
of Practice for the Use of Animals in Research, and experiments
were approved by the Florey Neuroscience Institutes Animal Ethics
Committee (#09-036).

All surgical procedures were performed using a Cunningham
(Stoelting, Germany) adaptor fitted to a stereotaxic frame (Kopf,
Germany). A total of 20 neonatal (postnatal day 2) Sprague Daw-
ley rats were used as transplant recipients. Hypothermic anesthesia
was induced by placing each neonate in ice for 5 min and main-
tained by adding dry ice to absolute ethanol in the reservoir built
into Cunningham adaptor stage. Under deep anesthesia, each
rat received an injection of 1 × 105 cells in a volume of 1 μl
using a glass cannula fitted to a 5-μl microsyringe (SGE Ana-
lytical Sciences, Australia) according to a microtransplantation
approach described previously (Nikkhah et al., 2000). Cells were
injected into the right striatum (0.7 mm anterior and 1.9 mm
lateral to bregma, 2.9 mm below the dura) over 1 min and the
cannula was left in place a further 2 min before withdrawal.
The underdeveloped state of the immune system in neonatal
animals avoids the need for immunosuppressive treatment in
intra-cerebral xeno-grafting studies. The survival time for these
animals was 10 weeks. Fourteen animals were processed for histo-
logical analysis and six animals were used for electrophysiological
studies.

TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY
Ten weeks after transplantation, 14 animals received a lethal dose
of pentobarbitone and were trans-cordially perfused with 50 ml
saline (0.9% w/v) followed by 200–250 ml paraformaldehyde (PFA;
4% w/v in 0.1 M PBS). The brains were removed, post-fixed a
further 2 h in PFA and cryo-protected in sucrose (25% w/v in 0.1 M
PBS). Brains were sectioned in the coronal, sagittal, or horizontal
plane in 12 series at a thickness of 30 μm on a freezing microtome
(Leica, Germany).

Immunohistochemical procedures were performed as previ-
ously described (Thompson et al., 2005). Free-floating sections
were incubated overnight at room temperature with primary
antibodies diluted in 0.1 M PBS containing 5% normal serum
and 0.25% Triton X-100 (Ameresco, USA). Secondary antibod-
ies diluted in PBS with Triton X-100 and 2% normal serum were
applied for 2 h at room temperature. The primary–secondary anti-
body complex was visualized by peroxidase driven precipitation of
DAB or conjugation of a fluorophore. Fluorescent slide mounted
sections were cover-slipped with fluorescent mounting medium
(DAKO, USA). DAB-labeled sections were dehydrated in alco-
hol and xylene and cover-slipped with DePex mounting medium
(BDH Chemicals, UK). For counterstaining of cell nuclei, slide
mounted tissue was incubated with 4,6-diamino-2-phenylindole
(DAPI, 1:1000; Sigma) for 5 min prior to cover-slipping.
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Primary antibodies and dilution factors were as follows:
mouse anti-βIII-tubulin (1:500; Millipore), rat anti-Ctip2 (1:500;
AbCam), rabbit anti-Cux1 (1:500; Santa Cruz Biotechnology),
goat anti-doublecortin (1:400; Santa Cruz Biotechnology), rabbit
anti-GFAP (1:200; DAKO), chicken anti-GFP (1:1000, AbCam),
rabbit anti-GFP (1:20,000; AbCam), mouse anti-NeuN (1:200;
Millipore), mouse anti-Oct4 (1:100; Santa Cruz Biotechnol-
ogy), rabbit anti-Otx2 (1:4000; Millipore), rabbit anti-Olig2
(1:200; Millipore), mouse anti-Pax7 (1:80; DSHB), mouse anti-
Pax6 (1:40; DSHB), mouse anti-PSA-NCAM (1:100; Santa Cruz
Biotechnology), mouse anti-RIP (1:5000; Millipore) mouse anti-
synaptophysin (1:200; Sigma), goat anti-Sox2 (1:100; R&D sys-
tems), and rabbit anti-TBR1 (1:1000; Millipore). For DAB-based
detection of GFP, a biotinylated goat anti-rabbit secondary anti-
body (Vector Laboratories, USA) was subsequently conjugated
with streptavidin-HRP using the Vectastain ABC Elite kit (Vec-
tor Laboratories, USA). For immunofluorescence, species-specific
secondary antibodies generated in donkey and conjugated with
the DylightTM range of fluorophores with various peak emission
wavelengths including 488, 549, and 633 were used at a dilution of
1:500 (Jackson ImmunoResearch, USA).

IMAGING AND QUANTIFICATION
To provide macroscopic illustrations of GFP immunoreactivity,
montages of single darkfield images captured using a 20× objec-
tive were constructed using a Leica DM6000 B upright light
microscope equipped with a motorized stage. Graft area was
calculated according to Cavalieri’s principle (Cavalieri, 1966) by
measuring the GFP+ graft area in every 12th DAB-stained tis-
sue section (n = 10). Fluorescent images were captured using
a Zeiss Meta laser scanning confocal upright microscope. The
intensity and contrast of each image was enhanced through
adjustment of the levels in individual color channels using
Photoshop (Adobe). The cellular densities of the grafts were esti-
mated through stereological assessment of DAPI-labeled nuclei
in defined volumes within 5 of the larger grafts on an Olympus
brightfield upright microscope equipped with Stereo Investi-
gator software (Microbrightfield). The percentage of neurons
was estimated through quantification of the overlap between
DAPI and NeuN within the GFP+ graft area (>500 cells
counted; n = 4).

ELECTROPHYSIOLOGY
Ten weeks following implantation rats were anesthetized with
1–2% isoflurane before decapitation. Brain slices (300 μm thick)
cut using a vibratome in the coronal plane were prepared in a
saline ice bath and kept at room temperature until recording.
The slices were transferred to a recording chamber constantly
perfused with artificial CSF solution at 34◦C consisting of (in
mM): 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 1 MgCl2,
2 CaCl2, and 10 Glucose, aerated with 95% O2 and 5% CO2 to
a final pH of 7.4. Whole-cell patch-clamp recordings were made
using a MultiClamp 700A amplifier and pClamp acquisition soft-
ware (Molecular Devices, Sunnyvale, CA, USA) from explants
unambiguous identified by visualizing GFP, detected under stan-
dard epifluorescence before switching to infrared DIC imaging
(BX51, Olympus). Electrodes were pulled using a Sutter P-2000

puller (Sutter Instruments, Novato, CA, USA) from borosili-
cate micropipettes (World Precision Instruments, Sarasota, FL,
USA) with an initial resistance of around 3–6 M�. The electrodes
were filled with intracellular solution consisting of (in mM): 125
KGlu, 4 KCl, 2 MgCl2, 10 HEPES, 10 EGTA, 4 ATP-Mg, and 0.3
GTP-Na, and 8 biocytin hydrochloride at a final pH of 7.3. D-
Mannitol was used to adjust osmolarity to 300 mOsm. Standard
capacitance compensation and bridge balance techniques were
employed. Average membrane resistance was 427 ± 127 M� and
average cell capacitance was 65 ± 19 pF for all recordings. Voltage
recordings were digitized at ∼83 kHz and filtered post hoc using
a 6-kHz Bessel low-pass filter. Experiments were completed at
room temperature (20–22◦C). A holding current was injected into
neurons if required setting their holding potential to −65 mV.
A current injection/action potential frequency relationship was
established by injecting progressively more depolarizing current
steps of 400 ms duration (20 pA incremental steps from −100 to
280 pA) with 300 ms baseline recording on either side of the step.
A gap of 500 ms was used between each sweep.

RESULTS
RAPID CONVERSION OF GFP-EXPRESSING HUMAN ES CELLS TO
NEURAL LINEAGE WITH REGIONAL FEATURES
In this study we made use of a human ES cell line ubiquitously
expressing GFP under the human β-actin (ACTB) promoter. The
cells were prepared for transplantation through neural induction
on stromal cells (PA6) with noggin for 10 days, followed by partial
differentiation as neurospheres for a further 7 days. Immunocy-
tochemical analysis of thin (10 μm) sections through individual
neurospheres showed robust, cytoplasmic distribution of GFP in
all cells (Figures 1A–C). The spheres were rich in cells expressing
markers consistent with an early neuroepithelial identity, includ-
ing Pax6 and Sox2 (Figures 1H–J), and also appeared to have some
level of spatial organization based on the heterogeneous distribu-
tion of these markers and the consistent appearance of rosette-like
structures (Figures 1H–K). Complete lack of expression of Oct4
suggested efficient neural induction without the persistence of a
residual pluripotent stem cell population (Figures 1D–G). Cells
in the periphery of the spheres had begun to acquire neuronal
features, including expression of the neurofilament protein βIII-
tubulin and basic neuronal morphology (Figures 1L–O). We
also observed the expression of transcription factors that define
regional organization during normal embryogenesis, including
Otx2, which is expressed in the developing telencephalon, as well
as the dorsal marker, Pax7 (Figure 2).

SIZE AND COMPOSITION OF HUMAN ES CELL GRAFTS
Ten weeks after transplantation, immunohistochemistry for GFP
revealed surviving grafts in 10 out of 14 animals. The grafts pre-
sented as discrete deposits with dense GFP+ cores (Figure 3A).
The size of the grafts varied considerably (0.09–2.91 mm3) with
an average volume of 0.79 ± 0.88 mm3. Most of the grafts were
well placed in the head of the striatum (Figure 3A), although
in two animals the majority of the grafted cells were found
in the overlying cortex (Figure 3A) – likely due to backflow
up the needle tract – and in another two animals small grafts
were found in the corpus callosum. Inspection of DAPI-labeled
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FIGURE 1 | Efficient neural induction of the human ES cell line Envy as

assessed by immunohistochemistry following 10 days on PA6 and 7 days

differentiation as neurospheres. (A–C) GFP (green) was robustly expressed
in all cells (DAPI; red). (D–G) Sox2 (blue) was expressed widely and Oct4 (red)
was uniformly down-regulated throughout all cultures. (H–K) Pax6 (red) was

also widely expressed throughout the cultures and largely overlapped with
Sox2 expression domains including prominent expression in neural rosette
structures. (L–O) These panels are show a region in the periphery of the
differentiating neurospheres where βIII-tubulin (red) was expressed in cells
with neuronal morphology. Scale bars: (A–C) 50 μm, (D–O) 100 μm.

nuclei within the grafts showed that the cellular distribution
was quite homogeneous (Figure 4A) with an average density of
2.46 ± 0.40 × 105 cells/mm3. When applying this across the

different graft volumes the average number of surviving cells was
approximately 2.14 ± 2.20 × 105 (i.e., approximately twice the
1 × 105 cells originally grafted) suggesting substantial growth of
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FIGURE 2 | Up-regulation of intrinsic markers of dorsal and forebrain

identity following neural induction of human ES cells under minimalist

conditions. Immunohistochemistry for transcriptional markers of regional
identity following PA6 neural induction (10 days) and neurosphere
differentiation (7 days) showed robust expression of the telencephalic marker

Otx2 (A–D) and the dorsal marker Pax7 (E–H). Although these panels are
taken from regions where most cells express these markers, it should be
noted that both markers were heterogeneously expressed throughout the
neurospheres in distinct cell clusters, indicating some level of tertiary
organization within the spheres. Scale bars: (A–D) 50 μm, (E–H) 100 μm.

the graft after transplantation. Immunohistochemistry for Ki67
showed the persistence of a small population of dividing cells
within the graft at 10 weeks (Figure 4C). The majority of the
Ki67+ cells also expressed the neural progenitor marker Sox2
(Figure 4C). We did not observe any gross morphological features
suggesting aggressive cell division indicative of tumor formation.

In addition to the dense graft cores, clusters of sparsely
distributed GFP+ cells could be found in the adjacent host
parenchyma, thus allowing for an assessment of cell morphology.
The results showed morphological profiles consistent with various
neural cell types including immature, migrating neuroblasts as
well as terminally differentiated neurons and glia (Figures 3B–E).
Immunohistochemistry for GFP along with markers indicative of
cell phenotype confirmed the presence of multiple neural cell types
within the grafts. The grafts were rich in migrating neuroblasts
based on staining for PSA-NCAM and doublecortin (Dcx) and
these cells were often seen emanating from the graft core into the
surrounding host parenchyma (Figure 4B) and clustered in nearby
striatal fiber bundles (not shown). The grafts also contained cells
with mature neuronal and glial features based on labeling for neu-
ronal nuclei (NeuN) as well as the glial markers GFAP, Olig2,
and RIP (Figure 4). The neuronal nuclei protein is a ubiquitous
marker for terminally differentiated neurons and as such gives a
reasonable indication of the total neuronal contribution within the
grafted tissue. Quantification of NeuN+ cell numbers as a frac-
tion of DAPI+ cells within sections of GFP+ tissue showed that
the average contribution of neurons was 56.73 ± 9.24% (n = 5).
Based on the average cell density and graft volume, this equates

to an average of 1.20 ± 1.27 × 105 neurons per graft. Glia with
characteristics of either astrocytes or oligodendrocytes were also
found in the grafts, although more sparsely distributed than the
NeuN+ cells. We did not detect cells expressing the pluripotent
marker Oct4 or the neuroepithelial marker Pax6 in any of the
grafted animals (not shown).

Based on results showing a dorsal forebrain identity of partially
differentiated cells in vitro (Figure 2), we looked for expression of
markers typical for cortical neurons within the grafts. The T-box
transcription factor, Tbr1, which is widely expressed through all
layers of the mature rodent cortex was scattered sparsely through-
out the grafts (Figures 5F–H). We also looked at expression of
transcription factors known to differentiate between different cor-
tical layers within the fully developed cortex, including Cux1 and
Ctip2, which are expressed in superficial and deeper layers respec-
tively (Figure 5A). Distinct clusters of Ctip2+ cells could be found
in the GFP+ grafts, while virtually no Cux1+ cells were detected
(Figures 5B–E). This was the case for grafts located in either the
striatum or cortex.

LONG-DISTANCE AXONAL GROWTH ALONG HOST WHITE
MATTER TRACTS AFTER TRANSPLANTATION OF NEURALIZED
HUMAN ES CELLS
A striking feature of the transplants was the extensive degree of
GFP+ fiber outgrowth over long distances within the host brain.
The general pattern of growth was remarkably consistent across
the different cases, including animals with either striatal or cortical
graft placement, although the overall degree of growth appeared
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FIGURE 3 | Placement and morphological features of intra-cerbral

grafts revealed by immunohistochemistry for GFP 10 weeks after

transplantation. (A) In most animals the graft deposit was located
in the striatum (left section), although occasionally the majority of
the graft core could be found in the cortex (right section), likely due
to backflow of cells along the cannula tract. Morphological analysis of

GFP+ cells away from the main graft core showed neurons with various
profiles including multipolar-stellate (B) and pyramidal (C) morphology as
well as various glial morphologies (D; cells in corpus callosum) and cells
resembling migrating neuroblasts (E; arrowheads show neuroblast proximal
to graft core situated toward top-right corner). Scale bars: (A) 2 mm,
(B–E) 50 μm.

more extensive in animals with larger grafts. The GFP+ fibers
could be visualized in fine detail under darkfield microscopy as
illustrated in representative sections from three brains cut in var-
ious section planes (Figure 6, A high resolution version of this
figure can be found online at: http://www.frontiersin.org/files/
images/23963/darkfield_overview.jpg).

At the graft site, fibers could be seen emanating from the graft
and extending into the striatal parenchyma and ventrally into
sub-striatal nuclei including the ventral palladium (Figure 7A).
Another prominent feature within the striatum was the presence
of polarized groups of fibers clustered within striatal fiber bun-
dles (Figures 6 and 7K). The association of GFP+ fibers with
host white matter tracts was a definitive feature of the long-
distance axonal outgrowth from grafted neurons. Coronal and
horizontal sections showed that GFP+ fibers extended through-
out the external capsule of both hemispheres and exited into
adjacent cortical regions at all rostro-caudal levels examined,
including: somatosensory and insular cortical areas at rostral lev-
els (Figure 6) and perirhinal and entorhinal areas at more caudal
levels (Figure 7G). Graft-derived fibers also exited the corpus
callosum dorsally through the cingulum to innervate the over-
lying cingulate cortex and ventrally at the midline to innervate the

septum (Figures 7C,I). Anterior to the graft there was a robust
outgrowth of GFP+ fibers extending through forceps minor into
the adjacent anterior regions of cortex including the secondary
motor, cingulate, and pre-limbic areas (Figures 7B,C). Caudal
to the graft there was a substantial outgrowth that followed the
internal capsule, along striatal fiber bundles (Figures 6 and 7K),
through the entopeduncular nucleus (Figure 7E) and into the ven-
tral midbrain where most fibers were associated with myelinated
fiber bundles within the substantia nigra pars reticulata and also
traversed through the underlying cerebral peduncle (Figure 7F).
Many fibers also left the internal capsule and coursed lateral into
the amygdala and medial to innervate adjacent nuclei including the
zona incerta, and surrounding Forel’s fields, as well as deeper thala-
mic nuclei (Figure 7H) and the underlying hypothalamus. Further
caudal, GFP+ fibers were found in the periaqueductal gray, deep
mesencephalic nuclei and white matter tracts immediately dor-
sal to the pontine nuclei. Analysis of horizontal sections showed
that GFP+ fibers extended well beyond the midbrain and into
the brainstem (Figures 6 and 7L). Although the GFP+ extended
from white matter tracts into adjacent host nuclei, including the
striatum, cortex, thalamus, septum, the prevailing morphological
features were consistent with elongated en passant fibers rather
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FIGURE 4 |The grafts were composed of immature and differentiated

neural cell types as revealed by immunochemistry for GFP and

phenotypic markers 10 weeks after transplantation. (A) Staining for DAPI
(blue) and GFP (green) shows the densely packed graft core at the periphery
of the graft within the GFP− host tissue. (B) Many of the cells with migrating
neuroblast morphology expressed both doublecortin (blue) and PSA-NCAM
(red; boxed area enlarged as single color channels). (C) The grafts contained a
population of dividing (Ki67+, red) cells 10 weeks after transplantation and

many of the Ki67+ cells also expressed the neural marker Sox2+ (blue;
arrowheads show overlap in single color channels). (D) The grafts were rich in
differentiated neurons (>50%) based on immunohistochemistry for NeuN
(red; arrowheads in single color channels highlight the relatively smaller
nuclear size of NeuN− cells, which are likely glia). Immunohistochemistry for
glial markers showed that the grafts also contained smaller populations of
differentiated astrocytes (E; GFAP+, blue) and myelinating oligodendrocytes
(F; RIP+/Olig+). Scale bars: (A–F) 50 μm.

than elaborated patterns of terminal arborization in these areas
(Figure 7).

Immunohistochemistry for the myelin-associated protein RIP
highlighted the growth along host white matter tracts as a dis-
tinctive feature of graft-derived axonal outgrowth. This was seen
throughout nearly all major myelinated pathways forming the
internal and external capsules, and was particularly prominent
along the striatal fiber bundles near the graft site (Figures 8A–E)
and throughout the anterior commissure (Figures 8F–H). The
striatal or cortical placement did not appear to impact on the gen-
eral pattern of fiber outgrowth, however there was noticeably more
outgrowth caudal to the graft along striatal fiber bundles and into
the midbrain and brainstem in animals where the graft was placed
in the striatum and especially where small graft deposits were
found in the corpus callosum (e.g., see the extensive outgrowth
in horizontal sections in Figure 6).

TRANSPLANTED HUMAN ES CELL-DERIVED NEURONS DISPLAY
STEREOTYPICAL ELECTROPHYSIOLOGICAL PROPERTIES EX VIVO
Ten weeks following transplantation brain slices were prepared
from six rats for whole-cell patch-clamp recording. The GFP
expression allowed for the unambiguous identification of trans-
planted cells within the slice preparation. In three of the six animals

GFP expression was clearly observed with a total of four cells
in three intra-striatal grafts successfully recorded from. Post hoc
processing for biocytin demonstrated co-localization with GFP
confirming that all cells recorded from originated from the graft.
These cells had morphology consistent with that expected for a
neuron (Figure 9A) and active properties that are consistent with
a neuronal phenotype. The major electrophysiological phenotype
observed in GFP+ cells was the ability to generate action poten-
tials with membrane depolarization. Two of four cells showed a
typical input–output curve with increasing action potential firing
frequency seen with increasing stimulating current (Figure 9C).
In the other two neurons action potentials were observed but the
maximum firing rate seen was much lower which is typically seen
in immature neurons. At resting membrane potential excitatory
post-synaptic potentials were observed and depolarized the neu-
rons sufficiently to evoke a spontaneous action potential in two
of the four cells recorded (Figure 9D). In summary, the grafted
cells displayed appropriate functional properties for integrated
neurons. We also looked for histological evidence of synaptic
afferent input to the transplanted neurons through immunohis-
tochemistry for synaptophysin. The GFP+ grafts were rich in
synaptophysin+ terminals both throughout the periphery of the
graft and also deep within the graft core. Thin (∼5 μm) optical
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FIGURE 5 | Expression of transcription factors with layer-specific cortical

expression patterns indicates some level of regional specification in a

subset of the grafted cells. (A) Immunohistochemistry for GFP (green) and
the transcription factors Ctip2 and Cux1 shows cortical graft placement near
the pial surface. The superficial and deeper cortical layers of the host brain are
illustrated by the laminar-specific distribution of Cux1 (blue, layers I–IV) and
Ctip2 (red, layers V and VI). (B–E) Separate color channels of the boxed area in

(A) shows that the grafts often contained discrete clusters of Ctip2+ cells
but were largely devoid of Cux1 expression. (F–H) Tbr1+ cells were rare in
the grafts but were uniformly distributed through the adjacent host cortex
(red, separate color channels show few Tbr1+ cells in the GFP+ graft area,
and distributed in superficial cortical layers of the GFP− host tissue
immediately dorsal to the graft – lower half of image). Scale bars: (B–E)

200 μm, (F–H) 200 μm.

Frontiers in Cellular Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 11 | 8

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-06-00011” — 2012/3/21 — 15:19 — page 9 — #9

Denham et al. Stem cells for brain repair

FIGURE 6 | Chromogenic detection of GFP shows extensive axonal

growth of grafted neurons 10 weeks after transplantation. Darkfield
photo-montages of immunohistochemistry for GFP shows robust, long-
distance outgrowth throughout the host brain. Coronal (i–vi), horizontal
(vii–ix), and parasagittal (x) sections illustrate extensive GFP+ growth
throughout the rostro-caudal and medio-lateral planes, particularly along
host white matter tracts including: a prominent outgrowth anterior to the

graft through forceps minor (i, viii) and caudally along myelinated fiber
bundles of the internal capsule (viii, ix, x); as well as extensive growth
in the medio-lateral plane across both hemispheres via the corpus
callosum (ii, iii) and anterior commissure (vi). The boxed areas are
shown at higher magnification in Figure 7. Scale bar: 10 mm. A high
resolution version of this figure can be found online at:
http://www.frontiersin.org/files/images/23963/darkfield_overview.jpg

sections through the graft cores allowed us to resolve for individual
GFP+ cells and showed the localization of synaptophysin at the
lipid membrane in some cells (Figure 9B). Interestingly, some
of the synaptophysin+ domains appeared to be GFP-negative
(Figure 9B) suggesting afferent input of host origin.

DISCUSSION
Although there has been a significant period of rapid progress in
the pluripotent stem cell field over the last decade, the success
we have seen in the culture dish, allowing for the procurement
of a diverse range of neuronal phenotypes from highly expand-
able stem cell populations, has been difficult to translate into an
in vivo setting with effective and predictable outcomes in ani-
mal models of brain injury. The rational development of stem
cell-based procedures for brain repair will ultimately be built on
a detailed understanding of the properties of stem cell-derived

cell preparations after transplantation. Here we have generated
detailed information on the composition and integration proper-
ties of neural cell preparations generated from a human ES cell
line ubiquitously expressing GFP.

Traditional protocols for neural induction describe extended in
vitro culturing periods for the induction and expansion of neu-
ral progenitors, derived from human ES cells (Reubinoff et al.,
2001; Perrier et al., 2004; Tabar et al., 2005; Sonntag et al., 2007).
More recently, shorter and more efficient neural induction proto-
cols have been reported using small molecules (Chambers et al.,
2009; Li et al., 2011; Morizane et al., 2011). We also describe here a
shortened induction and expansion protocol for generating neu-
ral progenitors by combining noggin application with growth on
PA6 stromal cells. Previous studies have shown that antagonism
of BMP signaling with noggin significantly improves the effi-
ciency of neural induction of human ES cells while concomitantly
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FIGURE 7 | Darkfield images of immunohistochemistry for GFP 10 weeks

after grafting of neural cell preparations generated from human ES cells.

These panels are enlarged versions of the boxed areas depicted in Figure 6

and show GFP+ fibers: (A) extending from the graft
core (*) into the surrounding striatum and ventrally into the ventral
palladium; (B) coursing through forceps minor and into the adjacent
secondary motor, cingulate, and pre-limbic cortices; (C) extending through
the cingulum into the overlying cingulate cortex; (D) extending through the
corpus callosum of the contralateral hemisphere; (E) running caudally
through the entopeduncular nucleus and branching medially into the
adjacent zona incerta and nearby thalamic nuclei; (F) at the level of the
midbrain, predominately associated with white matter tracts in the

substantia nigra pars reticulata and the underlying cerebral peduncle;
(G) exiting the caudal and ventral extremities of the external capsule
into the adjacent entorhinal cortex; (H) at the level of the parafascicular
thalamic nucleus; (I) in the septum; (J) running through the anterior
commissure at the midline; (K) extending along myelinated fiber bundles
of the internal capsule and; (L) in the brain stem. 3V, 3rd ventricle; ac,
anterior commissure; cc, corpus callosum; cg, cingulum; cp, cerebral
peduncle; CPu, caudate putamen; ec, external capsule; Ent, entorhinal
cortex; ep, entopeduncular nucleus; f, fornix; fmi, forceps minor; fr,
fasciculus retroflexus; gp, globus pallidus; Hp, hippocampus; PF,
parafascicular nucleus; SNr, substantia nigra pars reticulata; Sp, septum;
zi, zona incerta. Scale bar: (A–L) 500 μm.

suppressing differentiation into extra-embryonic endoderm (Pera
et al., 2004; Dottori and Pera, 2008). The absence of pluripotency
markers in vitro, such as Oct4, and up-regulation of early neu-
ral (Sox2, Pax6) and neuronal (βIII-tubulin) markers shows that
expanding human ES cells can be efficiently converted into neu-
ral precursors capable of neuronal differentiation over a relatively
short timeframe. This was reflected in the resulting grafts, which

were composed of mixed neural cell types and did not contain
Oct4+ cells. Furthermore, lack of Pax6+ cells in the grafts sug-
gests the cells had continued to differentiate in vivo beyond an
early neuroepithelial state.

Unambiguous detection of grafted tissue in the host brain
through GFP expression allowed us to determine key features
of graft size and composition. The average size and density of
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FIGURE 8 | Immunohistochemistry for the oligodendrocyte protein RIP

(CNPase) highlights the association of GFP+ fibers from transplanted

human ES cell-derived neurons with host myelinated fiber bundles. (A,B)

A low-power photo-montage shows a GFP+ graft placed in the ventral

striatum adjacent to the corpus callosum adjacent to numerous host RIP+
fiber bundles. (C–E) GFP+ fibers closely follow the trajectory of RIP+ white
matter tracts. (F–H) Many GFP+ fibers were also found coursing through the
anterior commissure. Scale bar: (A) 200 μm, (C–H), 50 μm.

the grafts suggests significant growth through cell division after
transplantation and the presence of Ki67+/Sox2+ cells showed a
persistence of some level of neural growth at the 10-week survival
time. Given the protracted growth properties of human cells this
is comparable with previously observed growth properties of fetal
tissue grafts after transplantation, which can expand in volume
five- to eightfold in the first 2 weeks after grafting (Labandeira-
Garcia et al., 1991). Although there are well-recognized safety
concerns related to tumor formation from uncontrolled prolif-
eration of pluripotent cell-derived preparations in vivo (Morizane
et al., 2006; Roy et al., 2006), we did not observe any overt signs
of tumor formation at the gross morphology level. Distinguishing
between normal developmental growth and pathological growth
properties (perhaps with slow but persistent growth kinetics) will
require additional studies with significantly longer survival times.

The presence of doublecortin+ and PSA-NCAM+ cells
migrating from the graft into the adjacent host parenchyma
indicates on-going neurogenesis as part of the dynamic growth
properties of the grafts at 10 weeks. Importantly, the grafts also
contained differentiated neurons and glia, with the neuronal com-
ponent representing more than half of the transplanted cells (at
least based on immunolabeling for NeuN, which may in fact
underestimate the total neuron numbers assuming not all express
NeuN). Based on the average cell densities and graft volumes, this
equates to a density of approximately 1.4 × 105 neurons/mm3.
For transplantation-based approaches for brain repair, the num-
bers of a therapeutic cell type as a function of graft volume is
important to consider. The cell numbers should be sufficient to
achieve the desired functional effect, while maintaining a graft size
that does not damage host nuclei at the site of implantation. In this
context, the present results compare favorably to those from graft-
ing of ventral mesencephalic tissue into the forebrain of patients

with PD. Recent post-mortem results from two patients with well-
defined clinical benefit up to 3 years after grafting showed that the
density of therapeutic dopamine neurons at each graft site was in
the order of 0.2 to 2.4 × 103 dopamine neurons/mm3 (Mendez
et al., 2005).

We cannot assume, however, a uniform composition of neu-
ronal phenotypes in the ES cell-derived grafts. Our results showed
a heterogeneous distribution of neuronal subtypes at both the
morphological and molecular level. The cytoplasmic distribu-
tion of GFP allowed for detailed analysis of cell morphology and
revealed a variety of mature neuronal profiles including those with
bipolar, pyramidal, and stellate morphology. Similarly, the hetero-
geneous distribution of Ctip2+ cells within the grafts highlights
the mixed neuronal composition. The Ctip2+ fractions appeared
in localized clusters, suggesting some level of regional organiza-
tion within the grafts. The appearance of Ctip2 expression in the
grafts may identify cells representing deep-layer cortical projec-
tion neurons. This would be in line with the in vitro results, which
showed some differentiated neural precursors expressed markers
consistent with dorsal forebrain identity, including Pax7 and Otx2
and also with recent studies demonstrating the default propen-
sity of both mouse and human ES cells to adopt cortical fates
after neural induction when differentiated under minimalist con-
ditions (Watanabe et al., 2005; Eiraku et al., 2008; Gaspard et al.,
2008). The absence of other markers of cortical projection neuron
identity, such as Cux1 and Tbr1, may reflect that not all corti-
cal subtypes are generated under the differentiation conditions
we have used here. Indeed, previous studies have shown that the
temporal staging of cortical layer specification during normal cor-
ticogenesis is recapitulated in vitro as a function of differentiation
time (Eiraku et al., 2008; Gaspard et al., 2008; Koch et al., 2009; Shi
et al., 2012). In the present study, the relatively short differentiation

Frontiers in Cellular Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 11 | 11

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-06-00011” — 2012/3/21 — 15:19 — page 12 — #12

Denham et al. Stem cells for brain repair

FIGURE 9 | Functional properties of human ES cell-derived neurons

10 weeks after transplantation. (A) The neuronal identity of the cells
analyzed under patch-clamp was confirmed by co-expression of GFP and
biocytin. (B) Immunohistochemistry for synaptophysin showed punctate
labeling of GFP+ cells with neuronal morphology. (C) An example of a
voltage recording from an individual neuron demonstrating action potential
firing at depolarized potentials. Increased action potential firing occurred
with increasing current injection. (D) Excitatory post-synaptic potentials are
clearly evident on the voltage trace recorded from an individual neuron. In
some cases they depolarized the neuron sufficiently to fire action potentials
(filled arrow). Scale bar: (A) 50 μm, (B) 25 μm.

time in vitro and maturation time in vivo may favor the production
of earlier born, Ctip2+, deep-layer cortical phenotypes rather than
later born, Cux1+ neurons that populate superficial layers during
normal development.

The use of neonatal recipients in neural transplantation stud-
ies offers unique insight into the intrinsic growth properties of
transplanted neurons by offering a relatively growth-permissive
compared to the more inhibitory environment of the adult brain
(Abrous et al., 1993; Olsson et al., 1997; Bentlage et al., 1999;
Thompson et al., 2005, 2008). Here we have described in detail
the remarkable intrinsic capacity of neurons derived from human
ES cells for extensive growth in vivo after transplantation. A
conspicuous feature of the neuronal growth properties was the
association of long-distance GFP+ fiber growth with major white
matter pathways in the host brain including: forceps minor,
anterior commissure, with extensive growth rostrally along the
rostro-caudal axis through forceps minor, and caudally along fas-
ciculus retroflexus and striatal fiber bundles of the internal capsule,
continuing through the cerebral peduncle into the brain stem;
and also along the medio-lateral axis throughout the anterior
commissure and corpus callosum, where GFP+ fibers extended
into the overlying cortex in both hemispheres. This finding is
consistent throughout an extensive body of work using various
donor materials combined with different host species, age, and
graft location (Wictorin et al., 1990; Isacson et al., 1995; Isac-
son and Deacon, 1996; Englund et al., 2002; Baker and Mendez,
2005; Gaillard et al., 2007; Thompson et al., 2008; Nasonkin et al.,

2009; Hargus et al., 2010; Ideguchi et al., 2010; Steinbeck et al.,
2012), and supports the idea that white matter associated fiber
outgrowth may be a generalized feature mediated by the host
environment.

It leads us to speculate that relatively undifferentiated cells may
take their growth and guidance cues from the host environment
in place of any intrinsically specified programs for target-directed
connectivity. Conversely, cells with a certain threshold level of
intrinsic specification will have an over-riding ability to inner-
vate specific targets independently of white matter associated
growth cues. In support of this, we have previously shown
that specific dopamine subtypes in intra-striatal grafts of ventral
mesencephalon (VM) are intrinsically programmed to innervate
their normal developmental targets at the time of implanta-
tion (Thompson et al., 2005; Grealish et al., 2010). Notably,
however, intra-striatal VM grafts also send long-distance projec-
tions along the internal capsule and into the host midbrain in
order to form a pathway that does not match with any of the
known intrinsic projection patterns originating from the midbrain
itself in the adult brain (Isacson and Deacon, 1996; Thomp-
son et al., 2008). Thus, the overall pattern of growth may reflect
both target-oriented growth from intrinsically specified progen-
itors, including those for dopamine neurons, as well as growth
directed by signals from host white matter compartments act-
ing on partially/undifferentiated cells contained in fetal tissue
preparations.

Differentiating between these two possible growth mecha-
nisms becomes difficult when examining axonal patterns from
grafts expected to contain neurons that normally form part of,
or course through, white matter tracts – such as cortical pro-
jection neurons. At least one study using fetal cortical donor
tissue from a GFP reporter mouse has shown convincingly that
in addition to growth along white matter tracts, grafted corti-
cal neurons extensively innervate the contralateral cortical gray
matter as well as appropriate subcortical targets, including the
striatum and thalamus (Gaillard et al., 2007). On the other hand,
studies using stem cell-derived donor material, including the
present work, appear to show growth throughout the internal
and external capsules as the predominate feature (Ideguchi et al.,
2010; Steinbeck et al., 2012) without extensive patterns of termi-
nal arborization in expected cortical target areas. In the present
study, we cannot discount that this may be due to a relatively
immature state of the grafts at 10 weeks. The expression of molec-
ular markers of cortical projection phenotype, such as Ctip2,
support the interpretation that at least some component of the
graft-derived outgrowth originates from cortical neurons display-
ing appropriate, target-directed growth features. These results
highlights an on-going need to rigorously assess the ability of
stem cell-derived neurons to innervate specific targets after trans-
plantation. Further studies with longer survival times and also
various differentiation procedures aimed at generating cortical
progenitors with different laminar identities will be important
for determining the capacity for specific cortical phenotypes to
innervate appropriate targets after transplantation. Functional cir-
cuit replacement for brain repair will more than likely require
that transplanted neurons can functionally innervate denervated
targets.
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In addition to facilitating a detailed analysis of anatomical graft
features the GFP reporter allowed us to assess functional aspects
of graft integration through patch-clamp experiments. The results
showed that, despite the relatively early survival time, the grafts
contained differentiated neurons capable of firing action poten-
tials with stereotypical neuronal behavior, including increased
frequency of action potential firing in response to increasing cur-
rent injection. This is in line with recent findings showing human
ES cell-derived neurons with mature electrophysiological pro-
files following transplantation into the telencephalon of neonatal
SCID mice (Koch et al., 2009). We also observed that at resting
membrane potential the grafted neurons exhibited excitatory post-
synaptic potentials and spontaneous action potentials, suggesting
functional afferent input. In support of this, many of the grafted
cells showed punctate labeling for synaptophysin, including exam-
ples of synaptophysin+/GFP− patterns, suggesting the possibility
of host-specific afferent input. Further studies will be required to
distinguish between the relative contribution from graft and host
afferent input to grafted neurons and also the ability of grafted
neurons to functionally activate host neurons.

In summary, we report here that neurons generated from
human ES cells are capable of extensive growth within the host
brain after intra-cerebral transplantation and display properties
consistent with functional integration at the electrophysiological
level. These are encouraging findings in the context of current
efforts to establish stem cell-based procedures for brain repair.
Certain features of the grafts, including the patterns of fiber out-
growth and expression of Ctip2, support recent findings describing
the efficient procurement of cortical neurons from human ES
cells. Using stem cells to replace cortical circuitry may lead to
improved treatments for cortical injury, for example following
acute damage arising from trauma or stroke, or as part of neu-
rodegenerative processes associated with motor neuron disease or

Huntington’s disease. A significant challenge will be to generate
cell preparations that give rise to neurons capable of long-range
re-instatement of specific, and potentially multiple cortical path-
ways (e.g., corresponding to distinct laminar identities), based on
an intrinsic capacity for functional innervation of appropriate tar-
gets. This will require extensive growth within the host brain as well
as target-directed axonal guidance. Our results show that trans-
planted neurons derived from human ES cells have an impressive
intrinsic capacity for long-distance axonal growth in vivo, while
evidence for target-specific innervation and terminal ramification
in expected cortical target nuclei was more limited. Further studies
on the connectivity of stem cell-derived neurons after transplan-
tation will form a critical part of the basic research required for
translation of recent advances in pluripotent stem cell biology to
effective procedures for brain repair.
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