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The circadian pattern of seizures in people with epilepsy (PWE) was first described two
millennia ago. However, these phenomena have not received enough scientific attention,
possibly due to the lack of promising hypotheses to address the interaction between
seizure generation and a physiological clock. To propose testable hypotheses at the
molecular level, interactions between circadian rhythm, especially transcription factors
governing clock genes expression, and the mTOR (mammalian target of rapamycin)
signaling pathway, the major signaling pathway in epilepsy, will be reviewed. Then, two
closely related hypotheses will be proposed: (1) Rhythmic activity of hyperactivated mTOR
signaling molecules results in rhythmic increases in neuronal excitability. These rhythmic
increases in excitability periodically exceed the seizure threshold, displaying the behavioral
seizures. (2) Oscillation of neuronal excitability in SCN modulates the rhythmic excitability
in the hippocampus through subiculum via long-range projections. Findings from published
results, their implications, and proposals for new experiments will be discussed. These
attempts may ignite further discussion on what we still need to learn about the rhythmicity
of spontaneous seizures.
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INTRODUCTION
Circadian rhythmicity of epileptic seizures was described over
2000 years ago, and modern scientific studies were conducted in
the late nineteenth century (Gowers, 1885; Wilson and Reynolds,
1990). In these early studies, approximately two thirds of peo-
ple with epilepsy (PWE) showed circadian patterns of epilep-
tic episodes (diurnal, nocturnal, and the rest categorized as
“diffuse” type—seizures occur randomly without a certain pat-
tern). Diurnal seizures were known to cluster in wakefulness
or in the late afternoon, while nocturnal seizures occurred fre-
quently at bedtime and in the early morning before awaken-
ing (Langdon-Down and Brain, 1929; Gfiffiths and Fox, 1938).
This circadian pattern of seizures in PWE tends to be well
preserved. In sleep-related studies, non-rapid eye movement is
typically associated with the increase in epileptiform discharges
and seizures in nocturnal cases (Shouse et al., 2000). Circadian
rhythm has a tremendous influence on sleep (and vice versa)
and the relationship between epilepsy and the sleep-wake cycle
has been actively studied (Bazil and Walczak, 1997; Matos et al.,
2011; Zarowski et al., 2011). Therefore, this article will focus
mainly on the relationship between intrinsic circadian rhythm
and epilepsy.

Abbreviations: 4E-BP1, eukaryotic initiation factor 4 binding protein 1; AMPK,
AMP protein kinase; CCG, clock controlled gene; CK1/2, Casein Kinase1/2; DBP,
albumin D-site-binding protein; EEG, eletroencephalography; EPSP, excitatory
postsynaptic potential; GABA, gamma-aminobutyric acid; GFAP, glial fibrillary
acidic protein; IRS, insulin receptor substrate; LTP, long term potentiation; mTOR,
mammalian target of rapamycin; NSE, neuron specific enolase; PI3K, phospho-
inositide 3-kinase; STAT3, signal transducer and activator of transcription-3.

CIRCADIAN RHYTHMS
Circadian rhythms are endogenously controlled 24 h (approxi-
mately) cycles of behavioral and physiological processes such as
sleep-wake cycle, hormonal production (e.g., cortisol, glucocor-
ticoid, and melatonin), and regulation of body temperature and
blood pressure (Hastings et al., 2007; Albrecht, 2012). The circa-
dian clock of most organisms is controlled by both photic (light–
dark cycle of the environment) and non-photic (such as daily
feeding or behavioral activities) stimuli (Reebs and Mrosovsky,
1989; Rosenwasser and Dwyer, 2001; van Oosterhout et al., 2012).

MOLECULAR MECHANISM OF CIRCADIAN GENE
REGULATION
Maintenance of the circadian clock involves coordinated feed-
back regulation of transcription and translation of CLOCK genes
to achieve the oscillatory levels of activators and repressors
(Figure 1; for the review, see Albrecht, 2012; Zheng and Sehgal,
2012). In a primary loop, CLOCK and BMAL1 (also known as
ARNTL) form a large complex in the cytoplasm and translocate
to the nucleus after being phosphorylated by protein kinases (e.g.,
CK1ε/δ) to activate the transcription of PERIOD (PER1, PER2,
and PER3) and CRYPTOCHROME (CRY1 and CRY2) genes.
The PER-CRY complex then subsequently binds to CLOCK-
BMAL1 complex to repress their transcriptions. PER and CRY
are degraded through the ubiquitin-proteosomal pathway (e.g.,
FBXL3-dependent) and this whole process takes about a 24 h
cycle. An additional feedback loop is at work with nuclear hor-
mone receptors such as ROR (RORa, RORb, and RORc) and REV-
ERBα/β to modulate the expression of clock-controlled genes
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FIGURE 1 | Transcriptional regulation circuit of clock genes in

mammals. (A) Circadian interlocking loops show that a primary loop of
CLOCK-BMAL1 and PER-CRY complexes and an additional feedback loop
of ROR/REV-ERB, conferring a tight transcriptional regulation. The blue
arrows indicate the transcriptional activation and the red lines indicate the
inhibiting activity of the targets. ROR as an activator and REV-ERB as a
repressor regulate the expression of BMAL1. (B) Transcription of BMAL1

and CLOCK is regulated by ROR and REV-ERB through binding RORE
elements at their promoters. CLOCK and BMAL1 activates the expression
of CRY, PER, REV-ERB, ROR, and other CCGs (clock controlled genes)
through binding to E-box element at their promoters. CRY-PER complex is
phosphorylated and transported back to the nucleus inhibiting the
CLOCK-BMAL1 activity. PER is phosphorylated to degrade through
proteosomal pathway via CK1ε/δ.

(CCGs) and clock-modulated genes. Several circadian modula-
tors such as DEC1/2 (also called BHLHE40/41), DBP, and E4BP4
(also called NFIL3) provide the additional level of circadian reg-
ulation. In the promoter region of core CLOCK genes and CCGs,
E-box elements are recognized by BMAL1-CLOCK, D-box ele-
ments by DBP-E4BP4, and REV-ERBα/ROR-regulatory elements
(RORE) by ROR. CLOCK, BMAL1, and PER1 are acetylated in
response to the environmental stimuli to adjust the activity of core
clock proteins. Changes or disruption in this multi-step regula-
tion influences the 24-h period by shortening or lengthening it.

CIRCADIAN REGULATION OF ION CHANNELS AND
MEMBRANE EXCITABILITY
Neurotransmitter receptors and ion channels have been shown
to have rhythmic expression and activity under circadian reg-
ulation (Kafka et al., 1986; Ko et al., 2009). Radioactive ligand
binding assay of several neurotransmitter receptors in rat brains
showed that the cortex has the highest variation and that the
cerebellum has the lowest. Hippocampus has circadian patterns
of ligand binding activities of α1 adrenergic and benzodiazepine
receptors (Kafka et al., 1986). Although the studies have been
limited mostly to the visual system (photoreceptors, retinal neu-
rons, and suprachiasmatic nucleus), cGMP-gated ion channel,
T- and L-type Ca channels, and voltage-gated K channels have
been shown to be under circadian control (Ko et al., 2009). Clock
gene products are involved in rhythmicity of membrane excitabil-
ity and electrical activities mostly due to changes in potassium
conductance (Belle et al., 2009; Itri et al., 2010). The expression of
pyridoxal kinase, an enzyme involved in metabolism of pyridoxal
phosphate and neurotransmitters (e.g., serotonin and dopamine),

has shown to be regulated by circadian PAR bZIP transcription
factors (Gachon et al., 2004). Thus, circadian rhythm modu-
lates neuronal excitability at the multiple levels, may trigger the
hyperexcitability out of delicate control.

EPILEPSY
Neuronal excitability is homeostatically controlled between
excitatory and inhibitory drives in the nervous system.
Hyperexcitability, caused by the disruption of this delicate
balance at the microcircuit level, may trigger the excessively
synchronized electrical discharges of neurons in the brain which
can manifest as epileptic seizures (Bertram, 2008). As a global
health issue, epilepsy affects ∼1% of the general population
(World Health Organization, 2005). Temporal lobe epilepsy
(TLE), especially, is often pharmacologically refractory and is
the most common type of acquired epilepsy that involves the
hippocampus, entorhinal cortex, and amygdala (Bertram, 2008).

CIRCADIAN PATTERN OF EPILEPTIC SEIZURES IN HUMAN
AND ANIMAL MODELS
The circadian pattern of seizures tends to be well preserved over
the years in individuals and some PWE experience the episodes
at the certain time of the day. However, the majority of one
type over the other (nocturnal vs. diurnal) in the epileptic pop-
ulation is not always consistent in the literature (Méndez and
Radtke, 2001). This may be the result of heterogeneity between
the cohorts recruited for each study. For instance, Gowers and
Patry described independently that seizures are more frequent
during the daytime than the night among the PWE they have
observed (Gowers, 1885; Patry, 1931). On the contrary, Janz and
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Hopkins independently found that nocturnal seizures are more
prevalent than the diurnal ones (Hopkins, 1933; Janz, 1962). It
is not straightforward to compare their findings because PWE
were not classified based on seizure type, age, or other possibly
important factors (e.g., comorbidity) of PWE in individual study.
Additional studies, possibly collaborations at multiple epilepsy
clinics, with a standardized protocol to recruit PWE, a clear classi-
fication of epilepsy/seizure types, and continuous monitoring and
data analysis, are needed in order to provide a better picture of
the phenomena.

In studies with a small cohort, epileptic seizures with circa-
dian rhythmicity seem to be dependent on the origin and type
of seizures (Hofstra et al., 2009a,b; Zarowski et al., 2011). For
example, de Weerd and colleagues used the video-EEG moni-
toring to describe that complex partial and temporal seizures
in adults have the peak activity during 11:00–17:00 h period,
and parietal seizures occurs more frequently during 17:00–23:00
period. In addition, frontal seizures showed the age-specific peak
activities during 23:00–5:00 period in adults and 17:00–23:00
in children (Hofstra et al., 2009a,b). Children with generalized
seizures showed that tonic and tonic-clonic seizures were more
frequently observed during sleep, whereas clonic, absence, atonic,
and myoclonic types of seizures have various peak times in
wakefulness (Zarowski et al., 2011).

Animal models of epilepsy also display circadian patterns of
seizures (Fenoglio-Simeone et al., 2009; Tchekalarova et al., 2010;
Matzen et al., 2012). Chronically epileptic KCNA1 null mice have
peak seizure occurrence early in the morning (at Zeitgeber 2.3),
and seizure occurrence and rest-activity rhythm are inversely cor-
related. KCNA1 null mice have a longer circadian period than
wild-type mice, and they are either phase-delayed or -advanced
(Fenoglio-Simeone et al., 2009). A kainate rat model of TLE
showed the higher seizure prevalence during the day and those
placed in constant darkness (light-deprived) displayed sponta-
neous seizures that still followed a circadian pattern, suggesting
that there is an endogenously mediated circadian pattern (Quigg,
2000; Tchekalarova et al., 2010). This diurnal tendency has been
also found in several different epilepsy models (Quigg et al.,
1998; Arida et al., 1999; Hellier and Dudek, 1999; Nissinen et al.,
2000; Stewart and Leung, 2003; Raedt et al., 2009). Human and
rodent models of TLE showed higher seizure prevalence dur-
ing the day regardless of the species difference in the sleep-wake
cycle. No direct association has been established between abnor-
malities (e.g., mutation) of major CLOCK gene products and
epilepsy.

CHRONOTHERAPY FOR EPILEPSY
Circadian influence on the dynamics and kinetics of medications
in individuals is important in drug efficacy, and it needs to be
monitored for improved treatment (Ohdo et al., 2010; Paschos
et al., 2010). Differential dosing of medication for patients with
cancer, asthma, hypertension, or diabetes based on individuals’
circadian patterns have been shown effective (Lévi et al., 2010;
Gimble et al., 2011; Hermida et al., 2011). Differential dosing
of anticonvulsants to relieve the seizure has been reported to be
more effective when the timing of drug intake is adjusted to the
day-night shift (Yegnanarayan et al., 2006; Guilhoto et al., 2011).

THE mTOR PATHWAY IN EPILEPSY AND CIRCADIAN
REGULATION
The mTOR signaling pathway play major roles in regulating
gene transcription and protein translation and it has been deeply
involved in several physiological and pathological conditions
(Laplante and Sabatini, 2012). This pathway has also been recog-
nized as a major signaling pathway in acquired epilepsies as well
as a few mutation-based epilepsies (see Cho, 2011 for the detail).
Rapamycin, an mTORC1 kinase inhibitor, blocks epileptogenesis
and reduces the seizure frequency in the pilocarpine/kainate-
injected rats when repeatedly administrated (Buckmaster et al.,
2009; Zeng et al., 2009; Huang et al., 2010). Rapamycin also sup-
presses axonal sprouting of somatostatin-positive interneurons in
the dentate/hilus (Buckmaster and Wen, 2011). A study shows
that the sclerotic hippocampi of human specimen with refrac-
tory TLE, as well as kainate mouse model, have over-activated
mTOR markers in reactive astrocytes (Sha et al., 2012; Sosunov
et al., 2012).

Relatively high levels of basal mTOR activity have been
reported in SCN. Its maximal activity occurs during the sub-
jective day and minimal activity during the late subjective night
(Cao and Obrietan, 2010; Cao et al., 2010). Phosphorylated (acti-
vated) S6, a ribosomal protein important in protein synthesis
and a downstream target of mTORC1, oscillates synchronously
with PER1 expression, and photic stimulation elicits a coordi-
nate upregulation of PER1 and mTOR activation in SCN (Cao
et al., 2010). Interestingly, some of the key molecules in the mTOR
pathway have been shown to be regulated in circadian manner
(Zhang et al., 2009). By genome-wide RNAi screening in a model
cell line, 17 gene products have been identified as strong cir-
cadian clock modifiers in period length and amplitude. These
proteins showed a “network effect”—leading to dynamic changes
in protein-protein interaction, phosphorylation, trans-activation,
or trans-repression when affected. An insulin signaling pathway
(mTOR-dependent) has been shown to regulate the circadian
clock (Zhang et al., 2009).

In addition, by genetically manipulating signaling molecules in
Drosophila in vivo, PTEN-AKT-Rheb-TOR-S6K pathway has been
shown to affect the circadian period (Zheng and Sehgal, 2010).
SGG (Drosophila homolog of GSK3β) is phosphorylated by AKT
and S6K1 and it phosphorylates TIMELESS (Drosophila homolog
of CRYPTOCHROME), modulating its nuclear translocation
with PERIOD (Figure 2; Martinek et al., 2001; Papadopoulou
et al., 2004; Zhang et al., 2006). GSK3β may also modulate
CLOCK, BMAL1, and REV-ERBα (Yin et al., 2006; Spengler
et al., 2009; Sahar et al., 2010). Conditional knockout PTEN
mice driven by the NSE-Cre promoter have a lengthened period
(Ogawa et al., 2007). PI3K and mTOR are periodic and cyclic,
and IRS and 4EBP1 are cyclic (Zhang et al., 2009). High-fat
diet lengthened the locomotor activity rhythm and modulated
CLOCK genes at the molecular level in mice (Kohsaka et al.,
2007).

The catalytic subunits (α1 and α2) of AMP protein kinase
(AMPK), which is an upstream regulator of mTOR kinase, reg-
ulate circadian rhythms (Um et al., 2011). AMPK phosphorylates
and modulates the activity of CRYPTOCHROME (Lamia et al.,
2009). Ketogenic diet (KD), a strict dietary plan to reduce the
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FIGURE 2 | Regulation of CLOCK proteins by the mTOR pathway

through GSK3β. The arrows (in blue) indicate activation of the targets and
the ones (in red) indicate inhibition by phosphorylation.

frequency and severity of seizure episodes in some population
of epileptic patients, has been shown to be mTOR-dependent
(McDaniel et al., 2011). In epileptic KCNA1 null mice, KD
reduces frequency and periodicity of seizures, and it also improves
diurnal rhythmicity (Fenoglio-Simeone et al., 2009). Since KD
works through mTOR pathway, it will be interesting to see if
mTOR inhibitors will have a beneficial effect on this mouse
model. Therefore, it is a plausible that the circadian rhythmic-
ity of seizure episode is mediated by the fluctuation in activity of
the mTOR signaling molecules. However, there is no direct evi-
dence so far to support this hypothesis. Examining the circadian
pattern of activity and expression of mTOR signaling molecules
in epilepsy models, and studying the behavioral rhythm of null
mice of those molecules will be valuable.

TRANSCRIPTION FACTORS GOVERNING THE CIRCADIAN
CLOCK AS MOLECULAR LINKS TO EPILEPSY
There are over 2000 CCGs reported in mammals from the pub-
lic microarray studies, and more than 20 transcription factors
are found or suggested to be important in circadian expres-
sion patterns of CCGs via a large scale promoter analysis (Bozek
et al., 2009). There are several findings to suggest that these
transcription factors have been involved in epilepsy.

A GC-rich motif, EGR is significantly overrepresented in the
promoter region of CCGs (Bozek et al., 2009). Increased lev-
els of EGR-1 and EGR-2, which bind to the EGR element, have
been reported in the neocortex of epileptic patients (Rakhade
et al., 2005). AP1, a promising circadian regulator, has the high
level in cerebral cortex and hippocampus of epileptic E1 mice

(Yoneda et al., 1993). STAT3, which regulates the expression
of GABAα1 receptor subunit, has been shown to be activated
(phosphorylated) in GFAP-positive astrocytes in the hippocam-
pus in pilocarpine-induced model (Lund et al., 2008; Xu et al.,
2011). SP1 has a long-lasting increased activity in kainate-induced
epilepsy model, and neonatal epilepsy-associated KCNQ2 and
KCNQ3 genes are activated by SP1 (Feng et al., 1999; Mucha
et al., 2010). DBP has the increased level in cerebrospinal fluid
has been found in TLE patients and its overepxression in mice
increased the seizure susceptibility (Klugmann et al., 2006; Xiao
et al., 2009). In contrast, triple knockout mice of circadian PAR
bZIP transcription factors (DBP, HLF, and TEF) exhibit epileptic
symptoms (Gachon et al., 2004).

XBP1 (X-box-binding proteins 1), a basic leucine zipper family
transcription factor, is recently identified as one of light-inducible
genes in chicken pineal gland, and its spliced form has circa-
dian pattern of gene expression (Hatori et al., 2011). The splicing
and expression of XBP1 is increased when the mTOR pathway
is activated, affecting XBP1-targeted genes (Pfaffenbach et al.,
2010). Its increased expression and activation has been shown
in hippocampi of epileptic patients (Liu et al., 2011). SREBP1
(Sterol regulatory element binding protein) is a transcription
factor controlling expression of genes involved in lipid and choles-
terol biosynthesis (Laplante and Sabatini, 2009; Porstmann et al.,
2009). The mTORC1 phosphorylates SREBP1 to upregulate the
expression of its target genes (Porstmann et al., 2008). Its expres-
sion follows the circadian pattern as it is XBP1 and mTOR-
dependent (Hatori et al., 2011). One of SREBP1 downstream tar-
gets, stearoyl-CoA desaturase 1 has been shown to be upregulated
in human cortical specimen of TLE (Arion et al., 2006).

In addition to the proteins that were mentioned above,
Oligophrenin-1, PAM, and the GABAA receptor β2 subunit are
linked to epilepsy and circadian behavior (Tentler et al., 1999;
Bergmann et al., 2003; Arion et al., 2006; Yin et al., 2010).
Specifically, Oligophrenin-1 interacts with Rev-erbα, a nuclear
receptor involved in regulation of the circadian clock, and reg-
ulates the oscillatory expression of a clock gene BMAL1 in the
hippocampus (Valnegri et al., 2011). Therefore, abnormal activ-
ity of these transcription factors controlling circadian rhythm
is also deeply involved in epilepsy. Several questions remain. Is
the increased expression of these transcription factors sufficient
to lower the seizure threshold and/or make the neurons hyper-
excitable? Will reducing these factors in the epileptic animals
(e.g., using siRNA technique) decrease the seizure frequency or
even change the circadian pattern of seizures? Are the expres-
sion and/or activation of these factors mTOR pathway dependent?
Will the altered activity of these factors be reversed when the
rapamycin or anticonvulsants are administered?

FUNCTIONAL CONNECTION BETWEEN HIPPOCAMPUS
AND SCN
In the hippocampus, the activity (and/or the expression level) of
several memory-related proteins has been shown to oscillate in
the circadian manner (e.g., adenylyl cyclases, ERK/MAPK, Ras,
MEK, and CREB) (Eckel-Mahan et al., 2008). LTP, field EPSP
slope, and population spike in the dentate are greater during
the dark phase than the light phase when medial perforant path
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was stimulated (Harris and Teyler, 1983; Bowden et al., 2011).
PER2 is highly expressed in pyramidal cell layers in the hippocam-
pus and its expression fluctuate in circadian manner. Expression
of PER2 in the hippocampus is out-of-phase with that in SCN,
and PER2 null mice showed abnormal LTP (Figure 3A; Wang
et al., 2009). Circadian patterns of expression of CLOCK in the
DG and BMAL1 in CA1 and CA3 have been reported in the
mouse hippocampus (Wyse and Coogan, 2010). The findings of
oscillation of PER1 in the hippocampus are not consistent. The
expression of PER1, high in the DG of hippocampus, has not
shown to oscillate (Yamamoto et al., 2001; Abe et al., 2002).
However, PER1 and BMAL1 in the hippocampus have been
shown to oscillate depending on SCN (Wang et al., 2009; Jilg et al.,
2010). Interestingly, PER1 has been reported to be upregulated
in the mouse hippocampus and cerebral cortex by electroconvul-
sive shock or kainate injection (Eun et al., 2011). In electrically
induced rat model of chronic epilepsy, the excitability of DG
shows two distinct phases (high and low) of seizures (Matzen
et al., 2012). In the same model, hippocampal CA1 region dur-
ing latent period of epileptogenesis shows a phase shift between
two types of population spikes which follow the circadian rhythm
(Talathi et al., 2009).

Suprachiasmatic nucleus (SCN) in the hypothalamus is the
central circadian pacemaker to coordinate and synchronize local

clocks throughout the body (Welsh et al., 2010). SCN receives
direct inputs from tens of different regions, and projects to
more than dozen regions which includes three major affer-
ent connections—retinohypothalamic and geniculohypothala-
mic projections, and median raphe serotonertic pathway (for
the detail, see Morin, 2012). A direct neural pathway from
the hippocampus to SCN is known, however, the SCN out-
put to hippocampus is still unclear (Krout et al., 2002). It
has been reported that the indirect pathways through multiple
synaptic connections and hormonal influence (e.g., hypocre-
tin and melatonin) onto the hippocampus confer the circa-
dian rhythmicity (Monnet, 2002; Perreau-Lenz et al., 2003).
Subiculum to SCN connection has been reported, and long-range
GABAergic projections may be able to synchronize the oscilla-
tory activity between these two areas (Meibach and Siegel, 1977;
Canteras and Swanson, 1992; Jinno et al., 2007). As shown in
paraventricular nucleus, the strength of the GABAergic input
from the SCN to subiculum can be rhythmic (Kalsbeek et al.,
2008). Either strong excitatory input or weak inhibitory input
from SCN to subiculum/hippocampus, with or without syn-
chronization to the rhythmic excitability of the hippocampus,
may overcome the seizure threshold (Figure 3B). Interestingly,
hippocampus-dependent spatial and contextual fear memories
were compromised when the SCN is lesioned after training

FIGURE 3 | Hypothetical diagrams of two different network excitability

states. The left panel (in A1 and B1) is in quiescent state and the right
(in A2 and B2) is in hyperexcitable state. (A) The circadian fluctuation of the
expression and/or activity of mTOR signaling molecules in the hippocampus
may determine the quiescent or hyperexcitable states of the hippocampus
prone to epileptic seizures. The red arrows in the right graphs from the
cartoon of the coronal section indicate the hypothetical activation states of

mTOR pathway (A1 and A2). The left graph in (A1) indicates the out-of-phase
rhythmic expression of PER2 in the SCN and CA1. (B) The circadian
fluctuation of the SCN inputs to hippocampus via subiculum may regulate the
excitability states of the hippocampus. The left graph in (B1) shows the
rhythmic excitability of the dentate gyrus and the right graph in B2 signifies
the synchronized rhythmicity of PER2 and mTOR signaling molecules. SCN,
suprachiasmatic nucleus.
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(Phan et al., 2011). It will be interesting to see if the circadian
episode of seizures will be altered when the SCN of the epileptic
animals is lesioned. To study this SCN output pathway to hip-
pocampus transgenic mice with fluorescence labeling of identifi-
able neuronal population (e.g., GAD-GFP mice) and optogenetic
approaches (e.g., Channelrhodopsin2 and Halorhodopsin) may
be useful (Adamantidis et al., 2010; Kokaia et al., 2012).

INVOLVEMENT OF EPIGENETICS IN CIRCADIAN RHYTHM
AND EPILEPSY
Epigenetic regulation should be considered in this type of study
because individual organisms show the differential response in
both circadian rhythm and epilepsy to environmental stimuli
(Bellet and Sassone-Corsi, 2010; Qureshi and Mehler, 2010).
It should be noted that the CLOCK protein has a histone
acetyltransferease activity (Doi et al., 2006). There are circadian
changes in histone acetylation at the promoter of CLOCK genes
(Etchegaray et al., 2003). MLL1, a H3K4 methyltransferase, is
associates with CLOCK and recruited to promoters of CCGs in
a circadian manner, and null mice of SMCX/JARID1c, a H3K4
demethylase, develops epilepsy (Tahiliani et al., 2007; Katada and
Sassone-Corsi, 2010; DiTacchio et al., 2011). Even in one type
of animal model of epilepsy, epileptic animals may not show the
single circadian pattern of epileptic episodes (e.g., diurnal vs. dif-
fuse types). Therefore, there is room to improve or develop better
models. Examining the circadian behaviors of existing mutant

mice with epileptic seizures to find a suitable model is highly
desirable (Yoneda et al., 1993).

CONCLUSION
The phenomena of circadian rhythmicity of spontaneous epilep-
tic seizures are evident in human and animal models although
there are inconsistency and studies yet to be done in detail.
Findings from the literature regarding the circadian regulation
and epilepsy were reviewed to formulate the rationale for its
molecular mechanism. As one may notice there is no strong evi-
dence to support some premises for the hypothesis proposed here,
and there are many more questions than answers on the subject
of this article. By testing the hypotheses proposed here; (1) fluc-
tuating activity of activated mTOR signaling molecules and their
targets increase the neuronal excitability in the epileptic brain,
raising beyond the seizure threshold to display the behavioral
seizures. (2) The rhythmic input strength from SCN to hip-
pocampus contributes to synchronizing hyperexcitability which
manifests with the epileptic seizures. By addressing this ques-
tion, hopefully we can have the opportunity to address another
mysterious side of epilepsy.
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